Submitted to *Cryst. Growth Des.* Version of May 19, 2014

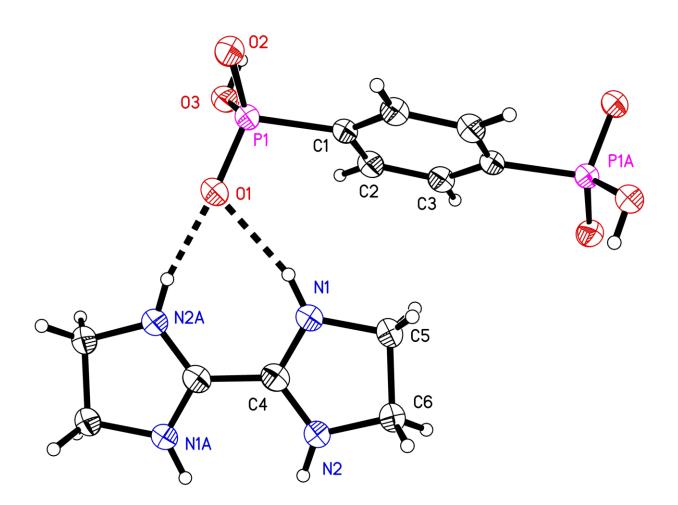
Supporting Information

Molecular Networks

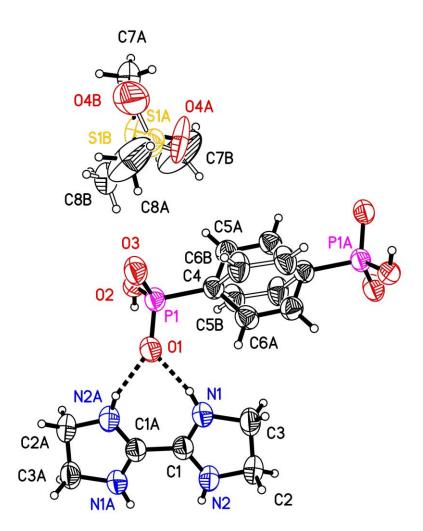
Created by Charge-Assisted Hydrogen Bonding

in Phosphonate, Phosphate, and Sulfonate Salts of Bis(amidines)

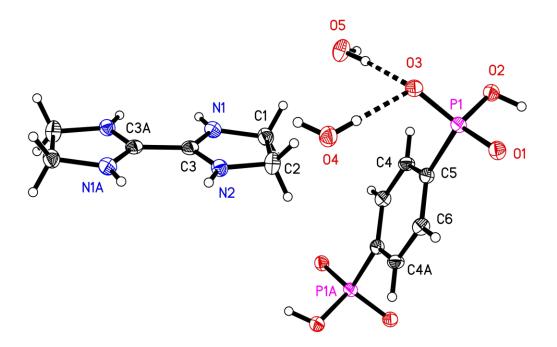
Sharon Lie, Thierry Maris, and James D. Wuest*

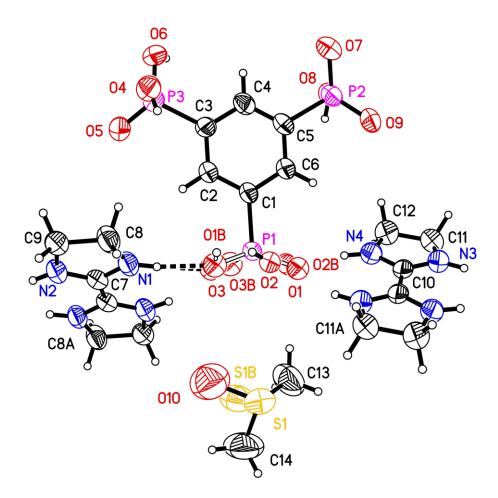

Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7

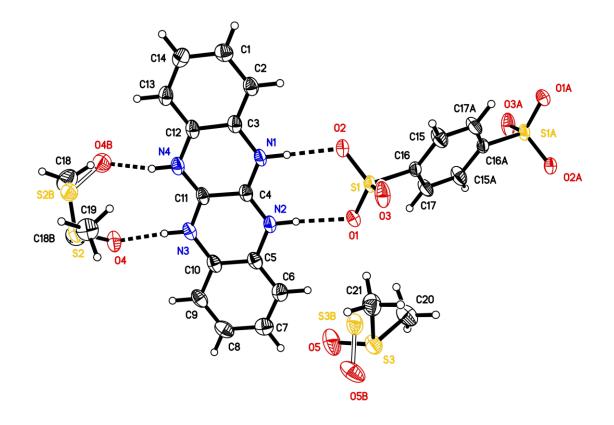
Canada


*Author to whom correspondence may be addressed. E-mail: james.d.wuest@umontreal.ca

