Supplementary material

Synthesis, Crystal Structure, Thermal Decomposition and ¹¹B MAS NMR Characterization of Mg(BH₄)₂(NH₃BH₃)₂

Lars H. Jepsen^a, Voraksmy Ban^b, Kasper T. Møller^a, Young-Su Lee^c, Young Whan Cho^c, Flemming

Besenbacher^d, Yaroslav Filinchuk^b, Jørgen Skibsted^e and Torben R. Jensen^{a*}

^aCenter for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

^b Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place L. Pasteur 1, B-1348, Louvain-la-Neuve, Belgium

^c High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea

^d Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark.

^e Instrument Centre for Solid-State NMR Spectroscopy, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

*Corresponding author Torben R. Jensen, Ph.D., Associate Professor Center for Materials Crystallography iNANO and Department of Chemistry Langelandsgade 140 DK-8000 Aarhus C Aarhus University Denmark

Atom	Wyckoff site	x	У	Z	Occupancy	B (Ų)
Mg1	4a	0.88155(19)	0.2570(2)	0.0430(3)	1	3.92(5)
B2	4a	0.0002(4)	0.3681(4)	0.1995(12)	1	4.12(11
H3	4a	0.0767(10)	0.344(2)	0.254(8)	1	2.0(2)
H4	4a	-0.001(2)	0.4580(7)	0.179(6)	1	2.0(2)
H5	4a	-0.021(2)	0.334(2)	-0.006(3)	1	2.0(2)
H6	4a	-0.0521(17)	0.344(2)	0.371(4)	1	2.0(2)
B7	4a	0.7380(4)	0.8430(4)	0.7524(13)	1	4.12(11
H8	4a	0.8115(13)	0.806(2)	0.822(6)	1	2.0(2)
H9	4a	0.741(2)	0.855(2)	0.520(2)	1	2.0(2)
H10	4a	0.6807(17)	0.7817(19)	0.818(6)	1	2.0(2)
H11	4a	0.712(2)	0.9221(13)	0.855(4)	1	2.0(2)
N12	4a	0.6845(3)	0.3614(3)	0.7406(10)	1	6.36(13
B13	4a	0.7860(4)	0.3868(4)	0.8288(11)	1	4.12(11
H14	4a	0.677(2)	0.363(2)	0.5454(19)	1	2.0(2)
H15	4a	0.667(2)	0.2942(12)	0.809(5)	1	2.0(2)
H16	4a	0.789(2)	0.398(2)	1.063(2)	1	2.0(2)
H17	4a	0.8361(18)	0.3170(16)	0.758(8)	1	2.0(2)
H18	4a	0.8095(18)	0.4623(16)	0.712(6)	1	2.0(2)
H19	4a	0.642(2)	0.4104(18)	0.834(5)	1	2.0(2)
N20	4a	0.5829(3)	0.9825(4)	0.2814(10)	1	6.36(13
B21	4a	0.5247(4)	0.8820(4)	0.3418(11)	1	4.12(11
H22	4a	0.6507(8)	0.966(2)	0.287(8)	1	2.0(2)
H23	4a	0.570(2)	1.010(2)	0.103(3)	1	2.0(2)
H24	4a	0.4452(11)	0.880(2)	0.267(8)	1	2.0(2)
H25	4a	0.567(2)	0.8142(17)	0.229(7)	1	2.0(2)
H26	4a	0.521(2)	0.870(2)	0.576(2)	1	2.0(2)
H27	4a	0.571(2)	1.026(2)	0.432(4)	1	2.0(2)

Table S1 Experimental structural parameters for Mg(BH₄)₂(NH₃BH₃)₂, space group $P2_12_12_1$ (No. 19), a = 14.41633(7), b = 13.21283(7), c = 5.11512(2) Å and V = 974.331(8) Å³

Detailed description of structure solution and refinement The structure of the complex $Mg(BH_4)_2(NH_3BH_3)_2$ was solved and refined from SR-PXD data measured at Diamond, UK. The final Rietveld refinement (see Figure 1) indicated that the sample contains $Mg(BH_4)_2(NH_3BH_3)_2$ (86 wt%), α -Mg(BH_4)₂ (10 wt%) and 4 wt% of remaining NH₃BH₃.

