Supplementary Information

Mixture Effects of Benzene, Toluene, Ethylbenzene and Xylenes to Lung Carcinoma Cells via a Hanging Drop Air Exposure System

Faye F. Liu^{1, 2}, Beate I. Escher¹, Stephen Were⁴, Lesley Duffy⁵, Jack C. Ng^{*1, 2}

¹The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd, Coopers Plains, Brisbane QLD 4108, Australia

²CRC for Contamination Assessment and Remediation of the Environment, Mawson Lakes, Adelaide, SA 5095 Australia

⁴Department of Agriculture, Fisheries and Forestry, Queensland Health and Food Sciences Precinct (DAFF), 39 Kessels Rd, Brisbane QLD 4108, Australia

⁵CSIRO Food and Nutritional Sciences, 39 Kessels Rd, Coopers Plains, Brisbane QLD 4108, Australia.

Corresponding author: Jack C. Ng, Phone: +61 7 32749020, Fax: + 67 32749003, Email: j.ng@uq.edu.au.

Table S1. GCMS operation specification from Liu et al.¹ Reprinted from *J. Hazard. Mater.*, 261, Liu, F. F., Peng, C., Escher, B. I., Fantino, E., Giles, C., Were, S., Duffy, L. and Ng, J. C., Hanging drop: An *in vitro* air toxic exposure model using human lung cells in 2D and 3D structures., 701-710, Copyright 2013, with permission from Elsevier.

GC-MS parameter	Descriptions
Oven Temperature	40°C for 1 min, then ramped at 10°C/min to 120°C
Carrier Gas	Helium at 1 mL/min
Operation mode	SIM (selected ion monitoring)
Mass Spectrometer Detector	78, 77 and 51 m/z
Injection method	10 μ L samples were injected directly through the septum using a 50 μ L air tight Hamilton syringe
Inlet temperature	250°C
Injection mode	splitless mode for 0.5 min with split flow 50 mL/min

Figure S1. Distribution of benzene, toluene, ethylbenzene and xylenes (BTEX) within a hanging drop air exposure system (not up to scale, the hanging drop is only 20 μ L and the volatile organic analysis vials can be 20 mL or 40 mL and black triangles represent BTEX molecules in the system).

Figure S2. Concentration addition and independent action modeling for double toluene mixture 1 h exposure. Index of prediction quality (IPQ) for CA = 0.20.

Figure S3. Concentration addition and independent action modeling for double ethylbenzene mixture for 1 h exposure. IPQ for CA = 0.10.

Figure S4. Concentration addition and independent action modeling for double m-xylene mixture for 1 h exposure. IPQ for CA = 0.06.

Figure S5. Changes in EC_{50} values of A549 cells exposed to BTEmX for 1 h and 24 h. The decrease in benzene concentration of 30% over 24 h period was not shown in the graph as the changes are gradual which may or may not be the same for all BTEX component. *P*-xylene and *o*-xylene were not included in this test due to the lowest injection volume limitation.

Calculation of air BTEX concentration

Air benzene was introduced into VOA vials as liquid form using 10μ L air tight Hamilton syringes and hence the benzene concentration in ppm was calculated as below according to Bankand et al.²:

$$Air ppm concentration = \begin{cases} \frac{10^{6}W}{MW} \\ \frac{V}{V_{m}} \end{cases}$$
$$V_{m} = 24.45 \left(\frac{760}{P}\right) \left(\frac{t + 273.15}{296.15}\right)$$

Vm = molecular volume in a sealed bottle at $37^{\circ}C$ = 24.45

W = weight of volatile liquid introduced in grams

MW = molecular weight

Since

Benzene Density= $0.879 \text{g/cm}^3 = 8.79 \times 10^{-4} \text{g/}\mu\text{L}$, and molecular weight = 78.1 g/mol; Toluene Density= $0.8661 \text{ g/cm}^{3=} 8.661 \times 10^{-4} \text{g/}\mu\text{L}$, and molecular weight = 92.1 g/mol; Ethylbenzene Density= $0.867 \text{ g/cm}^{3=} 8.67 \times 10^{-4} \text{g/}\mu\text{L}$, and molecular weight = 106.2 g/mol; Xylene Density= $0.865 \text{ g/cm}^{3=} 8.65 \times 10^{-4} \text{g/}\mu\text{L}$, and molecular weight = 106.2 g/mol. Hence in the sealed container, the Pa may change however the Vm will not change

1µL of benzene in 20mL vial
$$= \frac{10E6 \times 8.79 \times 10E - 4/_{78.1}}{0.02/_{24.45}}$$

1µL of benzene in 20mL vial
$$= 13758.994 \text{ (ppm) of benzene}$$

1µL of Toluene in 20mL vial

$$= \frac{10E6 \times 8.661 \times 10E - 4/_{92.1}}{0.02/_{24.45}}$$

$$= 11496.279 \text{ (ppm) of toluene}$$
1µL of ethylbenzene in 20mL vial

$$= \frac{10E6 \times 8.67 \times 10E - 4/_{106.2}}{0.02/_{24.45}}$$

$$= 9980.297 \text{ (ppm) of ethylbenzene}$$
1µL of m-xylene in 20mL vial

$$= \frac{10E6 \times 8.65 \times 10E - 4/_{106.2}}{0.02/_{24.45}}$$

$$= 9957.274 \text{ (ppm) of m-xylene}$$
1µL of p-xylene in 20mL vial

$$= \frac{10E6 \times 8.65 \times 10E - 4/_{106.2}}{0.02/_{24.45}}$$

$$= 9957.274 \text{ (ppm) of m-xylene}$$

Reference:

(1) Liu, F. F., Peng, C., Escher, B. I., Fantino, E., Giles, C., Were, S., Duffy, L. and Ng, J. C. (2013) Hanging drop: An *in vitro* air toxic exposure model using human lung cells in 2D and 3D structures. *J. Hazard. Mater.* 261, 701-710.

(2) Bakand, S., Winder, C., Khalil, C. and Hayes, A. (2006) A novel *in vitro* exposure technique for toxicity testing of selected volatile organic compounds. *J. Environ. Monit.* 8, 100-105.