Supporting information for:

Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments

Sergi Molins ¹* David Trebotich ² Li Yang ¹ Jonathan B. Ajo-Franklin ¹ Terry J. Ligocki ² Chaopeng Shen ² Carl I. Steefel ¹

¹ Earth Sciences Division, ² Computational Research Division Lawrence Berkeley National Laboratory

> * corresponding author Lawrence Berkeley National Laboratory One Cyclotron Rd, MS 74R316C Berkeley CA 94720 USA smolins@lbl.gov 510-486-7540

SI includes five sections, three tables, fourteen equations and two figures in eight pages

1 Pore scale model

1.1 Governing equations

The governing equations of the pore scale model are the Navier-Stokes equations for incompressible flow and the advection-diffusion-reaction equations for each component:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \nu \Delta \mathbf{u} \tag{1}$$

$$\nabla \cdot \mathbf{u} = 0 \tag{2}$$

$$\frac{\partial \rho c_i}{\partial t} + \nabla \cdot \rho \mathbf{u} c_i = \nabla \cdot \rho D_i \nabla c_i \tag{3}$$

$$-D_i \nabla c_i \cdot \mathbf{n} = r_i \tag{4}$$

where **u** is the fluid velocity, ∇p is the pressure gradient, c_i is the pore-scale total concentration of component *i*, ρ is the fluid density, v is the kinematic viscosity, D_i is the diffusion coefficient of component *i* in the fluid, and r_i is the contribution of the mineral dissolution reaction rate to component *i* per unit of surface area, e.g. $r_{Ca} = r_{CaCO_3(s)}$ (see Eq. 12).

1.2 Initial and boundary conditions

The mean inlet velocity was set to 0.0376 cm s⁻¹. A fixed pressure (p = 0) was used at outlet end of the domain. The simulation is run until steady state is reached.

For transport, a Dirichlet boundary condition was used in the inlet end. The total component concentrations and/or constraints are given in Table 1 below. A free exit boundary condition $(\partial c_i / \partial \mathbf{n} = 0)$ was imposed at outlet end (normal vector: \mathbf{n}).

	Initial		Inlet boundary	
Component	Value	Constraint/Units	Value	Constraint/Units
H+	3.609	pH	3.609	pH
H2CO3*	4.0 bar	pCO2	4.0 bar	pCO2
Ca2+	0.0	mol/kgw	0.0	mol/kgw
Na+	0.0	mol/kgw	0.01	mol/kgw
Cl-	0.0	mol/kgw	0.01	mol/kgw

Table 1: Total concentrations and constraints for initial and boundary conditions

2 Continuum scale model

2.1 Governing equations

The 1D advection-dispersion equation for each component is solved by the continuum scale model

$$\frac{\partial \theta \rho C_k}{\partial t} + \nabla \cdot \rho q C_k = \nabla \cdot \rho \theta D_k^* \nabla C_k + R_k$$
(5)

where C_i is the continuum-scale total concentration of component *i*; θ is the porosity; *q* is the Darcy velocity ($q = \theta \cdot v$), with *v* being the velocity; D_i^* is the dispersion coefficient of component ($D_i^* = \theta \tau D_i + \alpha_L |v|$), with α_L being the longitudinal dispersivity and τ the tortuosity coefficient; and R_i is the contribution of the mineral dissolution reaction rate to component *i* per unit volume porous medium, e.g. $R_{Ca} = A_{Calcite} \cdot r_{CaCO_3(s)}$, where $A_{Calcite}$ is the bulk surface area of calcite [m² m⁻³ bulk] and $r_{CaCO_3(s)}$ is defined in Eq. (12).

2.2 Initial and boundary conditions

A uniform Darcy velocity along the 1D domain was set to 0.0376 cm s⁻¹. For transport, a Dirichlet boundary condition was used in the inlet end. The total component concentrations and/or constraints are given in Table 1 below. A free exit boundary condition $(\partial c_i / \partial n = 0)$ was imposed at outlet end (normal vector: n).

3 Geochemical model

3.1 Component definition and aqueous equilibrium

Without loss of generality, the pore-scale concentrations, c_i , are used in the equations in this section; the same definition applies to the continuum scale concentrations, C_i . Aqueous complexation reactions (Eq. 6) are assumed in equilibrium and modeled with the mass action law (Eq. 7):

$$\widehat{A}_{j} = \sum_{i=1}^{N_{c}} \xi_{ji} A_{i}$$
(6)

$$\log(\gamma_j m_j) = \sum_{i=1}^{N_c} \xi_{ji} \log(\widehat{\gamma_i} \widehat{m_i}) - \log K_j$$
(7)

where $j = 1, N_x$ indicates the reaction index; A_i and \hat{A}_j are the chemical formulas of the primary and secondary species respectively; m_i and \hat{m}_j are the corresponding concentrations and γ_i and $\hat{\gamma}_j$ their activity coefficients; ξ_{ji} are the stoichiometric coefficients; and K_j is the equilibrium constant of this complexation reaction. The total component concentration (c_i) is defined as the sum of the concentration of a primary species and a set of the secondary species in equilibrium with the primary species:

$$c_i = m_i + \sum_{j=1}^{N_x} \xi_{ji} \widehat{m_j} \tag{8}$$

3.2 Geochemical system

Primary species	
H^+	
$H_2CO_3(aq)$	
<i>Ca</i> ²⁺	
Na ⁺	
Cl ⁻	

Table 2. List of primary species

Aqueous reaction (secondary species \rightleftharpoons reactants)	log K _{eq}
$OH^- \rightleftharpoons -H^+ + H_2O$	13.9951
$HCO_3^- \rightleftharpoons -H^+ + H_2CO_3(aq)$	6.34143
$CO_3^{2-} \rightleftharpoons -2 H^+ + H_2 CO_3(aq)$	15.959
$CaCO_3(aq) \rightleftharpoons -H^+ + H_2CO_3(aq) + Ca^{2+}$	13.3502
$CaHCO_3^+ \rightleftharpoons -H^+ + H_2CO_3(aq) + Ca^{2+}$	5.29856
$CaOH^+ \rightleftharpoons -H^+ + Ca^{2+}$	12.85
$HCl(aq) \rightleftharpoons H^+ + Cl^-$	-0.69993
$CaCl^+ \rightleftharpoons Ca^{2+} + Cl^-$	0.70039
$CaCl_2(aq) \rightleftharpoons Ca^{2+} + 2Cl^{-}$	0.65346

Table 3. List of aqueous complexation reactions and equilibrium constants

3.3 Calcite reaction rate

Calcite dissolution occurs via three parallel pathways

$$CaCO_3(s) + H^+ \to Ca^{2+} + HCO_3^- \tag{9}$$

$$CaCO_3(s) + H_2CO_3 * \to Ca^{2+} + 2HCO_3^{-}$$
 (10)

$$CaCO_3(s) \to Ca^{2+} + CO_3^{2-}$$
 (11)

The rate of calcite dissolution is described by the Transition State Theory (TST) as the product of a far-from-equilibrium term and an affinity (or ΔG) term that goes to zero at equilibrium ^{1,2}.

$$r_{CaCO_3} = \left(k_1 a_{H^+} + k_2 a_{H_2CO_3^*} + k_3\right) \left(1 - \frac{a_{Ca^{2+}} a_{CO_3^{2-}}}{K_s}\right)$$
(12)

where k_1 , k_2 and k_3 are the rate constants [mol m⁻² mineral s⁻¹] associated with Eq. (9), (10), (11), respectively; K_s is the equilibrium constant of the reaction; and $a_{Ca^{2+}}$, $a_{H_2CO_3^*}$, and $a_{CO_3^2}$ -are the activities of H⁺, H₂CO₃*, CO₃²⁻, and Ca²⁺ [dimensionless] respectively.

The saturation index of calcite is defined as the ratio of ion activity product to the equilibrium constant or solubility product of calcite:

$$SI = \log\left(\frac{a_{Ca^{2+}}a_{CO_{3}^{2-}}}{K_{s}}\right)$$
 (13)

4 Effluent geochemistry

The effluent concentrations from the pore scale model are averaged at the outlet end (S^{out}) to obtain a single value that can be compared to experimentally measured concentration or the simulated continuum model value:

$$c_k^{out} = \frac{\int c_k \, \mathbf{u} \cdot d\mathbf{S}}{Q^{tot}} \tag{14}$$

where Q^{out} is the volumetric flow rate (4.9 µL min⁻¹).

5 Details of transport control on rates

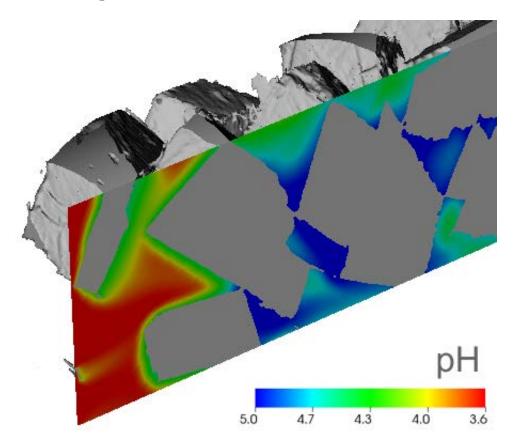


Figure A. Detail of pH boundary layer at 16 s around the mineral grains near the inlet boundary

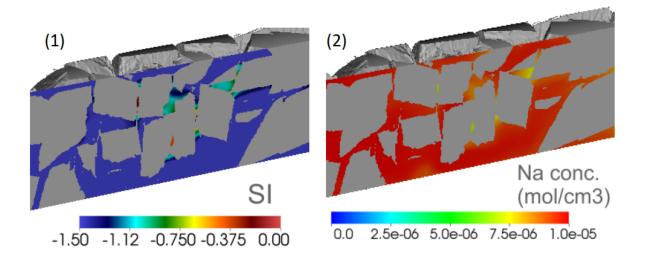


Figure B. Detail of slow-flowing pore spaces where (1) near-equilibrium conditions are observed at 16 sec and (2) slow convergence to inlet values is observed at 4.6 s for concentrations of sodium, a conservative tracer.

References

(1) Plummer, L.; Wigley, T.; Parkhurst, D., Kinetics of calcite dissolution in CO2-Water systems at 5°C to 60°C and 0.0 to 1.0 atm CO2, *Am. J. Sci.* **1978**, *278* (2), 179–216.

(2) Chou, L.; Garrels, R.; Wollast, R., Comparative-study of the kinetics and mechanisms of dissolution of carbonate minerals, *Chem. Geol.* **1989**, *78* (3-4), 269–282.