Contents


I.	Figure S1. Thermal atomic displacement ellipsoid plot of the structure of crystals of (H_2BI^{+2}) (H_2BDP^{-2}) .	S 3
II.	Figure S2. Thermal atomic displacement ellipsoid plot of the structure of crystals of (H_2BI^{+2}) $(H_2BDP^{-2}) \cdot 2DMSO$.	S4
III.	Figure S3. Thermal atomic displacement ellipsoid plot of the structure of crystals of (H_2BI^{+2}) $(H_2BDP^{-2}) \cdot 4H_2O$.	S5
IV.	Figure S4. Thermal atomic displacement ellipsoid plot of the structure of crystals of (H_2BI^{+2}) $(H_4BTP^{-2}) \bullet DMSO$.	S 6
V.	Figure S5. Thermal atomic displacement ellipsoid plot of the structure of crystals of (HFF^+) (BDS ⁻²) • 4DMSO	S7
VI.	Figure S6. Thermal atomic displacement ellipsoid plot of the structure of crystals of (H_2FF^{+2}) [PO ₂ (OH) ₂ ⁻] ₂ • H ₂ O	S 8
VII.	Figure S7. Comparison of calculated and experimental X-ray powder diffraction patterns for crystals of (H_2BI^{+2}) $(H_2BDP^{-2}) \cdot 4H_2O$.	S9
VIII.	Figure S8. Comparison of calculated and experimental X-ray powder diffraction patterns for crystals of (H_2BI^{+2}) $(H_4BTP^{-2}) \bullet DMSO$.	S10
IX.	Figure S9. Comparison of calculated and experimental X-ray powder diffraction patterns for crystals of (HFF^+) (BDS ⁻²) • 4DMSO.	S11


Figure S1. Thermal atomic displacement ellipsoid plot of the structure of crystals of (H_2BI^{+2}) (H_2BDP^{-2}) grown from DMSO. The ellipsoids of non-hydrogen atoms are drawn at the 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size. Hydrogen bonds are shown as dotted lines.


Figure S2. Thermal atomic displacement ellipsoid plot of the structure of crystals of (H_2BI^{+2}) $(H_2BDP^{-2}) \cdot 2DMSO$ grown from DMSO. The ellipsoids of non-hydrogen atoms are drawn at the 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size. Hydrogen bonds are shown as dotted lines. Atoms labeled with the suffix B are from the second part of the statistically disordered fragments.

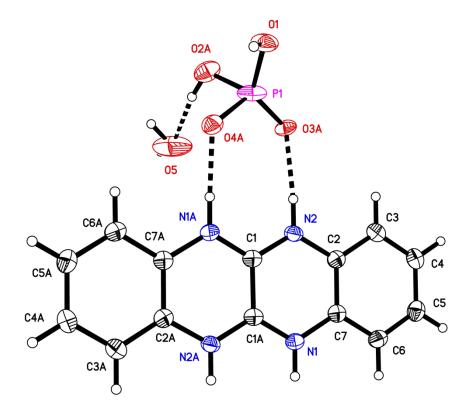
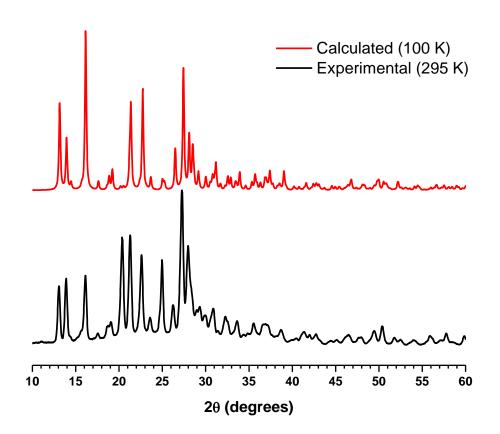
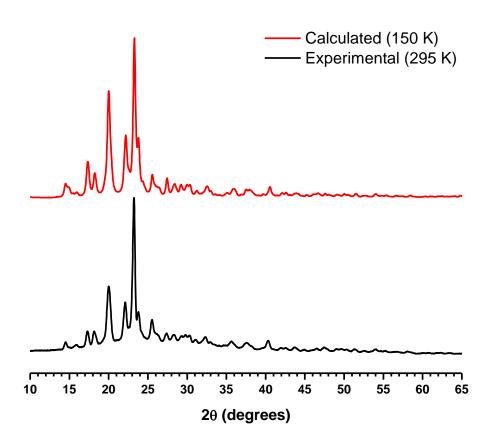

