### **Supporting Information**

# Direct Synthesis of Pentafluoroethyl Copper from Pentafluoropropionate as an Economical $C_2F_5$ Source: Application to Pentafluoroethylation of Arylboronic Acids and Aryl Bromides

Hiroki Serizawa, Kohsuke Aikawa, and Koichi Mikami\*

[\*] Prof. Dr. K. Mikami, Dr. K. Aikawa, and H. Serizawa Department of Applied Chemistry Graduate School of Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8552 (Japan) Fax: Int. code (+81)3-5734-2776

E-mail: mikami.k.ab@m.titech.ac.jp

#### **Table of Contents**

| General Information                                                                             | page 2     |
|-------------------------------------------------------------------------------------------------|------------|
| Experimental Procedures                                                                         |            |
| Synthetic Procedure of CuC <sub>2</sub> F <sub>5</sub> Reagent from Ethyl Pentafluoropropionate | page 2     |
| Synthetic Procedure of O-silylated Tetrahedral Intermediate                                     | page 2-3   |
| Isolation of tert-Butyl Benzoate                                                                | page 3     |
| Isolation of tert-Butyl Ethyl Carbonate                                                         | page 3     |
| Pentafluoroethylation of Arylboronic Acids                                                      | page 4-8   |
| Pentafluoroethylation of Aryl Bromides                                                          | page 8-12  |
| Large Scale Operation of Pentafluoroethylation                                                  | page 12-13 |
| References                                                                                      | page 13    |
| NMR spectra                                                                                     |            |

#### **General Information:**

 $^{1}$ H,  $^{13}$ C, and  $^{19}$ F NMR spectra were measured on Bruker AV300M (300 MHz) spectrometers. Chemical shifts of  $^{1}$ H NMR were expressed in parts per million relative to the singlet ( $\delta$  = 7.26) for CDCl<sub>3</sub>. Chemical shifts of  $^{13}$ C NMR were expressed in parts per million relative to the central line of the triplet ( $\delta$  = 77.0) for CDCl<sub>3</sub>. Chemical shifts of  $^{19}$ F NMR were expressed in parts per million relative to the singlet ( $\delta$  = -63.24) for benzotrifluoride (BTF) as an external standard IR spectra were measured on a JASCO FT/IR-4200 spectrometer. Mass spectra were measured on a JEOL JMS-T100CS (Accu-TOF) spectrometer. Optical rotations were measured on a JASCO P-1020. Potassium *tert*-butoxide (sublimed grade, 99.99% trace metals basis), sodium *tert*-butoxide (purification grade, 97%), lithium *tert*-butoxide (purification grade, 97%), and copper(I) chloride (anhydrous, beads, ≥99.99% trace basis) were purchased from Aldrich.

#### **Experimental Procedures:**

Ethyl pentafluoropropionate **1b** was purchased from TCI. Pentafluoropropionic anhydride **1f** and potassium pentafluoropropionate **1g** were purchased from Aldrich. Perfluoroalkyl ketones and **1a**, [1] **1c**, [1] **1d**, [2] and **1e** [3] were synthesized employing published procedures.

Synthetic Procedure of  $CuC_2F_5$  Reagent from Ethyl Pentafluoropropionate (Table 2, entry 3)

A mixture of CuCl (50 mg, 0.50 mmol) and KO<sup>t</sup>Bu (112 mg, 1.0 mmol) in DMF or DMF- $d_7$  (1 mL) was stirred for 1 hour at room temperature under argon atmosphere. To the mixture was added dropwise ethyl pentafluoropropionate **1b** (74  $\mu$ L, 0.50 mmol) at 50 °C. After the reaction mixture was stirred for 30 min, CuC<sub>2</sub>F<sub>5</sub> species was observed by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard (>95% yield).

<sup>13</sup>C NMR (75 MHz, DMF- $d_7$ )  $\delta$  124.6 (qt,  $J_{CF}$  = 279.8, 30.2 Hz,  $CF_3$ ), 140.8 (tq,  $J_{CF}$  = 280.9, 49.3 Hz,  $CF_2$ ); <sup>19</sup>F NMR (282 MHz, DMF- $d_7$ )  $\delta$  -84.4 (s, 3F), -111.7 (s, 2F).

Synthetic Procedure of (1-(tert-Butoxy)-2,2,3,3,3-pentafluoro-1-phenylpropoxy)trimethylsilane (2) (Scheme 1, Eq. 1)

CuCl 
$$\xrightarrow{\text{KO'Bu (2 equiv)}}$$
  $\xrightarrow{\text{K[Cu(O'Bu)}_2]}$   $\xrightarrow{\text{C}_2F_5}$   $\xrightarrow{\text{Ph}}$   $\xrightarrow{\text{TMSCI}}$   $\xrightarrow{\text{C}_2S equiv)}$   $\xrightarrow{\text{DMF}}$   $\xrightarrow{\text{C}_4O \ ^{\circ}C, 30 \ \text{min}}$   $\xrightarrow{\text{Ph}}$   $\xrightarrow{\text{C}_2F_5}$ 

A mixture of CuCl (50 mg, 0.50 mmol) and KO'Bu (112 mg, 1.0 mmol) in DMF (1 mL) was stirred for 1 hour at room temperature under argon atmosphere. To the mixture was added dropwise 2,2,3,3,3-pentafluoro-1-phenylpropan-1-one **1a** (112 mg, 0.50 mmol) at -40 °C. After the reaction mixture was stirred for 30 min, TMSCl (108  $\mu$ L, 1.25 mmol) was added dropwise at the same temperature. After stirring for 3 hours, the reaction mixture was quenched by H<sub>2</sub>O (5 mL) at 0 °C. The organic layer was separated, and aqueous layer was extracted with Et<sub>2</sub>O (10 mL × 3). The

combined organic layer was washed with brine (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated. The resulting crude product was purified by silica-gel column chromatography (Hexane only) to give the product 2 (132 mg, 71% yield) as a colorless liquid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 0.37 (s, 9H), 1.29 (s, 9H), 7.37-7.41 (m, 3H), 7.64-7.67 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 2.56-2.58 (m), 30.6, 77.9, 100.2 (dd,  $J_{CF}$  = 26.2, 24.7 Hz), 112.1 (tq,  $J_{CF}$  = 263.6, 33.8 Hz,  $CF_2$ ), 119.2 (qt,  $J_{CF}$  = 285.9, 35.9 Hz,  $CF_3$ ), 127.4, 128.5, 129.1, 139.1; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -77.1 (s, 3F), -119.9 (d,  $J_{FF}$  = 70.8 Hz, 1F), -119.9 (d,  $J_{FF}$  = 71.0 Hz, 1F); HRMS (ESI-TOF) calcd for  $C_{16}H_{23}F_5NaO_2Si$  [M+Na]<sup>+</sup>: 393.1285, found: 393.1301; FT-IR (neat, cm<sup>-1</sup>) 1180, 1227, 1257, 1653, 2979, 3065.

