Phenylene-diimine capped conjugate of lower rim 1, 3-calix[4]arene as molecular receptor for Mg²⁺ *via* arm conformational changes followed by aggregation and mimicking the species by molecular mechanics

Anita Nehra, Vijaya Kumar Hinge and Chebrolu Pulla Rao* Bioinorganic Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India. <u>cprao@iitb.ac.in</u>

Supporting Information

SI 01	Characterization of precursors	02
SI 02	Estimation of association constant	10
SI 03	Experiment determining the minimum detection limit	10
SI 04	Quantum yield calculations	10
SI 05	Fluorescence studies of \mathbf{L} with metal ions in acetonitrile	11
SI 06	Competitive metal ion titration	11
SI 07	Absorption studies of L with metal ions in acetonitrile	12
SI 08	Absorption titration and Job's plot	12
SI 09	¹ H NMR data of L with Mg(CH ₃ COO) ₂	13
SI 10	ESI MS data of L with Mg(CH ₃ COO) ₂	14
SI 11	Table showing distances between protons in free \mathbf{L} and in complex	16
SI 12	Coordinates for MM+ minimized structure of L	16
SI 13	Coordinates for MM+ minimized structure of [L ²⁻ .Mg ²⁺ .(CH ₃ CO ₂ H) ₂]	19
SI.14	Microscopy image and size distribution plots for L and L with Mg^{2+}	22

SI 01 Characterization of precursors

(a) Characterization of 2

Figure SI02 HRMS spectrum of 2.

(b) Characterization of 3

Figure SI03 ¹H NMR spectrum (CDCl₃, 400 MHz) of 3.

Figure SI04 HRMS spectrum of 3.

(c) Characterization of 4

Figure SI05 ¹H NMR spectrum (CDCl₃, 400 MHz) of 4

Figure SI06 ESI MS spectrum of 4.

(d) Characterization of 5

Figure SI07 ¹H NMR spectrum (CDCl₃, 400 MHz) of 5.

Figure SI08 FTIR spectrum of 5.

Figure SI09 ESI MS spectrum of 5.

(e) Characterization of L'

Figure SI10 ¹H NMR spectrum (CDCl₃, 400 MHz) of L'.

Figure SI11 ¹³C NMR spectrum (CDCl₃, 400 MHz) of L'.

Figure SI12 ESI MS spectrum of L'.

(d) Characterization of L

Figure SI13 ¹H NMR spectrum (DMSO-d⁶, 400 MHz) of L.

Figure SI14 ¹H NMR spectrum (DMSO-d⁶ and 2 dropes of D₂O, 400 MHz) of L.

Figure SI15 ¹³C NMR spectrum (DMSO-d⁶, 400 MHz) of L.

Figure SI16 HRMS spectrum of L.

SI 02 Estimation of association constant

Figure SI17 The binding constant of L with Mg^{2+} has been derived by Benesi-Hildebrand equation in acetonitrile.

SI 03 Experiment determining the minimum detection limit

Figure SI18 Detection of minimum concentration of L for sensing the Mg^{2+} in (a) acetonitrile and (b) in presence of blood serum.

SI 04 Quantum yield calculation

Figure SI19 Calculation of quantum yield of L in presence of Mg^{2+} and quinine hemi sulphate hydrate as reference.

Figure SI20 Fluorescence spectra obtained during the titration of L with Na⁺, Mg²⁺, K⁺, and Ca²⁺ ions respectively in acetonitrile.

SI 06 Competitive metal ion titration

Figure SI21 Fluorescence spectral traces for the titration of $[L+M^{n+}]$ in the ratio 1:1 followed by incremental addition of Mg²⁺ metal ion in acetonitrile (a,b, c and e); Histogram shows intensity vs. metal ion upon titration of $[L + 2Mg^{2+}]$ with Mⁿ⁺ (d); Spectral traces of titration of $\{L+M^{n+}\}+Mg^{2+}$ (f); where Mⁿ⁺= Na⁺, K⁺ and Ca²⁺.

Figure SI22 Fluorescence spectral traces for the titration of L with Na^+ followed by Mg^{2+} and vice versa in acetonitrile where $[Na^+]$ is 167 mM.

SI 07 Absorption studies of L with metal ions in acetonitrile

Figure SI23 Absorption spectra obtained during the titration of L with Mg^{2+} , Na^+ , K^+ and Ca^{2+} ions respectively in acetonitrile.