Figure S3. Thermal atomic displacement ellipsoid plot of the structure of crystals of (H_2BI^{+2}) $(H_2BDP^{-2}) \cdot 4H_2O$ grown from EtOH/H₂O. The ellipsoids of non-hydrogen atoms are drawn at the 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size. Hydrogen bonds are shown as dotted lines.

Figure S4. Thermal atomic displacement ellipsoid plot of the structure of crystals of (H_2BI^{+2}) $(H_4BTP^{-2}) \cdot DMSO$ grown from DMSO. The ellipsoids of non-hydrogen atoms are drawn at the 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size. Hydrogen bonds are shown as dotted lines. Atoms labeled with a suffix B are from the second part of the statistically disordered fragments.


Figure S5. Thermal atomic displacement ellipsoid plot of the structure of crystals of $(HFF^+)_2$ (BDS⁻²) • 4DMSO grown from DMSO. The ellipsoids of non-hydrogen atoms are drawn at the 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size. Hydrogen bonds are shown as dotted lines. Atoms labeled with the suffix A are symmetryequivalent. Atoms labeled with the suffix B are from the second part of the statistically disordered fragments.


Figure S6. Thermal atomic displacement ellipsoid plot of the structure of crystals of (H_2FF^{+2}) [PO₂(OH)₂⁻]₂ • H₂O grown from heptanoic acid. The ellipsoids of non-hydrogen atoms are drawn at the 50% probability level, and hydrogen atoms are represented by a sphere of arbitrary size. Hydrogen bonds are shown as dotted lines. Only one part of the disordered phosphate anion and water molecule is shown.

X-Ray Powder Diffraction

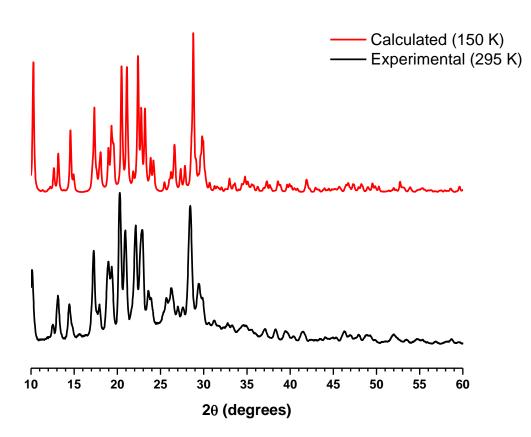

The experimental patterns were measured on a Bruker D8 Discover diffractometer at 295 K with copper radiation (CuK α , $\lambda = 1.5418$ Å). The calculated diffraction patterns were generated from the crystal structure at 100 K or 150 K using Mercury software (http://www.ccdc.cam.ac.uk/products/mercury/).

Figure S7. Comparison of calculated and experimental X-ray powder diffraction patterns for crystals of (H_2BI^{+2}) $(H_2BDP^{-2}) \cdot 4H_2O$ grown from EtOH/H₂O.

Figure S8. Comparison of calculated and experimental X-ray powder diffraction patterns for crystals of (H_2BI^{+2}) $(H_4BTP^{-2}) \cdot DMSO$ grown from DMSO.

Figure S9. Comparison of calculated and experimental X-ray powder diffraction patterns for crystals of (HFF^+) (**BDS**⁻²) • 4DMSO grown from DMSO.