#### Isolation of tert-Butyl Benzoate (3)

$$K[Cu(O^{t}Bu)_{2}] \xrightarrow{\begin{array}{c} O \\ C_{2}F_{5} \end{array} Ph \\ \begin{array}{c} \textbf{1a (1 equiv)} \\ \hline DMF \\ O ^{c}C. 30 min \end{array} } \xrightarrow{\textbf{3}} O^{t}Bu$$

A mixture of CuCl (50 mg, 0.50 mmol) and KO'Bu (112 mg, 1.0 mmol) in DMF (1 mL) was stirred for 1 hour at room temperature under argon atmosphere. To the mixture was added dropwise 2,2,3,3,3-pentafluoro-1-phenylpropan-1-one **1a** (112 mg, 0.50 mmol) at 0 °C. After the reaction mixture was stirred for 30 min, and then quenched by 1M HCl aq. (5 mL) at 0 °C. The organic layer was separated, and aqueous layer was extracted with Et<sub>2</sub>O (10 mL × 3). The combined organic layer was washed with brine (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated. The resulting crude product was purified by silica-gel column chromatography (Hexane/AcOEt = 10/1) to give *tert*-butyl benzoate **3** (83.9 mg, 94% yield) as colorless liquid. *tert*-Butyl benzoate **3** is known compound, the following data is identical to those given in corresponding literature. [4]

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 1.60 (s, 9H), 7.38-7.44 (m, 2H), 7.49-7.55 (m, 1H), 7.98-8.02 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 28.1, 80.89, 128.1, 129.4, 132.0, 132.4, 165.7.

#### Isolation of tert-Butyl Ethyl Carbonate (4)

$$K[Cu(O^{t}Bu)_{2}] \xrightarrow{C_{2}F_{5}} OEt$$

$$1b (1 equiv)$$

$$DMF$$

$$50 ^{\circ}C, 30 min$$

$$4$$

A mixture of CuCl (50 mg, 0.50 mmol) and KO<sup>t</sup>Bu (112 mg, 1.0 mmol) in DMF (1 mL) was stirred for 1 hour at room temperature under argon atmosphere. To the mixture was added dropwise ethyl pentafluoropropionate **1b** (74  $\mu$ L, 0.50 mmol) at 50 °C. After the reaction mixture was stirred for 30 min, and then quenched by 1M HCl aq. (5 mL) at 0 °C. The organic layer was separated, and aqueous layer was extracted with Et<sub>2</sub>O (10 mL × 3). The combined organic layer was washed with brine (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated. The resulting crude product was purified by silica-gel column chromatography (Pentane only) to give *tert*-butyl ethyl carbonate **4** (54.3 mg, 74% yield) as a colorless liquid. *tert*-Butyl ethyl carbonate **4** is known compound, the following data is identical to those given in corresponding literature. [5]

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 1.24 (t, J = 7.1 Hz, 3H), 1.44 (s, 9H), 4.07 (q, J = 7.1 Hz, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 14.2, 27.7, 62.8, 81.6, 153.5.

#### Pentafluoroethylation of Arylboronic Acids

Boronic acid: **6a**, **6d-h**, and **6j** were purchased from Aldrich. **6b-6c** and **6i** were purchased from TCI. **6k** was synthesized employing published procedure. <sup>[6]</sup>

## Typical Procedure for Pentafluoroethylation of Arylboronic Acids with $CuC_2F_5$ Reagent (Scheme 2)

$$R \xrightarrow{|I|} + CuC_2F_5$$

$$(2 equiv) \qquad toluene in air rt, 3 h$$

$$R \xrightarrow{|I|} C_2F_5$$

To a solution of arylboronic acid **5** (0.1 mmol) in toluene (1 mL) was added  $CuC_2F_5$  reagent (DMF solution 0.4-0.5 M, 400-500  $\mu$ L, 0.2 mmol, prepared by CuCl,  $KO^tBu$ , and ethyl pentafluoropropionate in DMF) neutralized by  $Et_3N\cdot 3HF$  (13  $\mu$ L, 0.08 mmol) at room temperature in the air. After stirring for 3 hours, the reaction mixture was quenched by 1M HCl aq. (5 mL). The organic layer was separated, and the aqueous layer was extracted with  $Et_2O$  (5 mL  $\times$  3). The combined organic layer was washed with brine (10 mL), dried over  $Na_2SO_4$ , and evaporated. The resulting crude product was purified by silica-gel column chromatography to give the pentafluoroethylated products **6**.

## Optimization of Reaction Conditions for Arylbronic Acid 5c Bearing Electron-Donating Substituent

| entry            | acid                                 | additive                    | solvent | yield (%) <sup>[b]</sup> |
|------------------|--------------------------------------|-----------------------------|---------|--------------------------|
| 1                | Et <sub>3</sub> N•HCl (2.4 equiv)    | -                           | -       | 71                       |
| 2                | Et <sub>3</sub> N • HCl (2.4 equiv)  | -                           | DMF     | 49                       |
| 3                | Et <sub>3</sub> N•HCl (2.4 equiv)    | -                           | MeCN    | 38                       |
| 4                | Et <sub>3</sub> N • HCl (2.4 equiv)  | -                           | toluene | 63                       |
| 5                | Et <sub>3</sub> N•3HF (0.8 equiv)    | -                           | toluene | 97(95 <sup>[c]</sup> )   |
| 6                | HCI in Et <sub>2</sub> O (2.4 equiv) | <del>_</del>                | toluene | 54                       |
| 7 <sup>[d]</sup> | Et <sub>3</sub> N•3HF (0.6 equiv)    | -                           | toluene | 90                       |
| 8 <sup>[e]</sup> | Et <sub>3</sub> N•3HF (0.5 equiv)    | -                           | toluene | 80                       |
| 9                | Et <sub>3</sub> N•3HF (0.8 equiv)    | Et <sub>3</sub> N (4 equiv) | toluene | 95                       |
| 10               | Et <sub>3</sub> N•3HF (0.8 equiv)    | KCI (2 equiv)               | toluene | 82                       |
| 11               | Et <sub>3</sub> N•3HF (0.8 equiv)    | KCI (4 equiv)               | toluene | 72                       |
| 12               | Et <sub>3</sub> N•3HF (0.8 equiv)    | KF (2 equiv)                | toluene | 89                       |
| 13               | Et <sub>3</sub> N•3HF (0.8 equiv)    | KF (4 equiv)                | toluene | 82                       |

<sup>[</sup>a]  $CuC_2F_5$  reagent neutralized by acid before being used in the reaction.

<sup>[</sup>b] Determined by <sup>19</sup>F NMR analysis using BTF as an internal standerd.

<sup>[</sup>c] Isolated yield. [d] CuC<sub>2</sub>F<sub>5</sub> (1.5 equiv) was used. [e] CuC<sub>2</sub>F<sub>5</sub> (1.2 equiv) was used.

#### 1-Nitro-4-(pentafluoroethyl)benzene (6a)

$$C_2F_5$$

The title compound was obtained from 4-nitrophenylboronic acid  $\mathbf{5a}$  following the procedure above. The yield of the compound (84% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (pentane/Et<sub>2</sub>O = 12/1) gave the compound (19.6 mg, 81% yield) as a yellow liquid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.83 (d, J = 8.8 Hz, 2H), 8.38 (d, J = 9.0 Hz, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 112.6 (tq,  $J_{CF} = 253.7$ , 38.6 Hz,  $CF_2$ ), 118.7 (qt,  $J_{CF} = 284.4$ , 38.0 Hz,  $CF_3$ ), 124.0, 128.0 (t,  $J_{CF} = 5.8$  Hz), 134.6 (t,  $J_{CF} = 24.2$  Hz), 150.2; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -84.5 (s, 3F), -115.4 (s, 2F); HRMS (ESI-TOF) calcd for  $C_8H_3F_5NO_2$  [M-H]<sup>-</sup>: 240.0084, found: 240.0096; FT-IR (neat, cm<sup>-1</sup>) 1098, 1153, 1208, 1536, 1617, 3091.