SI 08 Absorption studies of L with Mg(CH₃COO)₂ in acetonitrile

Figure SI24 Absorption titration of L with $Mg(CH_3COO)_2$ in acetonitrile: (a) Absorption spectra obtained during the titration of L with Mg^{2+} . (b) Job's plot obtained from the absorption titration data of L with $Mg(CH_3COO)_2$.

Figure SI25 ¹H NMR titration in DMSO-d⁶ at 400 MHz of L with Mg(CH₃COO)₂ in increasing amount of concentration of Mg²⁺ from down to up. Mole ratios are mentioned at left side of each spectrum. Herein the changes in chemical shift of Sal-OH and CH₃COO⁻ are shown.

Figure SI26 ¹H NMR spectrum (DMSO-d⁶, 400 MHz) of $L + 1Mg(CH_3COO)_2$

Figure SI27 ¹H NMR spectrum (DMSO-d⁶ and 2 drops of D₂O, 400 MHz) of L + $1Mg(CH_3COO)_2$.

SI 10 ESI MS titration of L with Mg(CH₃COO)₂ in acetonitrile

Figure SI28 ESI MS spectrum of L with 0.5 equivalent of Mg(CH₃COO)₂.

Figure SI29 ESI MS spectrum of L with 1 equivalent of Mg(CH₃COO)₂.

Figure SI30 ESI MS spectrum of L with 2 equivalent of Mg(CH₃COO)₂.

Figure SI31 ESI MS spectrum of L with 5 equivalent of Mg(CH₃COO)₂.

	Ι	Ĺ	$[L^{2}.Mg^{2+}]$	$[(CH_3CO_2H)_2]$
	Arm1 Arm2		Arm1	Arm2
a□-d□	2.461	2.489	2.432	2.387
a□-b□	2.236	2.627	2.280	2.232
b□-d□	4.570	4.880	4.596	4.476
g□-h□	2.247	5.338	4.235	4.002
g□-h'*	4.312	6.657	7.182	4.251

SI 11 Table showing distance between protons in free L and in complex

SI 12 Cartesian coordinates for MM+ minimized structure of L

Figure SI32 MM minimized structures of L.

Ζ	Coordinates			Ζ	Coordinates		
	Х	у	Z		Х	у	Z
6	-3.792	-1.359	3.627	6	3.843	-0.509	3.975
6	-3.266	-4.069	0.966	6	3.676	0.247	5.219
8	-0.411	-3.664	2.229	6	3.933	0.2	2.691
6	-5.001	-0.48	3.96	6	3.825	1.666	2.649
6	-5.845	-0.257	2.666	1	-0.73	6.064	3.532
6	-5.871	-1.189	5.043	1	0.882	-1.88	3.186
6	-4.595	0.923	4.508	1	0.288	-1.059	4.628
6	2.536	5.237	-0.504	1	-4.961	-3.055	2.878
6	1.973	5.531	-1.836	1	-2.206	-0.065	4.422
6	2.416	4.69	-2.964	1	-6.271	-1.197	2.317
6	3.434	4.094	-0.282	1	-5.215	0.156	1.877
6	3.941	3.333	-1.44	1	-6.664	0.438	2.863
6	3.398	3.613	-2.779	1	-6.245	-2.144	4.671
6	0.886	6.601	-1.99	1	-6.725	-0.563	5.309
6	1.354	7.936	-1.33	1	-5.275	-1.371	5.939
6	0.552	6.914	-3.483	1	-3.971	1.446	3.781
6	-0.417	6.099	-1.299	1	-4.045	0.823	5.446
6	3.654	3.654	1.104	1	-5.485	1.527	4.696
8	4.954	2.438	-1.327	1	-3.935	-4.886	1.244
1	5.437	2.322	-0.531	1	-2.388	-4.508	0.502
6	3.855	2.819	-3.983	1	-2.294	-1.649	-3.549
6	0.097	-0.537	-4.11	1	2.19	5.772	0.332