The diffraction data from the new compound, Mg(BH₄)₂(NH₃BH₃)₂, were indexed with an orthorhombic unit cell, a = 14.41633(7), b = 13.21283(7), c = 5.11512(2) Å and V = 974.331(8) Å³, using EXPO 2011.¹ The systematic absences suggested the presence of glide planes, *i.e. Pna*2₁ or *Pnam* (Z = 4) as the most likely space groups. However, close examination shows that a number of weak reflections (*e.g.* 301, 021, 041) break both systematic absence conditions. The structure was solved in the space group *P*2₁2₁2₁, using global optimization in direct space implemented in the program FOX.² One Mg, two rigid tetrahedral BH₄⁻ anions and two rigid NH₃BH₃ molecules were optimized using B–B 3.3 Å, N–N 2.5 Å and H–H 1.8 Å antibump restraints.

The structural model, shown in Table S1, was refined by the Rietveld method using the program Fullprof.³ 81 atomic coordinates (7 non-H and 20 H-atoms) and 4 group isotropic atomic displacement factors were refined with 22 distance and 36 angle restraints (B-H distance 1.22 Å, N-H distances 1.00 Å and B-N 1.56 Å distances, all sp³ angles are fixed at 109.5°). Intensities of 1020 independent reflections were used, which are equivalent to 330 independent observations, accounting for the effective angular resolution of the diffraction data. The observation/parameter ratio is thus highly satisfactory, exceeding 4.5. The structure was checked for higher symmetry using ADDSYM routine in Platon.⁴ The final discrepancy factors: $R_p = 0.66$ %, $R_{wp} = 0.97$ % (not corrected for background), $R_p = 14.1$ %, $R_{wp} = 8.4$ % (conventional Rietveld R-factors), $R_{Bragg} = 6.1$ % and global $\chi^2 = 28.9$.

Intermolecular									
Н…Н	(Å)	B-H	(Å)	N-H	(Å)	B-H…H	(deg)	N-H…H	(deg)
H4…H23	1.84(4)	B2-H4	1.19	N20- H23	1.00	B2-H4…H23	106	N20-H23…H4	154
H4…H27	2.25(4)	B2-H4	1.19	N20- H27	0.98	B2-H4…H27	90	N20-H27…H4	146
H3…H15	2.28(3)	B2-H3	1.18	N12- H15	0.98	B2-H3…H15	136	N12-H15…H3	144
Intramolecular									
Н…Н									
H9…H22	2.29(4)	В7-Н9	1.20	N20- H22	1.00	B7-H9…H22	125	N20-H22…H9	108

Table S2. Geometrical characteristics of the shortest dihydrogen bonds in Mg(BH₄)₂(BH₃NH₃)₂ solved from SR-PXD.

Table S3 Bond distances from the refined DFT structure of $Mg(BH_4)_2(NH_3BH_3)_2$ compared with those from the reported pristine NH_3BH_3 and α -Mg(BH₄)₂.

Bond	Length (Å)			
	Mg(BH ₄) ₂ (NH ₃ BH ₃) ₂	NH ₃ BH ₃ ⁵	α -Mg(BH ₄) ₂ ⁶	
Intramolecular				
N–B	1.577 – 1.591	1.58(2)		
N-H (NH ₃ BH ₃)	1.026 - 1.033	0.96(3) - 1.07(4)		
B-H (NH ₃ BH ₃)	1.207 – 1.234	1.15(3) - 1.18(3)		
B-H (BH ₄)	1.216 - 1.247		1.18(1)	
Mg–B	2.389 - 2.475		2.31(3) - 2.53(2)	
Mg-H (BH ₄)(BH ₃)	1.971 – 2.074		1.81(4) - 2.25(5)	
$\mathrm{H}^{\delta^{+}}(\mathrm{NH}_{3}\mathrm{BH}_{3})-\mathrm{H}^{\delta^{-}}(\mathrm{NH}_{3}\mathrm{BH}_{3})$	2.063 - 2.458	2.02(3)		
Intermolecular				
$H^{\delta+}(NH_3BH_3)-H^{\delta-}(BH_4)$	1.957 – 2.445			