#### 1-(Pentafluoroethyl)-4-(trifluoromethyl)benzene (6b)

$$F_3C$$

The title compound was obtained from 4-trifluoromethylphenylboronic acid **5b** following the procedure above. The yield (97% yield) was determined by <sup>19</sup>F NMR analysis using (trifluoromethoxy)benzene as an internal standard. Purification by silica-gel column chromatography (pentane only) gave the compound as a colorless liquid in moderate yield (15.0 mg, 57% yield), because of the low boiling point compound.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.75 (d, J = 8.8 Hz, 2H), 7.79 (d, J = 8.8 Hz, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 112.9 (tq,  $J_{CF} = 254.4$ , 38.5 Hz,  $CF_2$ ), 118.9 (qt,  $J_{CF} = 286.0$ , 38.6 Hz,  $CF_3$ ), 123.4 (q,  $J_{CF} = 272.7$  Hz, Ar- $CF_3$ ), 125.9 (q,  $J_{CF} = 3.7$  Hz), 127.2 (t,  $J_{CF} = 6.2$  Hz), 132.3 (t,  $J_{CF} = 24.1$  Hz), 134.2 (q,  $J_{CF} = 33.1$  Hz); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -63.4 (s, 3F), -84.8 (s, 3F), -115.5 (s, 2F); HRMS (ESI-TOF) calcd for  $C_9H_3F_8$  [M-H]<sup>-</sup>: 263.0107, found: 263.0107; FT-IR (neat, cm<sup>-1</sup>) 910, 1213, 1635, 3154.

#### 1-Methoxy-4-(pentafluoroethyl)benzene (6c)

The title compound was obtained from 4-methoxyphenylboronic acid **5c** following the procedure above. The yield (97% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (pentane only) gave the compound (21.6 mg, 95% yield) as a pale yellow liquid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 3.86 (s, 3H), 6.99 (d, J = 9.0 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 55.4, 113.6 (tq,  $J_{CF} = 251.6$ , 38.0 Hz,  $CF_2$ ), 114.1, 119.2 (qt,  $J_{CF} = 284.0$ , 40.0 Hz,  $CF_3$ ), 120.7 (t,  $J_{CF} = 24.5$  Hz), 128.0 (t,  $J_{CF} = 5.9$  Hz), 162.2; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -85.0 (s, 3F), -113.9 (s, 2F); HRMS (ESI-TOF) calcd for  $C_9H_6F_5O$  [M-H]<sup>-</sup>: 225.0339, found: 225.0347; FT-IR (neat, cm<sup>-1</sup>) 1093, 1206, 1263, 1618, 2844, 3012.

#### 4-(Pentafluoroethyl)dibenzo[b,d]furan (6d)

$$C_2F_5$$

The title compound was obtained from dibenzo[b,d]furan-4-ylboronic acid **5d** following the procedure above. The yield (93% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (hexane only) gave the compound (26.9 mg, 94% yield) as a white solid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.37-7.46 (m, 2H), 7.50-7.56 (m, 1H), 7.64-7.69 (m, 2H), 7.93-7.96 (m, 1H), 8.10 (d, J = 7.8 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 112.1, 113.1 (t,  $J_{CF} = 25.1$  Hz), 113.3 (tq,  $J_{CF} = 253.4$ , 39.2 Hz,  $CF_2$ ), 119.4 (qt,  $J_{CF} = 284.7$ , 38.6 Hz,  $CF_3$ ), 120.7, 122.5, 122.8, 123.4, 124.5, 125.4 (t,  $J_{CF} = 7.5$  Hz), 126.2, 128.2, 152.9 (t,  $J_{CF} = 3.0$  Hz), 156.4; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -84.5 (s, 3F), -113.3 (s, 2F); HRMS (ESI-TOF) calcd for  $C_{14}H_7F_5$ NaO [M+Na]<sup>+</sup>: 309.0315, found: 309.0310; FT-IR (neat, cm<sup>-1</sup>) 1184, 1200, 1425, 1610, 3077.

#### 1-(tert-Butyl)-4-(pentafluoroethyl)benzene (6e)

$$t_{\mathsf{Bu}}$$
  $C_2\mathsf{F}_5$ 

The title compound was obtained from 4-*tert*-butylphenylboronic acid **5e** following the procedure above. The yield (96% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (pentane only) gave the compound (23.4 mg, 93% yield) as a colorless liquid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 1.38 (s, 9H), 7.53-7.59 (m, 4H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 31.1, 34.9, 113.7 (tq,  $J_{CF} = 251.5$ , 38.0 Hz,  $CF_2$ ), 119.3 (qt,  $J_{CF} = 283.9$ , 39.5 Hz,  $CF_3$ ), 125.7, 125.9, 126.2 (t,  $J_{CF} = 5.9$  Hz), 155.4 (t,  $J_{CF} = 1.5$  Hz); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -84.9 (s, 3F), -114.6 (s, 2F); HRMS (ESI-TOF) calcd for  $C_{12}H_{14}F_5$  [M+H]<sup>+</sup>: 253.1016, found: 253.1012; FT-IR (neat, cm<sup>-1</sup>) 1113, 1207, 1616, 2968, 3064.

#### 3-(Pentafluoroethyl)quinoline (6f)

$$C_2F_5$$

The title compound was obtained from quinolin-3-ylboronic acid **5f** following the procedure above. The yield of the compound (83% yield) was determined by  $^{19}F$  NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (hexane/AcOEt = 9/1) gave the compound (21.1 mg, 85% yield) as a pale yellow liquid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.64-7.69 (m, 1H), 7.84-7.94 (m, 1H), 7.93 (d, J = 8.2 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.44 (s, 1H), 9.06 (s, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 113.3 (tq, J<sub>CF</sub> = 253.2, 38.8 Hz, CF<sub>2</sub>), 119.0 (qt, J<sub>CF</sub> = 284.2, 38.6 Hz, CF<sub>3</sub>), 121.8 (t, J<sub>CF</sub> = 24.0 Hz), 126.3, 128.0, 128.6, 129.6, 131.9, 135.6 (t, J<sub>CF</sub> = 6.8 Hz), 146.5 (t, J<sub>CF</sub> = 5.3 Hz), 149.4; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -84.7 (s, 3F), -114.7 (s, 2F); HRMS (ESI-TOF) calcd for C<sub>11</sub>H<sub>7</sub>F<sub>5</sub>N [M+H]<sup>+</sup>: 248.0499, found: 248.0506; FT-IR (neat, cm<sup>-1</sup>) 1092, 1207, 1498, 1574, 1607, 1626, 3063.

#### 1,2-Dimethyl-3-(pentafluoroethyl)benzene (6g)

$$C_2F_5$$

The title compound was obtained from 2,3-dimethylphenylboronic acid **5g** following the procedure above. The yield (87% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (pentane only) gave the compound (20.3 mg, 83% yield) as a colorless liquid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 2.35 (s, 3H), 2.38 (s, 3H), 7.21 (dd, J = 7.9, 7.7 Hz, 1H), 7.35 (d, J = 7.4 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 16.0-16.1 (m, 1C), 20.8, 115.0 (tq,  $J_{CF} = 252.8$ , 38.3 Hz,  $CF_2$ ), 119.6 (qt,  $J_{CF} = 284.7$ , 39.2 Hz,  $CF_3$ ), 125.5, 125.8 (t,  $J_{CF} = 9.0$  Hz), 126.9 (t,  $J_{CF} = 21.1$  Hz), 133.4, 136.5 (t,  $J_{CF} = 2.0$  Hz), 138.9; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -83.8 (s, 3F), -108.2 (s, 2F); HRMS (ESI-TOF) calcd for  $C_{10}H_9F_5Na$  [M+Na]<sup>+</sup>: 247.0522, found: 247.0533; FT-IR (neat, cm<sup>-1</sup>) 1126, 1210, 1463, 2927, 3069.