6	1.438	0.06	-4.422	1	2.024	4.846	-3.925
6	1.725	1.492	-4.386	1	0.612	8.72	-1.497
7	3.101	1.587	-4.094	1	2.304	8.254	-1.764
7	3.645	0.338	-4.033	1	1.482	7.815	-0.253
7	2.666	-0.605	-4.194	1	-0.182	7.72	-3.544
7	4.048	-0.498	1.473	1	0.131	6.034	-3.973
7	3.82	2.282	1.379	1	1.453	7.225	-4.015
6	5.82	-3.469	-0.157	1	-0.75	5.172	-1.768
6	5.653	-4.462	-1.237	1	-1.208	6.845	-1.396
6	4.368	-4.458	-1.964	1	-0.242	5.915	-0.239
6	4.876	-2.355	0.007	1	3.425	4.317	1.887
6	3.812	-2.184	-0.997	1	4.919	2.592	-3.893
6	3.415	-3.351	-1.797	1	3.712	3.408	-4.891
6	6.742	-5.508	-1.493	1	-0.655	-0.078	-4.753
6	6.802	-6.491	-0.284	1	0.124	-1.61	-4.304
6	6.482	-6.338	-2.79	1	1.02	2.222	-4.127
6	8.121	-4.797	-1.664	1	6.611	-3.571	0.528
6	4.873	-1.621	1.28	1	4.082	-5.286	-2.543
8	3.224	-0.989	-1.243	1	7.558	-7.259	-0.46
1	3.558	-0.185	-0.891	1	5.833	-6.975	-0.147
6	3.675	1.712	5.189	1	7.059	-5.957	0.632
1	5.578	-6.94	-2.685	1	7.319	-7.013	-2.978
1	8.067	-4.07	-2.477	1	6.372	-5.673	-3.648
1	8.896	-5.529	-1.899	6	-3.99	-2.663	2.97
1	8.407	-4.279	-0.748	6	-1.267	-1.681	3.304
1	0.359	-5.447	2.807	6	-2.403	-0.922	3.848
1	-1.242	-5.55	2.066	6	3.784	2.42	3.91
1	1.818	-3.57	0.684	6	1.965	-3.558	-2.171
6	-3.172	-2.436	-1.063	6	-0.282	-5.038	2.024
6	-3.883	-1.713	-2.13	6	0.383	-5.265	0.694
6	-5.35	-1.639	-2.114	6	1.439	-4.4	0.169
6	-3.946	-3.171	-0.045	7	1.33	-4.469	-1.237
6	-5.417	-3.137	-0.088	7	0.312	-5.314	-1.568
6	-6.145	-2.316	-1.073	7	-0.282	-5.802	-0.435
8	-1.817	-2.385	-1.045	1	-5.836	-1.076	-2.857
6	-7.672	-2.176	-1.068	1	-5.948	-3.713	0.611
6	-8.053	-0.672	-0.905	1	-7.666	-0.083	-1.737
6	-8.247	-2.721	-2.411	1	-7.639	-0.281	0.026
6	-8.352	-2.964	0.096	1	-9.139	-0.558	-0.88
6	-3.111	-1.007	-3.222	1	-7.88	-2.136	-3.255
6	-1.18	0.485	-2.295	1	-9.338	-2.666	-2.404
6	-0.837	1.534	-1.319	1	-7.949	-3.762	-2.549
6	-1.864	2.501	-0.907	1	-7.986	-2.611	1.061
6	-2.588	0.315	-2.703	1	-8.147	-4.032	0.002
6	-3.57	1.348	-2.341	1	-9.434	-2.819	0.065

6	-3.276	2.318	-1.273	1	-3.759	-0.823	-4.081
6	0.565	1.682	-0.77	1	-1.585	3.32	-0.314
8	-0.191	-0.324	-2.76	1	-4.53	1.304	-2.764
6	-4.376	3.098	-0.549	1	-3.177	3.858	1.131
6	-4.046	3.219	0.973	1	-3.839	2.232	1.388
6	-4.476	4.52	-1.176	1	-4.89	3.657	1.511
6	-5.762	2.389	-0.664	1	-3.528	5.049	-1.065
6	0.509	0.225	1.4	1	-5.258	5.097	-0.679
6	0.341	0.158	2.862	1	-4.713	4.446	-2.238
6	0.264	1.395	3.65	1	-5.68	1.354	-0.326
6	0.551	1.542	0.736	1	-6.117	2.4	-1.695
6	0.444	2.765	1.548	1	-6.502	2.901	-0.045
6	0.182	2.712	2.997	1	1.238	0.945	-1.204
6	0.139	-1.172	3.553	1	0.937	2.669	-1.045
8	0.587	-0.938	0.709	1	0.165	1.325	4.694
6	-0.272	3.937	3.797	1	0.497	3.692	1.06
6	-1.677	3.654	4.415	1	-1.632	2.815	5.111
6	0.749	4.232	4.938	1	-2.389	3.416	3.623
6	-0.39	5.225	2.922	1	-2.036	4.531	4.956
6	-1.507	-2.932	2.558	1	0.846	3.373	5.603
6	-2.898	-3.295	2.214	1	0.418	5.089	5.527
1	0.58	5.483	2.494	1	1.726	4.46	4.511
1	5.546	-1.903	2.038	1	-1.11	5.072	2.116
1	3.606	2.255	6.085	1	3.584	-0.26	6.134
1	3.835	-1.559	4.001	1	1.909	-3.968	-3.181
1	3.857	3.467	3.909	1	1.432	-2.607	-2.154
1	-1.344	-1.929	-1.745	1	0.558	-1.776	1.176