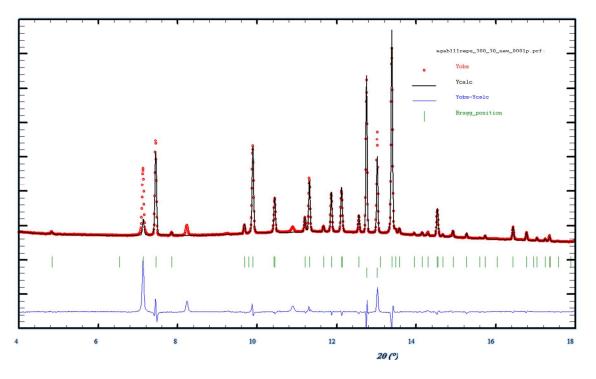
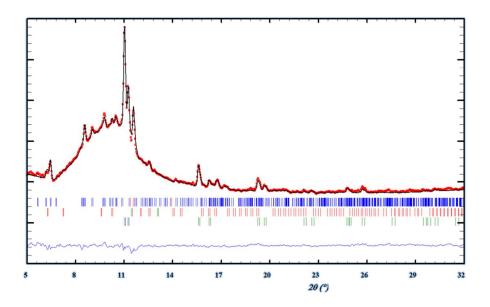
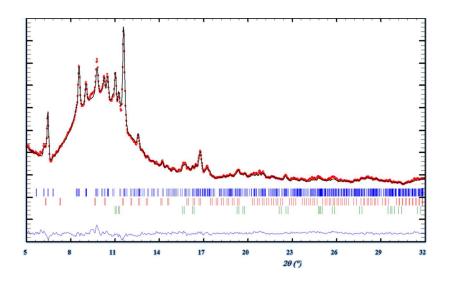

Atom	Wyckoff site	Occupancy	x	У	Ζ
Mg1	4 <i>a</i>	1	0.8816	0.2518	0.0350
B2	4 <i>a</i>	1	0.0023	0.3613	0.1901
Н3	4 <i>a</i>	1	0.0779	0.3413	0.2821
H4	4 <i>a</i>	1	-0.0132	0.4521	0.1796
H5	4 <i>a</i>	1	0.0007	0.3270	0.9654
H6	4 <i>a</i>	1	-0.0572	0.3231	0.3336
B7	4 <i>a</i>	1	0.7395	0.8503	0.7140
H8	4a	1	0.8154	0.8151	0.7640
H9	4a	1	0.7263	0.8402	0.4745
H10	4a	1	0.6810	0.8038	0.8459
H11	4a	1	0.7304	0.9397	0.7653
N12	4a	1	0.6800	0.3526	0.7449
B13	4a	1	0.7826	0.3817	0.8315
H14	4a	1	0.6681	0.3700	0.5524
H15	4 <i>a</i>	1	0.6649	0.2768	0.7671
H16	4 <i>a</i>	1	0.7880	0.3702	0.0695
H17	4a	1	0.8362	0.3264	0.7092
H18	4 <i>a</i>	1	0.7993	0.4687	0.7768
H19	4a	1	0.6310	0.3907	0.8531
N20	4 <i>a</i>	1	0.5757	0.9953	0.3187
B21	4 <i>a</i>	1	0.5253	0.8908	0.3630
H22	4 <i>a</i>	1	0.6471	0.9918	0.3223
H23	4a	1	0.5576	0.0275	0.1425
H24	4 <i>a</i>	1	0.4438	0.8970	0.3035
H25	4a	1	0.5618	0.8265	0.2219
H26	4a	1	0.5311	0.8696	0.5969
H27	4 <i>a</i>	1	0.5580	0.0468	0.4621

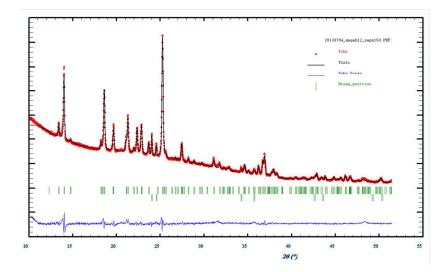
Table S4 DFT-optimized atomic positions for $Mg(BH_4)_2(NH_3BH_3)_2$. The experimental cell parameters from SR-PXD are used.