#### 4-(Pentafluoroethyl)benzaldehyde (6h)

The title compound was obtained from 4-formylphenylboronic acid **5h** following the procedure above. The yield (91% yield) was determined by  $^{19}F$  NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (pentane/Et<sub>2</sub>O = 9/1) gave the compound (20.0 mg, 89% yield) as a colorless liquid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.78 (d, J = 8.1 Hz, 2H), 8.02 (d, J = 8.1 Hz, 2H), 10.1 (s, 1H); <sup>13</sup>C NMR (282 MHz, CDCl<sub>3</sub>) δ 112.9 (tq,  $J_{CF} = 253.1$ , 38.3 Hz,  $CF_2$ ), 118.8 (qt,  $J_{CF} = 284.5$ , 38.3 Hz,  $CF_3$ ), 127.3 (t,  $J_{CF} = 6.3$  Hz), 129.7, 134.0 (t,  $J_{CF} = 23.8$  Hz), 138.7, 191.1; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -84.6 (s, 3F), -115.5 (s, 2F); HRMS (APCI-TOF) calcd for C<sub>9</sub>H<sub>6</sub>F<sub>5</sub>O [M+H]<sup>+</sup>: 225.0339, found: 225.0339; FT-IR (neat, cm<sup>-1</sup>) 1097, 1265, 1653, 1705, 2987, 3055.

#### 1-Bromo-4-(pentafluoroethyl)benzene (6i)

$$C_2F_9$$

The title compound was obtained from 4-bromophenylboronic acid **5i** following the procedure above. The yield (98% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (pentane only) gave the compound (25.1 mg, 91% yield) as a pale yellow liquid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.47 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H); <sup>13</sup>C NMR (282 MHz, CDCl<sub>3</sub>) δ 113.2 (tq,  $J_{CF} = 252.5$ , 38.3 Hz,  $CF_2$ ), 118.9 (qt,  $J_{CF} = 284.1$ , 39.2 Hz,  $CF_3$ ), 126.8 (t,  $J_{CF} = 2.0$  Hz), 127.7, 128.1 (t,  $J_{CF} = 6.2$  Hz), 132.1; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -84.9 (s, 3F), -115.2 (s, 2F); HRMS (ESI-TOF) calcd for  $C_8H_3BrF_5$  [M-H]<sup>-</sup>: 272.9338, found: 272.9335; FT-IR (neat, cm<sup>-1</sup>) 1073, 1098, 1208, 1599, 3048.

#### (E)-4-(3,3,4,4,4-Pentafluorobut-1-en-1-yl)-1,1'-biphenyl (6j)

$$C_2F_5$$

The title compound was obtained from (E)-2-[1,1'-biphenyl]-4-ylvinylboronic acid **5j** following the procedure above. The yield (67% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (hexane only) gave the compound (21.1 mg, 71% yield) as a white solid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 6.25 (dt, J = 16.2,  $J_{HF} = 11.9$  Hz, 1H), 7.26 (dt, J = 16.2,  $J_{HF} = 2.2$  Hz, 1H), 7.38-7.68 (m, 9H); <sup>13</sup>C NMR (282 MHz, CDCl<sub>3</sub>) δ 112.8 (tq,  $J_{CF} = 248.9$ , 38.3 Hz,  $CF_2$ ), 113.8 (t,  $J_{CF} = 23.0$  Hz), 119.1 (qt,  $J_{CF} = 283.8$ , 38.3 Hz,  $CF_3$ ), 127.0, 127.6, 127.9, 128.1, 128.9, 132.4, 139.2 (t,  $J_{CF} = 9.8$  Hz), 140.0, 142.9; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -85.0 (s, 3F), -114.7 (d,  $J_{FH} = 10.4$  Hz, 2F); HRMS (ESI-TOF) calcd for  $C_{16}H_{10}F_5$  [M-H]<sup>-</sup>: 297.0703, found: 297.0699; FT-IR (neat, cm<sup>-1</sup>) 1200, 1488, 1658, 3034.

#### (S)-2,2'-Dimethoxy-3,3'-bis(pentafluoroethyl)-1,1'-binaphthalene (6k)

The title compound was obtained from (S)-(2,2'-dimethoxy-[1,1'-binaphthalene]-3,3'-diyl)diboronic acid **5k** with CuC<sub>2</sub>F<sub>5</sub> reagent (4 eq.) following the procedure above. The yield (90% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (hexane/AcOEt = 20/1) gave the compound (50.7 mg, 92% yield) as a white solid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 3.32 (s, 6H), 7.17 (d, J = 8.4 Hz, 2H), 7.39-7.44 (m, 2H), 7.50-7.55 (m, 2H), 8.01 (d, J = 8.2 Hz, 2H), 8.33 (s, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 61.9, 113.9 (tq,  $J_{CF} = 254.0$ , 39.2 Hz,  $CF_2$ ), 119.4 (qt,  $J_{CF} = 285.1$ , 38.5 Hz,  $CF_3$ ), 122.1 (t,  $J_{CF} = 22.1$  Hz), 125.4, 125.8, 126.1, 129.0, 129.2, 129.4, 131.1 (t,  $J_{CF} = 8.9$  Hz), 135.8, 154.1; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -83.1 (s, 3F), -110.2 (d,  $J_{FF} = 268.8$  Hz, 1F), -111.21 (d,  $J_{FF} = 268.8$  Hz, 1F); HRMS (ESI-TOF) calcd for  $C_{26}H_{16}F_{10}NaO_2$  [M+Na]<sup>+</sup>: 573.0888, found: 573.0896; FT-IR (neat, cm<sup>-1</sup>) 1154, 1200, 1625, 2853, 3065; [α]<sub>D</sub><sup>25</sup> +68.5 (c 0.88, CHCl<sub>3</sub>).

#### Pentafluoroethylation of Aryl Bromides

Aryl bromide substrates: 7b, 7f-g, 7i-j, and 7l were purchased from Aldrich. 7a, 7c-e, 7h, and 7k were purchased from TCI.

#### Typical Procedure for Pentafluoroethylation of Aryl Bromides with $CuC_2F_5$ Reagent (Scheme 3)

R 
$$\stackrel{\text{||}}{=}$$
 + CuC<sub>2</sub>F<sub>3</sub>  $\stackrel{\text{DMF in Ar}}{=}$  R  $\stackrel{\text{||}}{=}$  R  $\stackrel{\text{|}}{=}$  R  $\stackrel{\text{|}}{=$ 

A mixture of aryl bromide 7 (0.2 mmol) and CuC<sub>2</sub>F<sub>5</sub> reagent (DMF solution 0.9-1.0 M, 400-444

 $\mu$ L, 0.4 mmol, prepared by CuCl, NaO'Bu, and ethyl pentafluoropropionate in DMF) neutralized by Et<sub>3</sub>N·3HF (26  $\mu$ L, 0.16 mmol) was stirred for 24-72 hours at 80-90 °C under argon atmosphere. The reaction mixture was quenched by 1M HCl aq. (5 mL). The organic layer was separated, and the aqueous layer was extracted with Et<sub>2</sub>O (5 mL  $\times$  3). The combined organic layer was washed with brine (10 ml), dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated. The resulting crude product was purified by silica-gel column chromatography to give the trifluoromethylated products **8**.