SI 13 Cartesian coordinates for MM+ minimized structure of [L²⁻.Mg²⁺.(CH₃CO₂H)₂]

Figure SI33 MM minimized structures of $[L^2 Mg^{2+}(CH_3CO_2H)_2]$ and the binding sphere around the Mg^{2+} center.

Ζ				Ζ			
	Х	у	Z		Х	у	Z
6	5.452	0.198	1.4	8	2.3	2.021	-0.655
6	6.077	-0.707	2.378	6	2.585	4.57	4.617
6	6.944	-0.163	3.433	6	3.701	3.878	5.46
6	5.71	1.649	1.487	6	2.934	6.078	4.423
6	6.641	2.161	2.506	6	1.254	4.491	5.429
6	7.21	1.283	3.544	6	-0.181	-4.221	-6.653
8	4.648	-0.342	0.45	6	1.249	-3.975	-6.912
6	8.035	1.821	4.718	6	1.964	-3.096	-5.97
6	7.308	1.482	6.056	6	-0.942	-3.415	-5.682
6	9.449	1.162	4.704	6	-0.235	-2.358	-4.937
6	8.234	3.369	4.665	6	1.236	-2.33	-4.952
6	5.786	-2.192	2.353	6	2.006	-4.634	-8.07
6	3.277	-2.873	2.135	6	1.06	-5.396	-9.052
6	1.931	-2.923	2.738	6	2.75	-3.538	-8.896
6	1.787	-2.674	4.181	6	3.036	-5.653	-7.495
6	4.427	-2.46	2.962	6	-2.347	-3.798	-5.459
6	4.223	-2.157	4.386	8	-0.858	-1.312	-4.354
6	2.861	-1.986	4.916	6	2.013	-1.521	-3.938
6	0.679	-3.04	1.895	6	3.566	-4.066	0.042
8	3.415	-2.898	0.788	6	3.594	-3.683	-1.41
6	2.515	-0.875	5.909	6	2.404	-3.294	-2.168
6	3.783	-0.25	6.569	7	2.862	-2.393	-3.153
6	1.763	0.257	5.143	7	4.211	-2.228	-3.028
6	1.609	-1.438	7.046	7	4.679	-2.98	-1.987
6	0.239	-0.527	1.334	7	-4.832	-0.952	-3.954
6	-0.416	0.736	1.713	7	-3.293	-2.972	-4.819
6	-1.407	0.75	2.798	6	-5.112	2.007	-1.553