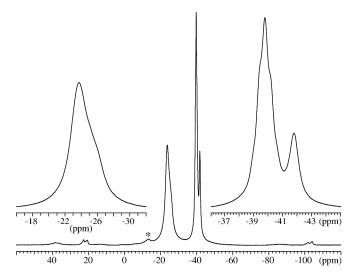
Table S5 Frequencies observed in FTIR for $Mg(BH_4)_2(NH_3BH_3)_2$ compared with NH_3BH_3 and α -

	Mg(BH ₄) ₂ (NH ₃ BH ₃) ₂	NH ₃ BH ₃	α -Mg(BH ₄) ₂
N–H strech:	3307	3304	
	3250	3248	
	3176-3213 (w, broad)	3192	
		0010	007.1
B–H strech:	2471	2313	2274
	2397	2283	
	2299	2210	
	2247	2113	
	2182		
Fingerprint:	1604	1595	1252
	1419	1372	1118
	1394	1155	
	1351	1052	
	1134		
	1043		


Mg(BH₄)₂.


Figure S1 Rietveld refinement of SR-PXD data for α -Mg(BH₄)₂-NH₃BH₃ (1:2, s2) after 325 min BM measured at RT, $\lambda = 0.823065$ Å. Tic marks (top) Mg(BH₄)₂(NH₃BH₃)₂ and NH₃BH₃. New reflections from **2** are observed at 2 θ = 7.11, 8.23, 10.90 and 13.01 °.


Figure S2 Picture of a vial containing $Mg(BH_4)_2(NH_3BH_3)_2$ in argon atmosphere stored at RT for several weeks. The powder has transformed into foam.


Figure S3 Rietveld refinement of PXD data for γ -Mg(BH₄)₂–NH₃BH₃ (1:0.66, s6) manually ground before compression, $\lambda = 0.71073$ Å, RT. Tic marks in blue show Bragg positions of Mg(BH₄)₂(NH₃BH₃)₂ (50 wt%), in red γ -Mg(BH₄)₂ (2 wt%) and in green NH₃BH₃ (48 wt%).

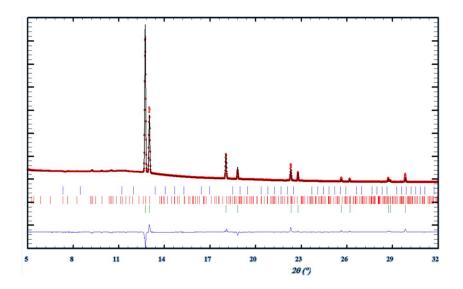
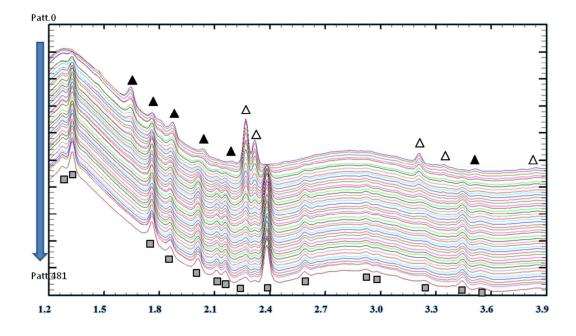
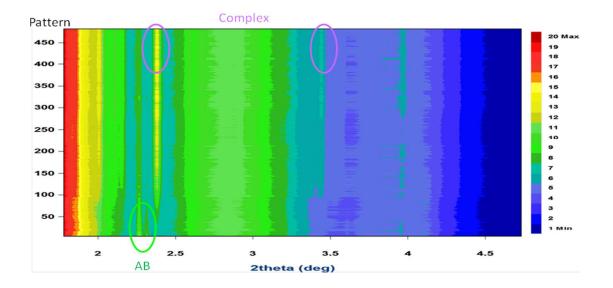

Figure S4 Rietveld refinement of PXD data for γ -Mg(BH₄)₂–NH₃BH₃ (1:0.66, s6) compressed into a pellet, $\lambda = 0.71073$ Å, RT. Tic marks in blue show Bragg positions of Mg(BH₄)₂(NH₃BH₃)₂ (87 wt%), in red γ -Mg(BH₄)₂ (1 wt%) and in green NH₃BH₃ (12 wt%).

