Supporting Information for

Lignans from the Fruit of *Schisandra glaucescens* with Antioxidant and Neuroprotective Properties

Heng-Yi Yu,^{#,†} Zu-Yu Chen,^{#,†,‡} Bin Sun,[†] Junjun Liu,[†] Fan-Yu Meng,[†] Ye Liu,[†] Tian Tian,[†] An Jin,[†] and Han-Li Ruan^{*,†}

[†]Faculty of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, People's Republic of China

[‡]College of Environment Engineering, Wuhan Textile University, Wuhan 430000, People's Republic of China

[#]The authors contributed equally to this work.

Content

- **Figure S1.** ¹H NMR (400 MHz, CDCl₃) spectrum of compound **1**
- Figure S2. Partially intercepted ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1
- **Figure S3.** ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **1**
- Figure S4. DEPT135 (100 MHz, CDCl₃) spectrum of compound 1
- Figure S5. HSQC (400 MHz, CDCl₃) spectrum of compound 1
- Figure S6. HMBC (400 MHz, CDCl₃) spectrum of compound 1
- **Figure S7.** ¹H-¹H COSY (400 MHz, CDCl₃) spectrum of compound **1**
- Figure S8. NOESY (400 MHz, CDCl₃) spectrum of compound 1

Figure S9, S10 & S11. Partially intercepted NOESY (400 MHz, CDCl₃) spectrum of compound 1

- Figure S12. HRESIMS spectrum of compound 1
- Figure S13. IR spectrum of compound 1
- Figure S14. UV spectrum of compound 1
- Figure S15. ECD spectrum of compound 1
- **Figure S16.** ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2
- Figure S17. Partially intercepted ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2
- Figure S18. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2
- Figure S19. DEPT135 (100 MHz, CDCl₃) spectrum of compound 2
- Figure S20. HSQC (400 MHz, CDCl₃) spectrum of compound 2
- Figure S21. HMBC (400 MHz, CDCl₃) spectrum of compound 2
- Figure S22. Partially intercepted HMBC (400 MHz, CDCl₃) spectrum of compound 2
- **Figure S23.** ¹H-¹H COSY (400 MHz, CDCl₃) spectrum of compound 2
- Figure S24. NOESY (400 MHz, CDCl₃) spectrum of compound 2
- Figure S25, S26 & S27. Partially intercepted NOESY (400 MHz, CDCl₃) spectrum of compound 2
- Figure S28. HRESIMS spectrum of compound 2
- Figure S29. IR spectrum of compound 2
- Figure S30. UV spectrum of compound 2

- Figure S31. ECD spectrum of compound 2
- Figure S32. ¹H NMR (400 MHz, CD₃OD) spectrum of compound 3

Figure S33. Partially intercepted ¹H NMR (400 MHz, CD₃OD) spectrum of compound **3**

- **Figure S34.** 13 C NMR (100 MHz, CD₃OD) spectrum of compound **3**
- Figure S35. DEPT135 (100 MHz, CD₃OD) spectrum of compound 3
- Figure S36. HSQC (400 MHz, CD₃OD) spectrum of compound 3
- Figure S37. HMBC (400 MHz, CD₃OD) spectrum of compound 3
- Figure S38. Partially intercepted HMBC (400 MHz, CD₃OD) spectrum of compound 3
- **Figure S39.** ¹H-¹H COSY (400 MHz, CD₃OD) spectrum of compound **3**
- Figure S40. NOESY (400 MHz, CD₃OD) spectrum of compound 3
- Figure S41. HRESIMS spectrum of compound 3
- Figure S42. IR spectrum of compound 3
- Figure S43. UV spectrum of compound 3
- Figure S44. ECD spectrum of compound 3
- Figure S45. ¹H NMR (400 MHz, CD₃OD) spectrum of compound 4
- Figure S46. Partially intercepted ¹H NMR (400 MHz, CD₃OD) spectrum of compound 4
- Figure S47. ¹³C NMR (100 MHz, CD₃OD) spectrum of compound 4

Figure S48 & S49. Partially intercepted ¹³C NMR (100 MHz, CD₃OD) spectrum of compound **4**

- Figure S50. DEPT135 (100 MHz, CD₃OD) spectrum of compound 4
- Figure S51. HSQC (400 MHz, CD₃OD) spectrum of compound 4
- Figure S52. HMBC (400 MHz, CD₃OD) spectrum of compound 4
- Figure S53. ¹H-¹H COSY (400 MHz, CD₃OD) spectrum of compound 4
- Figure S54. NOESY (400 MHz, CD₃OD) spectrum of compound 4
- Figure S55. HRESIMS spectrum of compound 4
- Figure S56. IR spectrum of compound 4
- Figure S57. UV spectrum of compound 4
- Figure S58. ECD spectrum of compound 4
- **Figure S59.** ¹H NMR (400 MHz, CDCl₃) spectrum of (–)-dihydrocubebin

Figure S60. ¹³C NMR (100 MHz, CDCl₃) spectrum of (–)-dihydrocubebin

Figure S61. ECD spectrum of (–)-dihydrocubebin

Figure S62. ¹H NMR (400 MHz, CDCl₃) spectrum of piperphilippinin VI

Figure S63. ¹³C NMR (100 MHz, CDCl₃) spectrum of piperphilippinin VI

Figure S64. ECD spectrum of piperphilippinin VI

Figure S65. DPPH radical scavenging activity of an ethanol extract of the fruit of *Schisandra glaucescens* Diels.