#### Effect of Triethylamine in Pentafluoroethylation of Aryl Bromides

| entry | acid                                | additive                    | yield (%) <sup>[b]</sup> |
|-------|-------------------------------------|-----------------------------|--------------------------|
| 1     | Et <sub>3</sub> N • 3HF (0.8 equiv) | Et <sub>3</sub> N (5 equiv) | 62                       |
| 2     | Et <sub>3</sub> N • 3HF (0.8 equiv) | Et <sub>3</sub> N (2 equiv) | 70                       |
| 3     | Et <sub>3</sub> N•3HF (0.8 equiv)   | -                           | 95                       |

[a]  $\text{CuC}_2\text{F}_5$  reagent neutralized by acid before being used in the reaction.

[b] Determined by <sup>19</sup>F NMR analysis using BTF as an internal standerd.

#### 1-Nitro-4-(pentafluoroethyl)benzene (8a) = (6a)

$$C_2F_5$$

The title compound was obtained from 1-bromo-4-nitrobenzene **7a** at 80 °C for 24 hours following the procedure above. The yield (92% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard.

#### 1-(Pentafluoroethyl)-4-(trifluoromethyl)benzene (8b) = (6b)

$$F_3C$$

The title compound was obtained from 1-bromo-4-(trifluoromethyl)benzene **7b** at 80 °C for 48 hours following the procedure above. The yield (85% yield) was determined by <sup>19</sup>F NMR analysis using (trifluoromethoxy)benzene as an internal standard.

#### 1-Methoxy-4-(pentafluoroethyl)benzene (8c) = (6c)

$$\begin{array}{c} C_2 F_5 \\ \\ \text{MeO} \end{array}$$

The title compound was obtained from 1-bromo-4-methoxybenzene **7c** at 90 °C for 72 hours following the procedure above. The yield (77% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard.

#### 4-(Pentafluoroethyl)dibenzo[b,d]furan (8d) = (6d)

$$C_2F_5$$

The title compound was obtained from 4-bromodibenzo[b,d]furan **7d** at 80 °C for 48 hours following the procedure above. The yield (98% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard.

#### 1-(tert-Butyl)-4-(pentafluoroethyl)benzene (8e) = (6e)

$$t_{\text{Bu}}$$
  $C_2F_5$ 

The title compound was obtained from 1-bromo-4-(*tert*-butyl)benzene **7e** at 90 °C for 72 hours following the procedure above. The yield (81% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard.

#### 3-(Pentafluoroethyl)quinoline (8f) = (6f)

$$C_2F_5$$

The title compound was obtained from 3-bromoquinoline **7f** at 90 °C for 48 hours following the procedure above. The yield (86% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard.

#### 1,2-Dimethyl-3-(pentafluoroethyl)benzene (8g) = (6g)

$$C_2F_5$$

The title compound was obtained from 1-bromo-2,3-dimethylbenzene **7g** at 90 °C for 72 hours following the procedure above. The yield (60% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard.

#### 4-(Pentafluoroethyl)benzaldehyde (8h) = (6h)

The title compound was obtained from 4-bromobenzaldehyde 7h at 80 °C for 48 hours following the procedure above. The yield (92% yield) was determined by  $^{19}F$  NMR analysis using benzotrifluoride as an internal standard.

#### Ethyl 2-(pentafluoroethyl)benzoate (8i)

$$C_2F_5$$
 $CO_2Et$ 

10

The title compound was obtained from ethyl 2-bromobenzoate **7i** at 80 °C for 24 hours following the procedure above. The yield (99% yield) was determined by  $^{19}F$  NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (pentane/Et<sub>2</sub>O = 10/1) gave the compound (53.0 mg, 99% yield) as a pale yellow liquid. The compound **8i** is known compound, the following data is identical to those given in corresponding literature. [7]

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 1.35 (t, J = 7.1 Hz, 3H), 4.37 (q, J = 7.1 Hz, 2H), 7.53-7.64 (m, 4H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 13.8, 62.1, 113.6 (tq, J<sub>CF</sub> = 254.0, 38.9 Hz, CF<sub>2</sub>), 119.0 (qt, J<sub>CF</sub> = 285.2, 38.5 Hz, CF<sub>3</sub>), 125.9 (t, J<sub>CF</sub> = 23.4 Hz), 128.1 (t, J<sub>CF</sub> = 7.1 Hz), 129.0, 130.1, 131.8, 133.6 (t, J<sub>CF</sub> = 3.2 Hz), 167.8; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -83.2 (s, 3F), -108.5 (s, 2F).

#### 1,3-Dimethyl-5-(pentafluoroethyl)pyrimidine-2,4(1*H*,3*H*)-dione (8j)

The title compound was obtained from 5-bromo-1,3-dimethylpyrimidine-2,4(1*H*,3*H*)-dione **7j** at 90 °C for 72 hours following the procedure above. The yield (90% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (hexane/AcOEt = 1/1) gave the compound (44.1 mg, 85% yield) as a yellow solid. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  3.33 (s, 3H), 3.49 (s, 3H), 7.64 (s, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  28.0, 37.8, 101.8 (t,  $J_{CF}$  = 23.9 Hz), 111.9 (tq,  $J_{CF}$  = 254.2, 40.5 Hz,  $CF_2$ ), 118.8 (qt,  $J_{CF}$  = 284.9, 39.1 Hz,  $CF_3$ ), 145.4 (t,  $J_{CF}$  = 10.1 Hz), 150.8, 158.4 (t,  $J_{CF}$  = 1.9 Hz); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -83.8 (s, 3F), -113.9 (s, 2F); HRMS (ESI-TOF) calcd for  $C_8H_6F_5N_2O_2$  [M-H]<sup>-</sup>: 257.0349, found: 257.03418; FT-IR (neat, cm<sup>-1</sup>) 1120, 1195, 1462, 1680, 1715, 2963, 3069.

#### (3,3,4,4,4-pentafluorobut-1-en-1-yl)benzene (8k)

$$C_2F_5$$

The title compound was obtained from (2-bromovinyl)benzene 7k (E:Z = 12:1) at 90 °C for 60

hours following the procedure above. The yield (79% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (pentane only) gave the compound (33.1 mg, 74% yield, E:Z=12:1) as a colorless liquid. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.20 (dt, J=16.2, 11.9 Hz, 1H), 7.20 (d, J=16.2, 2.3 Hz, 1H), 7.38-7.50 (m, 5H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  112.8 (tq,  $J_{CF}=248.8$ , 38.3 Hz,  $CF_2$ ), 114.1 (t,  $J_{CF}=23.0$  Hz), 119.1 (qt,  $J_{CF}=283.7$ , 38.3 Hz,  $CF_3$ ), 127.6, 129.0, 130.2, 133.5, 139.7 (t,  $J_{CF}=4.5$  Hz); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -85.1 (s, 3F, E isomer), -85.6 (s, 3F, Z isomer), -109.3 (d,  $J_{FH}=15.1$  Hz, 2F, Z isomer), -114.9 (d,  $J_{FH}=12.0$  Hz, 2F, E isomer); HRMS (APCI-TOF) calcd for  $C_{10}H_7F_5$  [M+H]<sup>+</sup>: 223.0546, found: 223.0543; FT-IR (neat, cm<sup>-1</sup>) 973, 1199, 1496, 1659, 2856, 2928.