Figure S5 Rietveld refinement of PXD data for γ -Mg(BH₄)₂–NH₃BH₃ (1:2, s4) after 400 min BM, λ = 1.54056 Å, RT. Tic marks (top) Mg(BH₄)₂(NH₃BH₃)₂ (95 wt%) and NH₃BH₃ (5 wt%).

Figure S6¹¹B MAS NMR spectrum of a mechanochemically treated sample of γ -Mg(BH₄)₂–NH₃BH₃ (1:2, s4) acquired at 14.1 T using a spinning speed of $v_r = 12.0$ kHz and a home-built 4 mm CP/MAS probe. The spectrum is recorded with a 0.5 µs excitation pulse (γ B₁/2 π = 60 kHz), a relaxation delay of 10 s and 100 scans.


Figure S7 Rietveld refinement of PXD data for amorphous γ -Mg(BH₄)₂–NH₃BH₃ (1:2, s8) after compression, $\lambda = 0.82257$ Å, RT. No Bragg reflections of Mg(BH₄)₂(NH₃BH₃)₂ or γ -Mg(BH₄)₂ (blue tic marks) are observed. Small traces of α -Mg(BH₄)₂ are visible, while NH₃BH₃ (green tic marks) constitutes the main phase with the non-crystalline (amorphous) γ -Mg(BH₄)₂.

In situ SR-PXD investigation of the ball milling reaction between Mg(BH₄)₂ and NH₃BH₃ (1:2)


Experimental: Two independent experiments were performed at ID15 beamline at ESRF, Grenoble, to compare the reactivity of α - and γ -Mg(BH₄)₂ with NH₃BH₃ (1:2). The setup used was identical to the one described recently [Ivan Halasz et al., *Nature Protocols* 2013, 8, 1718-1729]. Approximately 200 mg of Mg(BH₄)₂ and NH₃BH₃ (1:2) were loaded in a Plexiglas 14 ml jar with two 7 mm-diameter balls in stainless steel. The ball milling/diffraction experiments were performed for 99 minutes with 20 Hz milling frequency; one diffraction pattern was obtained every 12.3 seconds, resulting in 482 patterns for each milling. The wavelength ($\lambda = 0.146687$ Å) and the detector distance of 933.33 mm were determined by the CeO₂ standard packed in a capillary and LaB₆ in a 7 ml plastic jar, respectively.

Results: *In situ* SR-PXD of the ball milling process of α -Mg(BH₄)₂–NH₃BH₃ (1:2) are shown in Figure S8 and S9. The first obtained diffraction pattern (after 12 s of ball milling) reveals reflections from α -Mg(BH₄)₂, NH₃BH₃ and a single impurity peak at 1.82 ° (Figure S10). However, the impurity peak does not originate from either **1** or **2** and disappear after 13 min of ball milling. It is seen (Figure S9) that Mg(BH₄)₂(NH₃BH₃)₂ is formed after the 61st pattern (after 12 minutes of ball milling). There are no unidentified reflections observed from any intermediates, but the Mg(BH₄)₂(NH₃BH₃)₂ is formed after generate any intermediates, but the Mg(BH₄)₂(NH₃BH₃)₂ is formed milling). Rietveld refinement of SR-PXD data after 99 min of ball milling is presented in Figure S11.

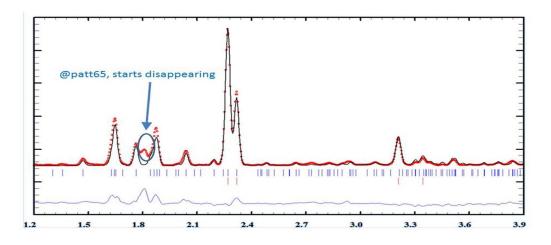

In situ SR-PXD of the ball milling process of γ -Mg(BH₄)₂–NH₃BH₃ (1:2) is shown in Figure S12, and the conversion of γ -Mg(BH₄)₂ and NH₃BH₃ into Mg(BH₄)₂(NH₃BH₃)₂ as a function of milling time is presented in Figure S13. The first diffraction pattern after 12 seconds of milling (Figure S14) shows the reactants, γ -Mg(BH₄)₂ and NH₃BH₃. Formation of Mg(BH₄)₂(NH₃BH₃)₂ initiates after ~5 min of ball milling and its phase fraction increases to nearly 100% after 20 minutes ball milling (Figure S13). Thus, it is concluded that under the applied conditions there are no indications of entrance of NH_3BH_3 into the pores of γ -Mg(BH₄)₂.