6	-0.146	-1.776	2.017	6	-4.402	3.189	-1.026
6	-1.262	-1.759	2.976	6	-3.327	3.759	-1.857
6	-1.825	-0.491	3.474	6	-4.582	1.233	-2.688
6	-0.109	2.016	0.971	6	-3.348	1.696	-3.34
8	1.161	-0.499	0.34	6	-2.827	3.037	-3.033
6	-2.796	-0.428	4.659	6	-4.821	3.804	0.313
6	-2.199	0.481	5.778	6	-3.852	4.933	0.788
6	-4.157	0.16	4.176	6	-6.25	4.411	0.174
6	-3.074	-1.829	5.29	6	-4.82	2.7	1.415
6	2.411	2.549	0.593	6	-5.37	0.081	-3.157
6	3.689	3.044	1.138	8	-2.575	0.901	-4.108
6	3.674	3.848	2.369	6	-6.728	-4.753	-4.865
6	1.209	2.585	1.446	6	-6.979	-2.31	-4.207
6	1.259	3.248	2.758	6	-7.58	-3.614	-4.507
6	2.49	3.893	3.247	6	-5.52	-2.15	-4.262
6	5.033	2.642	0.568	6	-4.674	-3.267	-4.711
1	2.395	0.655	4.346	6	-5.274	-4.583	-4.967
1	1.505	1.066	5.828	6	-1.764	3.661	-3.905
1	0.845	-0.127	4.7	6	2.761	2.617	-1.83
1	2.11	-2.271	7.544	6	1.626	2.736	-2.8
1	0.657	-1.789	6.645	6	0.427	3.55	-2.628
1	1.404	-0.66	7.784	7	-0.471	3.081	-3.609
1	0.92	-3.217	0.848	7	0.142	2.132	-4.377
1	0.1	-3.896	2.249	7	1.397	1.876	-3.897
1	-1.826	1.669	3.09	12	-2.82	-1.054	-4.3
1	-1.589	-2.673	3.375	8	-2.725	-1.859	-2.432
1	-2.037	1.495	5.41	6	-2.355	-0.844	-1.553
1	-1.246	0.075	6.12	8	-1.096	-0.26	-1.67
1	-2.883	0.529	6.628	8	-3.286	-0.664	-6.243
1	-4.032	1.193	3.852	6	-2.09	-0.467	-6.934
1	-4.886	0.141	4.988	8	-1.35	0.692	-6.708
1	-4.544	-0.428	3.341	6	-1.879	-1.202	-8.229
1	-2.143	-2.279	5.64	6	-3.093	-0.731	-0.249
1	-3.542	-2.49	4.558	1	7.353	-0.822	4.142
1	-3.749	-1.729	6.143	1	6.865	3.186	2.504
1	-0.081	1.815	-0.1	1	7.207	0.403	6.179
1	-0.9	2.748	1.149	1	6.313	1.932	6.063
1	4.561	4.322	2.674	1	7.875	1.874	6.903
1	0.384	3.269	3.339	1	9.375	0.082	4.842
1	4.675	3.994	4.983	1	10.063	1.569	5.51
1	3.487	2.813	5.561	1	9.944	1.36	3.751
1	3.752	4.321	6.457	1	7.269	3.878	4.693
1	3.905	6.191	3.939	1	8.764	3.653	3.755
1	2.97	6.585	5.389	1	8.822	3.702	5.523
1	2.175	6.559	3.803	1	6.543	-2.73	2.927

1	0.971	3.451	5.599	1	0.837	-2.767	4.62
1	0.45	4.997	4.89	1	5.055	-1.934	4.987
1	1.375	4.977	6.399	1	4.421	0.204	5.808
1	5.654	3.534	0.469	1	4.35	-1.016	7.101
1	4.932	2.207	-0.423	1	3.494	0.525	7.281
1	5.829	-2.552	1.325	1	0.139	3.999	-1.728
1	-0.687	-4.976	-7.18	1	-1.967	-2.48	-2.45
1	3.011	-3.015	-6.017	1	-3.733	0.208	-6.232
1	1.633	-5.794	-9.892	1	-2.352	-0.651	-9.042
1	0.296	-4.721	-9.442	1	-0.811	-1.295	-8.428
1	0.576	-6.232	-8.545	1	-2.32	-2.197	-8.166
1	3.252	-3.989	-9.754	1	-4.159	-0.893	-0.412
1	3.501	-3.036	-8.285	1	-2.72	-1.481	0.447
1	2.036	-2.795	-9.257	1	-2.944	0.263	0.172
1	3.767	-5.146	-6.863	1	1.438	0.341	-0.034
1	3.567	-6.152	-8.308	1	4.492	-1.289	0.435
1	2.521	-6.408	-6.897	1	-6.259	5.168	-0.612
1	-2.681	-4.694	-5.898	1	-5.546	1.919	1.185
1	1.336	-0.99	-3.267	1	-5.077	3.133	2.383
1	2.625	-0.785	-4.463	1	-3.829	2.249	1.484
1	2.737	-4.75	0.227	1	-6.341	-0.036	-2.77
1	4.503	-4.559	0.305	1	-7.16	-5.691	-5.056
1	1.438	-3.268	-1.763	1	-7.601	-1.493	-3.99
1	-5.986	1.672	-1.075	1	-4.674	-5.413	-5.195
1	-2.903	4.689	-1.617	1	-8.623	-3.734	-4.462
1	-4.152	5.296	1.774	1	-1.728	4.739	-3.738
1	-3.877	5.775	0.094	1	-2.01	3.489	-4.955
1	-2.831	4.553	0.856	1	3.167	3.611	-1.636
1	-6.554	4.877	1.114	1	3.538	1.99	-2.268
1	-6.974	3.635	-0.078				

SI 14 Microscopy image and size distribution plots for L and L with Mg^{2+}

Figure SI34 AFM and SEM images and size distribution plots (a) 3D AFM image of $\{L+Mg^{2+}\}$. Size distribution plots of SEM images (b) for L (c) for $\{L+Mg^{2+}\}$.