Figure S66. Neuroprotective effect of an ethanol extract of *S. glaucescens* fruit against $A\beta_{25-35}$ -induced SH-SY5Y cell death.

Figure S67. HPLC analysis of the EtOAc layer of the enzymatic hydrolysis reaction of compound **3**.

Figure S68. HPLC analysis of the EtOAc layer of the enzymatic hydrolysis reaction of compound **4**.

Figure S69. Eight lowest energy conformers of the 7'R,8'S isomer and six lowest energy conformers of the 7'S,8'R isomer of compound **1**.

Figure S70. Four lowest energy conformers of the 7'R,8'S isomer and three lowest energy conformers of the 7'S,8'R isomer of compound **2**.

Table S1. Relative free energies (ΔG) and equilibrium populations (*P*) of the conformers of the 7'*R*,8'*S* and 7'*S*,8'*R* isomers of compound **1**.

Table S2. Relative free energies (ΔG) and equilibrium populations (*P*) of the conformers of the 7'*R*,8'*S* and 7'*S*,8'*R* isomers of compound **2**.

Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1

Figure S2. Partially intercepted ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1

$664\\662\\661\\48\\48\\48\\48$	92 92 77 77	$\begin{array}{c} 92 \\ 93 \\ 93 \\ 93 \\ 93 \\ 93 \\ 93 \\ 93 \\$
	666666	ວ່ວ ວ່ວ ວ່ວ
\lor		

Figure S4. DEPT135 (100 MHz, CDCl₃) spectrum of compound 1

Figure S5. HSQC (400 MHz, CDCl₃) spectrum of compound 1

Figure S6. HMBC (400 MHz, $CDCl_3$) spectrum of compound 1

Figure S8. NOESY (400 MHz, CDCl₃) spectrum of compound 1

Figure S7. ¹H-¹H COSY (400 MHz, CDCl₃) spectrum of compound **1**

Figure S9. Partially intercepted NOESY (400 MHz, CDCl₃) spectrum of compound 1

Figure S10. Partially intercepted NOESY (400 MHz, CDCl₃) spectrum of compound 1

Figure S11. Partially intercepted NOESY (400 MHz, CDCl₃) spectrum of compound 1

Figure S12. HRESIMS spectrum of compound 1

Figure S13. IR spectrum of compound 1

Figure S14. UV spectrum of compound 1

Figure S15. ECD spectrum of compound 1

Figure S16. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2

Figure S17. Partially intercepted ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2

Figure S18. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2

Figure S19. DEPT135 (100 MHz, CDCl₃) spectrum of compound 2

Figure S20. HSQC (400 MHz, CDCl₃) spectrum of compound 2

Figure S21. HMBC (400 MHz, CDCl₃) spectrum of compound 2

Figure S22. Partially intercepted HMBC (400 MHz, CDCl₃) spectrum of compound 2

Figure S23. ¹H-¹H COSY (400 MHz, CDCl₃) spectrum of compound 2

Figure S24. NOESY (400 MHz, CDCl₃) spectrum of compound 2

Figure S25. Partially intercepted NOESY (400 MHz, CDCl₃) spectrum of compound 2

Figure S26. Partially intercepted NOESY (400 MHz, CDCl₃) spectrum of compound 2

Figure S27. Partially intercepted NOESY (400 MHz, CDCl₃) spectrum of compound 2

Figure S28. HRESIMS spectrum of compound 2

Figure S29. IR spectrum of compound 2

Figure S30. UV spectrum of compound 2

Figure S31. ECD spectrum of compound 2

Figure S32. ¹H NMR (400 MHz, CD₃OD) spectrum of compound 3

Figure S33. Partially intercepted ¹H NMR (400 MHz, CD₃OD) spectrum of compound 3

Figure S34. 13 C NMR (100 MHz, CD₃OD) spectrum of compound **3**

Figure S35. DEPT135 (100 MHz, CD₃OD) spectrum of compound 3

Figure S36. HSQC (400 MHz, CD₃OD) spectrum of compound 3

Figure S37. HMBC (400 MHz, CD₃OD) spectrum of compound 3

Figure S38. Partially intercepted HMBC (400 MHz, CD₃OD) spectrum of compound 3

Figure S40. NOESY (400 MHz, CD₃OD) spectrum of compound 3

Figure S39. ${}^{1}\text{H}{}^{-1}\text{H}$ COSY (400 MHz, CD₃OD) spectrum of compound **3**