Figure S8 *In situ* SR-PXD data of the reaction between α -Mg(BH₄)₂ and NH₃BH₃ (1:2) every second minute (every ten's pattern is shown). The reaction evolves from top to bottom, $\lambda = 0.146687$ Å. Symbols: $\blacktriangle \alpha$ -Mg(BH₄)₂, Δ NH₃BH₃, \blacksquare Mg(BH₄)₂(NH₃BH₃)₂.

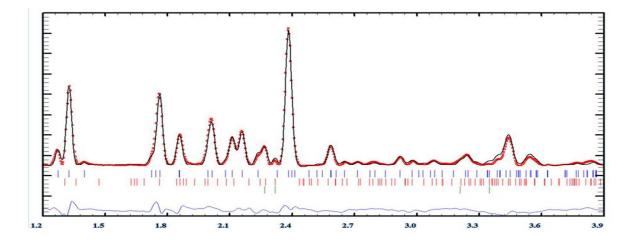


Figure S9 SR-PXD patterns collected during 99 minutes of milling for α -Mg(BH₄)₂–NH₃BH₃ (1:2). The relevant diffraction peaks for Mg(BH₄)₂(NH₃BH₃)₂ and NH₃BH₃ are highlighted by purple and green ellipses, respectively. The diffraction peaks from α -Mg(BH₄)₂ are difficult to distinguish as they coincide with the background generated by the plastic jar. $\lambda = 0.146687$ Å.

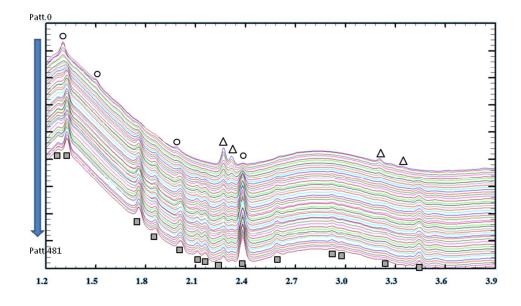
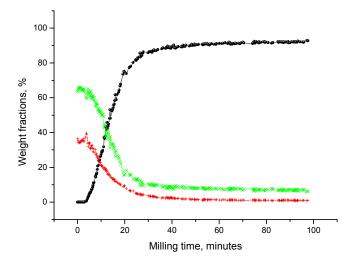
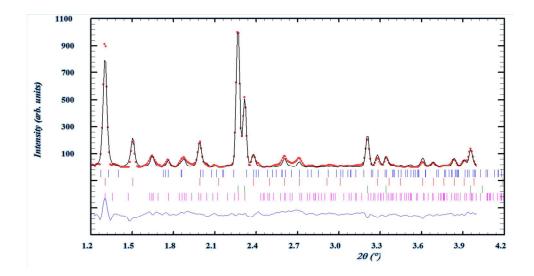
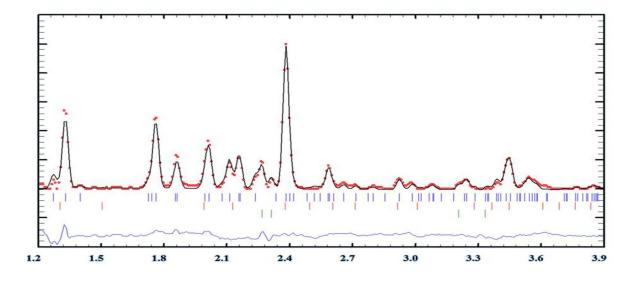
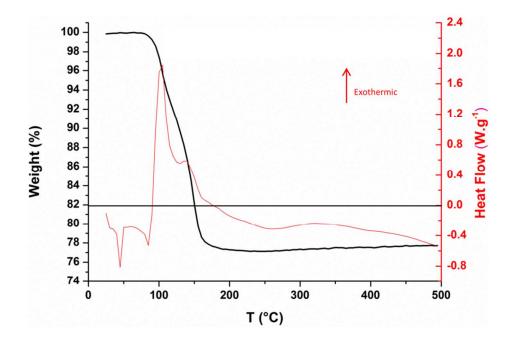


