3	Mechanism of Myo-inositol Hexakisphosphate Sorption on
4	Amorphous Aluminum Hydroxide: Spectroscopic Evidence for
5	Rapid Surface Precipitation
6	Yupeng Yan, [†] Wei Li, ^{‡,I} Jun Yang, [§] Anmin Zheng, [§] Fan Liu, [†] Xionghan Feng, ^{*,†,‡} and
7	Donald L. Sparks [‡]
8	† Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze
9	River), Ministry of Agriculture, College of Resources and Environment, Huazhong
10	Agricultural University, Wuhan 430070, China
11	[‡] Environmental Soil Chemistry Group, Delaware Environmental Institute and
12	Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware,
13	19716, United States
14	§ State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
15	Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics,
16	Chinese Academy of Sciences, Wuhan 430071, China
17	¹ Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth
18	Sciences and Engineering, Nanjing University, Nanjing 210093, China
19	
20	*Corresponding author:
21	Xionghan Feng, Tel: +86 27 87280271; Fax: +86 27 87288618; E-mail:

22 <u>fxh73@mail.hzau.edu.cn</u>

S1. Synthesis and Characterization of Amorphous Aluminum Hydroxide (AAH)

Synthesis of AAH. AAH was prepared following a modified procedure described by Shang et al.¹ and Guan et al.² A 0.167 M AlCl₃ solution was adjusted to and maintained at pH 6.0 \pm 0.1 with a 0.5 M sodium hydroxide solution under rapid stirring. After the solution pH stabilized without any further addition of alkali, the solution was stirred at room temperature for 48 hours. The suspension was centrifuged (16 000 g for 5 minutes) and the supernatant was decanted.

30 **Poorly Crystalline Aluminum Phytate (Al-IHP) Synthesis.** To prepare Al-IHP, 30 31 mL of 0.3 M AlCl₃ (pH 2.0) was added to an equal volume of 0.05 M K_2IP_6 (pH 2.0). The 32 final pH of the reaction mixture was adjusted to 2.4 with 0.5 M KOH.³

Zeta (\zeta) Potential Measurements. Variation of ζ potential of AAH over time after sorbing *myo*-inositol hexakisphosphate (IHP) at various pHs was examined as follows. The AAH suspensions (1.5 g L⁻¹) were prepared at desired pHs with IHP (522 μ M P) in 0.1 M KCl. The suspensions were adjusted to the desired pH before and after IHP addition. Aliquots were sampled at selected times for ζ determinations. The effect of IHP concentration on ζ potential dynamics was also studied. Each sample was measured three times with 12–30 runs for every measurement.

In situ Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR)
Spectroscopy. The ATR-FTIR spectra were recorded on a Bruker Vertex 70 FTIR
spectrometer equipped with a deuterated triglycine sulfate (DTGS) detector (Bruker
Optics Inc., Ettlingen, Germany). A single-reflection diamond ATR accessory (Pike
Technologies, Inc., Madison, WI, USA) was used to acquire spectra of wet samples.

Spectra were collected in the spectral range extending from 900 to 1300 cm⁻¹ for an 45 average of 512 scans at an instrument resolution of 4 cm⁻¹. Prior to ATR-FTIR analysis, 46 47 10 mL of amorphous Al(OH)₃ suspension was withdrawn and immediately filtered 48 through a 0.22 µm membrane filter. The wet sample paste was directly and uniformly 49 applied to the diamond ATR crystal. The sample-holding region was covered with a glass 50 lid to prevent water evaporation during measurements, and ATR-FTIR spectra were then 51 recorded immediately. To isolate the spectra of the solid, the paste spectra were subtracted 52 from the spectra of supernatants to remove strong contributions from the water bands.

53Powder X-ray Diffraction (XRD) Measurements. The powder XRD patterns were54obtained on a Bruker D8 Advance diffractometer (Bruker AXS Gmbh, Karlsruhe,55Germany) equipped with a LynxEye detector using Ni-filtered Cu K_α radiation (λ =560.15418 nm). The diffractometer was operated at a tube voltage of 40 kV and a current of5740 mA with a scanning rate of 10°/min and at a step size of 0.02°.

Solid-state NMR Spectroscopy. Solid-state ²⁷Al and ³¹P single-pulse MAS 58 59 (SP/MAS) NMR spectra of AAH-IHP sorption samples and standard samples were collected on a 500 MHz Bruker AscendTM spectrometer (11.7 T). The ³¹P and ²⁷Al 60 SP/MAS NMR spectra were collected at the operating frequencies of 202.6 and 130.4 61 62 MHz, respectively using a PH MASDVT 500WB BL 4 X/Y/F/H probe, with samples contained in 4 mm (o.d.) ZrO₂ rotors at a spinning rate of 10 kHz. The ³¹P chemical shifts 63 (δ_P) are reported relative to an external 85% H₃PO₄ solution. The ³¹P SP/MAS spectra 64 65 were obtained with an excitation 30° pulse of 5.5 µs, with a 30-s relaxation delay. The ²⁷Al chemical shifts (δ_{Al}) are reported relative to an external 1 M Al(NO₃)₃ solution set to 66

- $\delta_{Al} = 0$ ppm. The pulse delay was optimized at 5 s, and approximately 200 scans were
- 68 collected for each spectrum to obtain an acceptable signal-to-noise ratio.