#### (R)-3,3'-Bis(pentafluoroethyl)-[1,1'-binaphthalene]-2,2'-diol (8l)

$$\begin{array}{c} C_2F_5\\ \text{OH}\\ \\ C_2F_5\end{array}$$

The title compound was obtained from (R)-3,3'-dibromo-1,1'-binaphthalene-2,2'-diol **7k** with  $CuC_2F_5$  reagent (4 eq.) at 90 °C for 72 hours following the procedure above. The yield (66% yield) was determined by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (hexane/AcOEt = 12/1) gave the compound (63.9 mg, 61% yield) as a white solid.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 5.38 (s, 2H), 7.11 (d, J = 8.2 Hz, 2H), 7.43-7.53 (m, 4H), 8.02 (d, J = 7.4 Hz, 2H), 8.37 (s, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 112.6, 113.6 (tq,  $J_{CF} = 254.3$ , 39.6 Hz,  $CF_2$ ), 116.8 (t,  $J_{CF} = 22.9$  Hz), 119.3 (qt,  $J_{CF} = 285.2$ , 38.6 Hz,  $CF_3$ ), 123.8, 125.5, 128.0, 129.7, 130.2, 132.5 (t,  $J_{CF} = 8.3$  Hz), 134.8, 150.0; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) δ -83.5 (s, 6F), -111.6 (s, 4F); HRMS (ESI-TOF) calcd for  $C_{24}H_{11}F_{10}O_2$  [M-H]<sup>-</sup>: 521.0599, found: 521.0596; FT-IR (neat, cm<sup>-1</sup>) 1146, 1199, 1626, 3063, 3357, 3531; [α]<sub>D</sub><sup>25</sup> +34.3 (c 1.25, CHCl<sub>3</sub>).

## Large Scale Operation of Pentafluoroethylation (Scheme 4) Pentafluoroethylation of Arylboronic Acid 5d

A mixture of CuCl (2.1 g, 21 mmol) and KO'Bu (4.7 g, 42 mmol) in DMF (42 mL) was stirred for 1 hour at room temperature under argon atmosphere. To the mixture was added dropwise ethyl pentafluoropropionate 1b (3.1 mL, 21 mmol) at 50 °C. After the reaction mixture was stirred for 30 min, CuC<sub>2</sub>F<sub>5</sub> species was observed by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard (>95% yield). To the mixture was added  $Et_3N\cdot 3HF$  (1.4 mL, 8.4 mmol) at 0 °C for the neutralization of CuC<sub>2</sub>F<sub>5</sub> reagent. A solution of dibenzo[b,d]furan-4-ylboronic acid 5d (2.1 g, 10 mmol) in toluene (100 mL) was added to the mixture at room temperature in the air. After stirring for 3 hours, the reaction mixture was quenched by 1M HCl aq. (50 mL). The organic layer was separated, and the aqueous layer was extracted with  $Et_2O$  (50 mL × 3). The combined organic layer was washed with brine (80 mL), dried over  $Na_2SO_4$ , and evaporated. The resulting crude product was purified by silica-gel column chromatography (hexane only) to give the pentafluoroethylated product 6d (2.4 g, 84% yield) as a white solid.

#### Pentafluoroethylation of Aryl Bromide 7i

A mixture of CuCl (2.1 g, 21 mmol) and NaO'Bu (4.0 g, 42 mmol) in DMF (10 mL) was stirred

for 1 hour at room temperature under argon atmosphere. To the mixture was added dropwise ethyl pentafluoropropionate **1b** (3.1 mL, 21 mmol) at 50 °C. After the reaction mixture was stirred for 2 h,  $CuC_2F_5$  species was observed by <sup>19</sup>F NMR analysis using benzotrifluoride as an internal standard (>95% yield). To the mixture was added  $Et_3N\cdot 3HF$  (1.4 mL, 8.4 mmol) at 0 °C for the neutralization of  $CuC_2F_5$  reagent. Ethyl 2-bromobenzoate **7i** (2.2 g, 10 mmol) was added to the mixture at room temperature under argon atmosphere. After stirring at 80 °C for 24 hours, the reaction mixture was quenched by 1M HCl aq. (50 mL). The organic layer was separated, and the aqueous layer was extracted with  $Et_2O$  (50 mL × 3). The combined organic layer was washed with brine (80 mL), dried over  $Na_2SO_4$ , and evaporated. The resulting crude product was purified by silica-gel column chromatography (pentane/ $Et_2O = 10/1$ ) to give the pentafluoroethylated product **8i** (2.6 g, 98% yield) as a pale yellow liquid.

#### References

- [1] Ramachandran, P. V.; Teodorovic, A. V.; Brown, H. C. Tetrahedron 1993, 49, 1725.
- [2] Xue, C.; He, G.; Fu, C.; Xue, L.; Lin, Z.; Ma, S. Eur. J. Org. Chem. **2010**, 7012.
- [3] Uno, H.; Shiraishi, Y.; Simokawa, K.; Suzuki, H. Chem. Lett. 1987, 1153.
- [4] Xin, Z.; Gogsig, T. M.; Lindhardt, A. T.; Skrydstrup, T. Org. Lett. 2012, 14, 284.
- [5] White, E. H.; Field, K. W. J. Am. Chem. Soc. 1975, 97, 2148.
- [6] Wipf, P.; Jung, J.-K. J. Org. Chem. 2000, 65, 6319.
- [7] Popov, I.; Lindeman, S.; Daugulis, O. J. Am. Chem. Soc. 2011, 133, 9286.