Figure S10 Rietveld refinement of the data for the first diffraction pattern (collected 12 seconds after the milling was started) for α -Mg(BH₄)₂–NH₃BH₃ (1:2). The background generated by the plastic jar was subtracted for clarity. Peak positions for α -Mg(BH₄)₂ and NH₃BH₃ are marked by blue and red


ticks, respectively. One unidentified impurity peak is observed at 1.82 °. Its intensity starts to decrease from the pattern 65 (~13 minutes of milling).


Figure S11 Rietveld refinement of the last diffraction pattern collected 99 min after the ball milling process was started for α -Mg(BH₄)₂–NH₃BH₃ (1:2). The background generated by the plastic jar was subtracted for clarity. Peak positions for Mg(BH₄)₂(NH₃BH₃)₂ (95 wt%), α -Mg(BH₄)₂ (0 wt %) and NH₃BH₃ (5 wt%) are marked by blue, red and green ticks, respectively.


Figure S12 SR-PXD monitoring of the reaction between γ -Mg(BH₄)₂ and NH₃BH₃ (1:2) every two minutes (every ten's pattern is shown). The reaction evolves from top to bottom, $\lambda = 0.146687$ Å. Symbols: 0 γ -Mg(BH₄)₂, Δ NH₃BH₃, \square Mg(BH₄)₂(NH₃BH₃)₂.


Figure S13 Evolution of the crystalline compounds as a function of ball milling time. Legend: $Mg(BH_4)_2(NH_3BH_3)_2$ (black), γ -Mg(BH_4)₂ (red) and NH₃BH₃ (green).

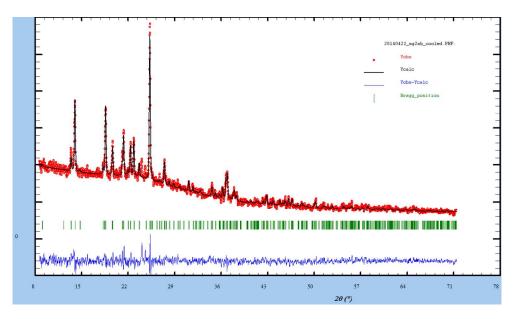

Figure S14 Rietveld refinement for the first diffraction pattern (collected 12 seconds after the milling was started) for γ -Mg(BH₄)₂–NH₃BH₃ (1:2). The background generated by the plastic jar was subtracted for clarity. Peak positions for γ -Mg(BH₄)₂ (32 wt%), NH₃BH₃ (59 wt%), Mg(BH₄)₂(NH₃BH₃)₂ (0 wt%) and α -Mg(BH₄)₂ (9 wt %) are marked by red, green, blue and pink, respectively.

Figure S15 Rietveld refinement of the last diffraction pattern collected 99 min after the ball milling process was started for γ -Mg(BH₄)₂–NH₃BH₃ (1:2). The background generated by the plastic jar was subtracted for clarity. Peak positions for Mg(BH₄)₂(NH₃BH₃)₂ (93 wt%), γ -Mg(BH₄)₂ (0.5 wt %) and NH₃BH₃ (6.5 wt%) are marked by blue, red and green ticks, respectively.

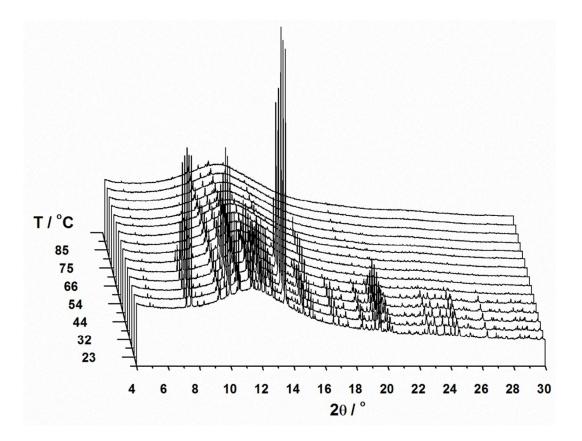


Figure S16 Thermal analysis from TGA curve (black) and DSC curve (red) of γ -Mg(BH₄)₂–NH₃BH₃ (1:2, s7) heated from 25 to 500 °C (5 °C/min). The sample contains some unreacted amorphous Mg(BH₄)₂ and NH₃BH₃.