71 Table S1. Langmuir parameters for sorption of *myo*-inositol hexakisphosphate (IHP) on

- 72 aluminum (oxyhydr)oxides (amorphous aluminum hydroxide, AAH; boehmite, γ-AlOOH;
- 73 and α -alumina, α -Al₂O₃).

Aluminum	$Q_{\rm max}^{\rm a}/\mu{ m mol}~{ m m}^{-2}$	$Q_{ m max}{}^{ m b}/\mu{ m mol}$	Sorption affinity	R^2
(oxyhydr)oxides		g^{-1}	constant <i>K</i> /L μmol ⁻¹	
ААН	16.01 ± 0.78	1168.99	22.86	0.885
Boehmite	0.73 ± 0.06	83.77	0.95	0.877
α -Al ₂ O ₃	1.13 ± 0.06	10.53	7.03	0.932

^a Maximum sorption density Q_{max} (µmol m⁻²) of IHP normalized to surface area as

75 predicted by the Langmuir isotherm.

76 ^b Maximum sorption amount (μ mol g⁻¹) of IHP normalized to mass.

(IHP) and Al cation. ⁴				
Equilibrium	K			
$\mathrm{Al}^{3^+} + \mathrm{H}_2\mathrm{L}^{10^-} \leftrightarrow [\mathrm{Al}(\mathrm{H}_2\mathrm{L})]^{7^-}$	10 ^{23.7}			
$\mathrm{Al}^{3+} + \mathrm{H}_3\mathrm{L}^{9-} \leftrightarrow [\mathrm{Al}(\mathrm{H}_3\mathrm{L})]^{6-}$	10 ^{20.1}			
$\mathrm{Al}^{3+} + \mathrm{H}_4 \mathrm{L}^{8-} \leftrightarrow \left[\mathrm{Al}(\mathrm{H}_4 \mathrm{L})\right]^{5-}$	10 ^{16.4}			
$\mathrm{Al}^{3+} + \mathrm{H}_5\mathrm{L}^{7-} \leftrightarrow \left[\mathrm{Al}(\mathrm{H}_5\mathrm{L})\right]^{4-}$	10 ^{12.2}			
$\mathrm{Al}^{3+} + \mathrm{H}_{6}\mathrm{L}^{6-} \leftrightarrow [\mathrm{Al}(\mathrm{H}_{6}\mathrm{L})]^{3-}$	10 ^{8.48}			

Table S2. Stability constants of the complexes between myo-inositol hexakisphosphate

Figure S1. The amount of Al³⁺ ions released from amorphous aluminum hydroxide (AAH,
1.5 g L⁻¹) in the absence and presence of *myo*-inositol hexakisphosphate (IHP, 522 μM) in
0.1 M KCl at pH 5 as a function of time.

90 Figure S2. Zeta potential of amorphous aluminum hydroxide (AAH) reacted with phytate

91 over time at pH 5 with the initial myo-inositol hexakisphosphate (IHP) concentrations of

- 92 43.5, 87, 174, and 522 μ M, 1.5 g L⁻¹ AAH, and 0.1 M KCl.
- 93

95

Figure S3. Comparison of XRD patterns of amorphous aluminum hydroxide (AAH) sorbed with *myo*-inositol hexakisphosphate (IHP) at pH 5 as a function of IHP concentration (174 to 1 305 μ M) with reference materials (AAH and aluminum phytate, Al-IHP) (a), and comparison of XRD patterns of AAH-IHP sorption solids (1 305 μ M IHP) as a function of pH with reference materials (AAH and Al-IHP) (b). Asterisk denotes the characteristic peak (0.49 nm) of minor gibbsite impurity in AAH (JCPDS No. 00-002-0173).

106 Figure S4. Solid-state ²⁷Al single-pulse (SP) MAS NMR spectra for boehmite and

107 α -Al₂O₃ sorbed with *myo*-inositol hexakisphosphate (IHP) at pH 5. The spinning rate is 10

108 kHz and pulse delay is 5 s for 27 Al NMR.

110 **REFERENCES**

- 111 (1) Shang C.; Huang P. M.; Stewart J. W. B. Kinetics of adsorption of organic and
- 112 inorganic phosphates by short-range ordered precipitate of aluminum. *Can. J. Soil Sci.*
- 113 **1990**, *70*, 461–470.
- 114 (2) Guan, X. H.; Shang, C.; Zhu, J.; Chen, G. H. ATR-FTIR investigation on the
- complexation of myo-inositol hexaphosphate with aluminum hydroxide. J. Colloid *Interf. Sci.* 2006, 293, 296–302.
- 117 (3) He, Z.; Honeycutt, C. W.; Zhang, T.; Bertsch, P. M. Preparation and FT-IR
- 118 characterization of metal phytate compounds. J. Environ. Qual. 2006, 35, 1319–1328.
- 119 (4) Torres, J.; Dominguez, S.; Cerda, M. F.; Obal, G.; Mederos, A.; Irvine, R. F.; Diaz, A.;
- Kremer, C. Solution behaviour of myo-inositol hexakisphosphate in the presence of
 multivalent cations. Prediction of a neutral pentamagnesium species under
- 122 cytosolic/nuclear conditions. J. Inorg. Biochem. 2005, 99, 828–840.
- 123