Figure S41. HRESIMS spectrum of compound 3

Figure S42. IR spectrum of compound 3

Figure S43. UV spectrum of compound 3

Figure S44. ECD spectrum of compound 3

Figure S45. ¹H NMR (400 MHz, CD₃OD) spectrum of compound 4

Figure S48. Partially intercepted ¹³C NMR (100 MHz, CD₃OD) spectrum of compound 4

440	99	00	68	ດດ	∞r-4∞
$147. \\ 147. \\ 147. \\ 147. \\$	145. 145.	144.	134. 134.	132.	121. 121. 121. 121.
\leq	\checkmark	\checkmark	$\mathbf{\mathbf{n}}$	\checkmark	$\neg \downarrow$

Figure S49. Partially intercepted ¹³C NMR (100 MHz, CD₃OD) spectrum of compound 4

Figure S50. DEPT135 (100 MHz, CD₃OD) spectrum of compound 4

Figure S51. HSQC (400 MHz, CD₃OD) spectrum of compound 4

Figure S52. HMBC (400 MHz, CD₃OD) spectrum of compound 4

Figure S53. ¹H-¹H COSY (400 MHz, CD₃OD) spectrum of compound 4

Figure S54. NOESY (400 MHz, CD₃OD) spectrum of compound 4

Figure S56. IR spectrum of compound 4

Figure S57. UV spectrum of compound 4

Figure S58. ECD spectrum of compound 4

Figure S59. ¹H NMR (400 MHz, CDCl₃) spectrum of (–)-dihydrocubebin

Figure S60.

¹³C NMR (100 MHz, CDCl₃) spectrum of (-)-dihydrocubebin

Figure S61. ECD spectrum of (–)-dihydrocubebin

Figure S62. ¹H NMR (400 MHz, CDCl₃) spectrum of piperphilippinin VI

Figure S64. ECD spectrum of piperphilippinin VI

Figure S65. DPPH radical scavenging activity of an ethanol extract of the fruit of *S.* glaucescens Diels. DPPH (150 μ M) was added to the ethanol extract of *S.* glaucescens fruit at various concentrations (62.5, 125, 250, 750, and 1000 μ g/mL). Vitamin C (100 μ M) was used as the positive control. DPPH radical scavenging rate (%) = [(A_{control} – A_{sample})/A_{control}] × 100.

Figure S66. Neuroprotective effect of an ethanol extract of *S. glaucescens* fruit against $A\beta_{25-35}$ -induced SH-SY5Y cell death. Three independent experiments were performed. *p < 0.05, **p < 0.01, ***p < 0.001, compared with the $A\beta_{25-35}$ -treated group. Vitamin C (10 µM) was used as the positive control.

Figure S67. HPLC analysis of the EtOAc layer of the enzymatic hydrolysis reaction of compound **3**. Chromatographic conditions: 75% methanol; 1.0 mL/min; 254 nm.

Figure S68. HPLC analysis of the EtOAc layer of the enzymatic hydrolysis reaction of compound **4**. Chromatographic conditions: 75% methanol; 1.0 mL/min; 254 nm.

Figure S69. Eight lowest energy conformers of the 7'R,8'S isomer and six lowest energy conformers of the 7'S,8'R isomer of compound **1**.

1a-1h: eight lowest energy conformers of isomer 7'R, 8'S of compound 1.

1i-1n: six lowest energy conformers of isomer 7'S, 8'R of compound 1.

Figure S70. Four lowest energy conformers of the 7'R,8'S isomer and three lowest energy conformers of the 7'S,8'R isomer of compound **2**.

2a-2d: four lowest energy conformers of isomer 7'R,8'S of compound 2.

2e-2g: three lowest energy conformers of isomer 7'S,8'R of compound 2.

	isomer 7' <i>R</i> ,8' <i>S</i> of 1			isomer 7' <i>S</i> ,8' <i>R</i> of 1		
conformer	ΔG (kcal/mol)	P (%)	conformer	ΔG (kcal/mol)	P (%)	
1 a	0.89	10.9	1i	1.65	3.4	
1b	0.00	49.2	1j	1.94	2.0	
1c	1.85	2.2	1k	0.90	12.0	
1d	1.07	8.0	11	0.48	24.0	
1e	1.10	7.7	1m	0.00	54.4	
1f	2.26	1.1	1n	1.52	4.2	
1g	0.85	11.6				
1h	0.98	9.5				

Table S1. Relative free energies (ΔG) and equilibrium populations (*P*) of the conformers of the 7'*R*,8'*S* and 7'*S*,8'*R* isomers of compound **1**.

	isomer 7' <i>R</i> ,8' <i>S</i> of 2			isomer 7' <i>S</i> ,8' <i>R</i> of 2	
conformer	ΔG (kcal/mol)	P (%)	conformer	ΔG (kcal/mol)	P (%)
2a	0.15	28.4	2e	0.19	37.3
2b	0.17	27.6	2f	0.00	51.2
2c	0.00	36.6	2g	0.88	11.5
2d	0.94	7.5			

Table S2. Relative free energies (ΔG) and equilibrium populations (*P*) of the conformers of the 7'*R*,8'*S* and 7'*S*,8'*R* isomers of compound **2**.