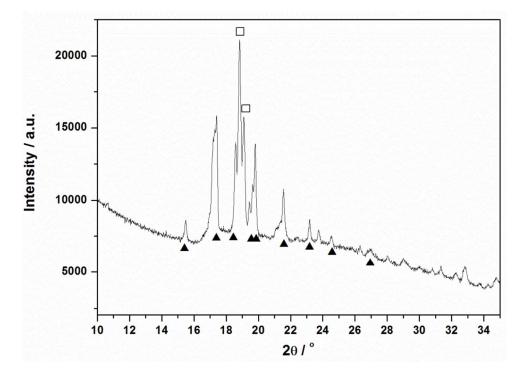


Figure S17 Rietveld refinement of Mg(BH₄)₂(NH₃BH₃)₂ (s2) heated to 55 °C and cooled to RT. $\lambda = 1.54056$ Å, RT. Peak positions for Mg(BH₄)₂(NH₃BH₃)₂ is marked by green ticks.

•

Figure S18 *In situ* SR-PXD for γ -Mg(BH₄)₂–NH₃BH₃ (1:0.66, s6) heated from 22 to 88 °C (4.5 °C/min, $\lambda = 0.82712$ Å, Diamond, I11). Traces of α -Mg(BH₄)₂ is seen at T > 45 °C after melting of Mg(BH₄)₂(NH₃BH₃)₂.

Figure S19 PXD for Mg(BH₄)₂(NH₃BH₃)₂ heated to 220 °C and cooled to RT, $\lambda = 1.54056$ Å. Symbols: $\blacktriangle \alpha$ -Mg(BH₄)₂, $\Box \beta$ '-Mg(BH₄)₂

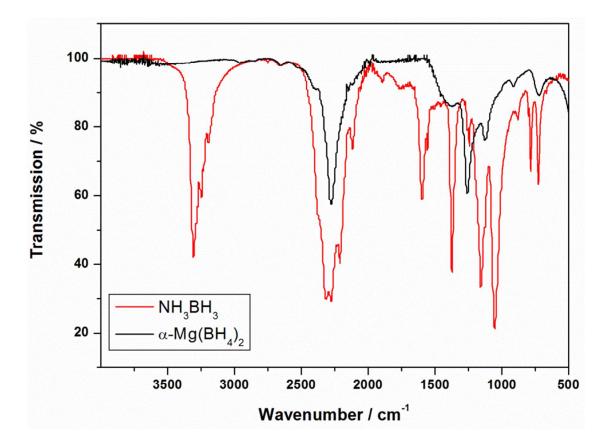
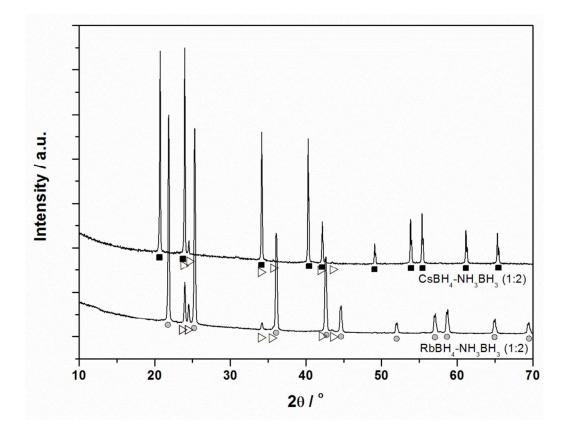



Figure S20 FTIR spectra recorded for Mg(BH₄)₂ (black) and NH₃BH₃ (red) at RT.

Figure S21 PXD for RbBH₄–NH₃BH₃ (1:2) and CsBH₄–NH₃BH₃ (1:2) after mechanochemical treatment, $\lambda = 1.54056$ Å. Symbols: \blacksquare CsBH₄, \bigcirc RbBH₄, \triangleright NH₃BH₃