-100

-110

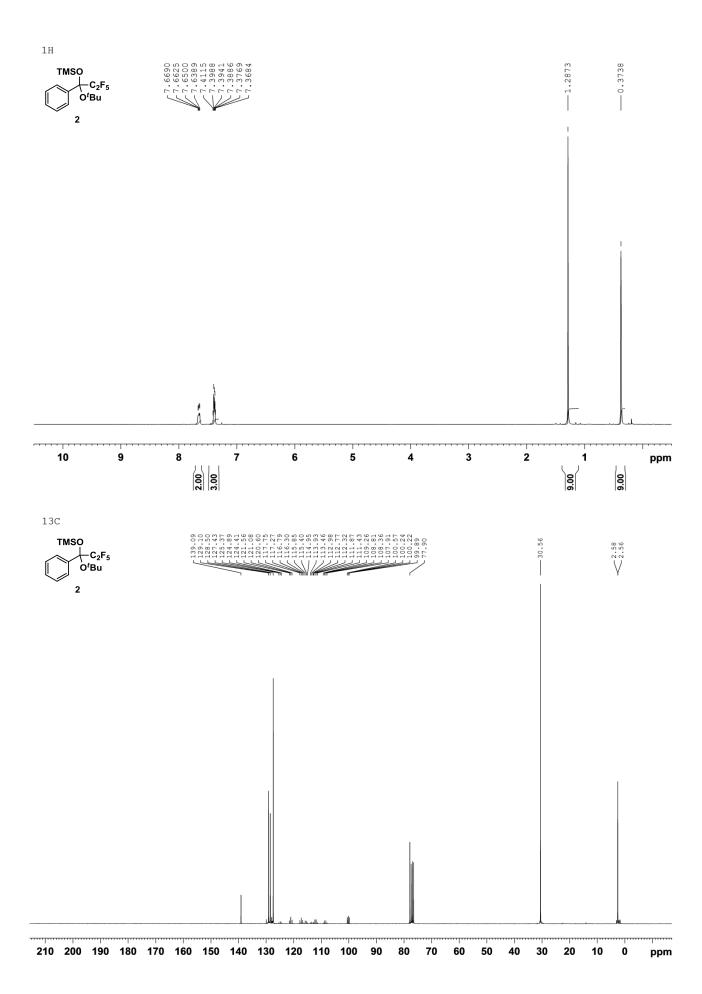
2.00

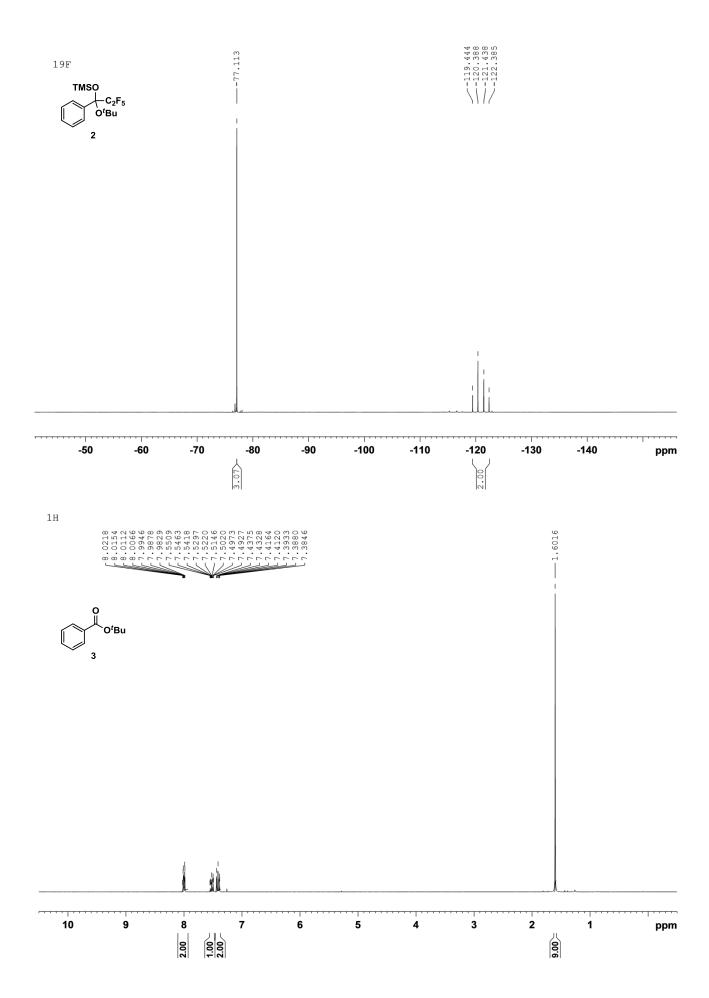
-120

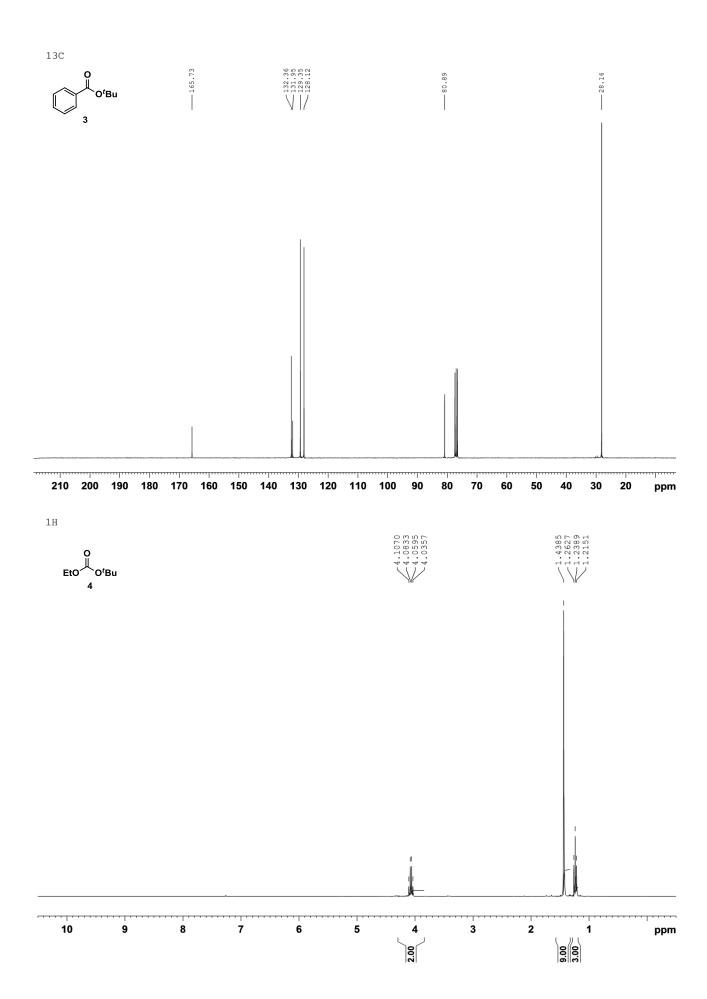
-130

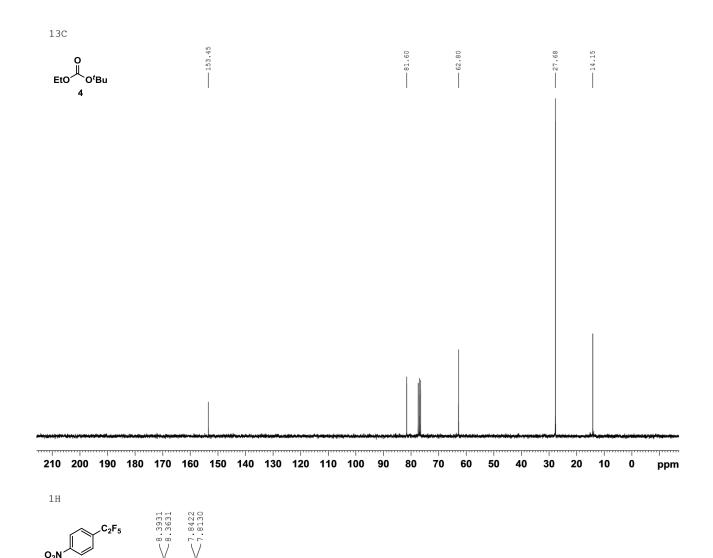
-140

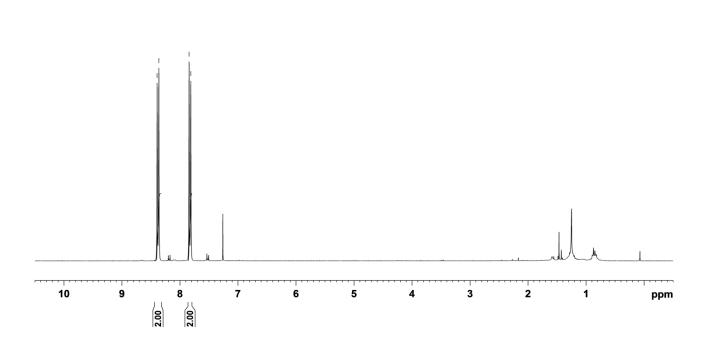
ppm

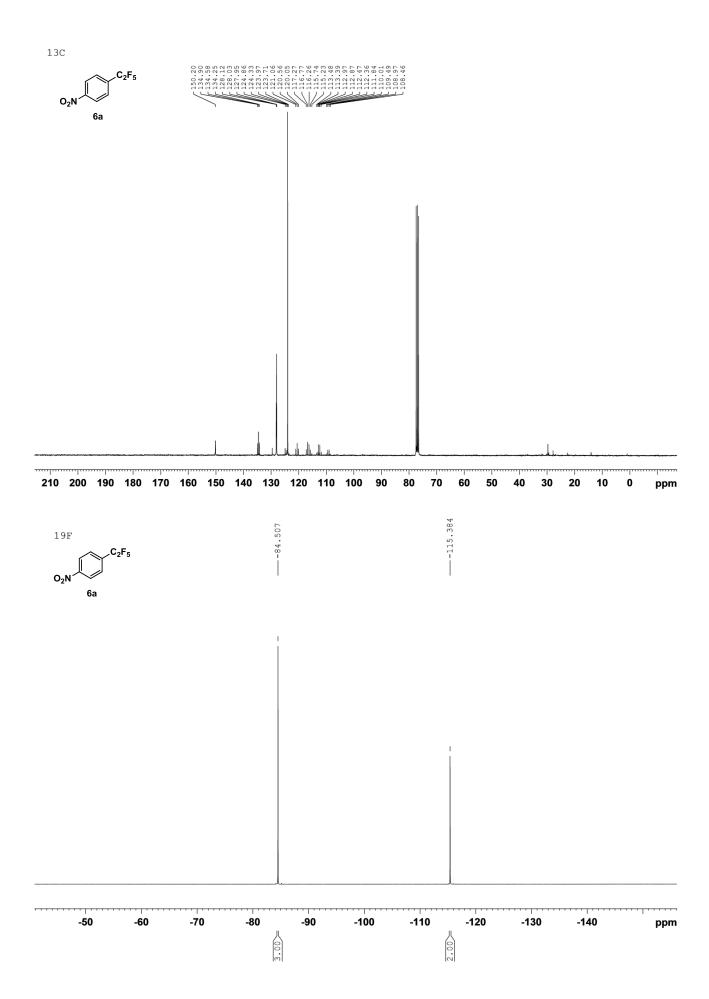

-80

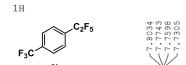

-90

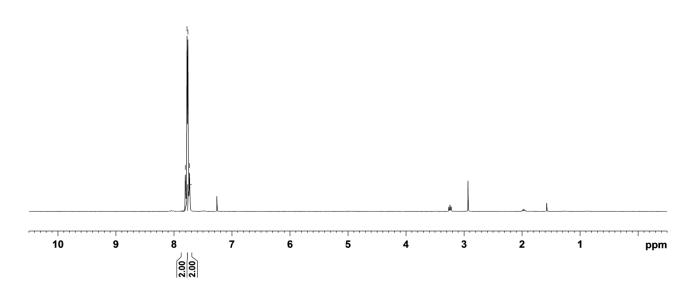

-50

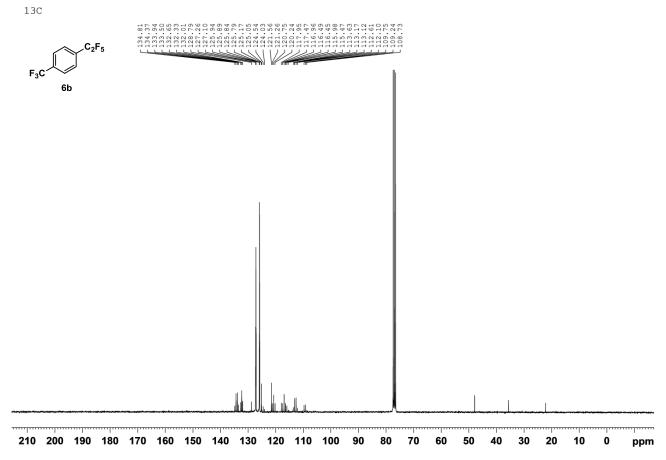

-60

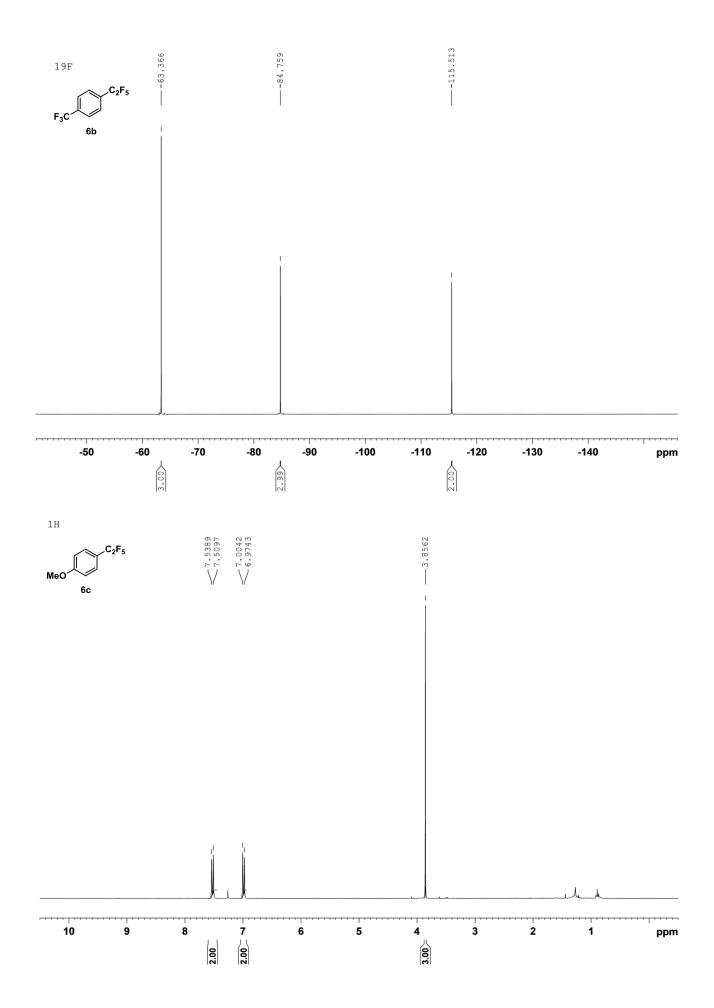

-70

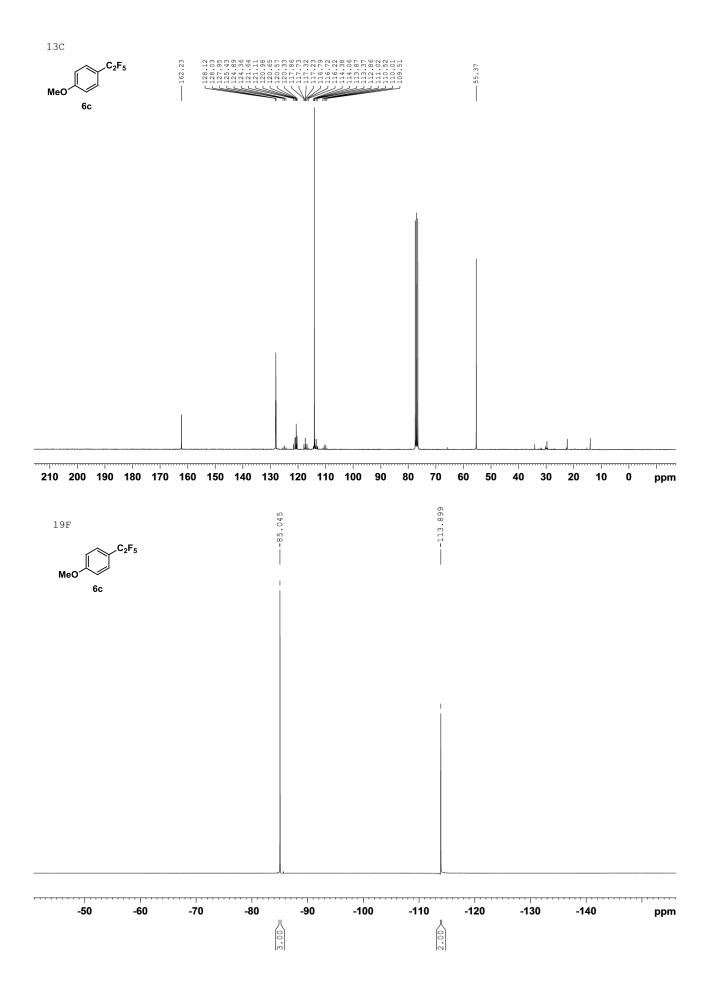


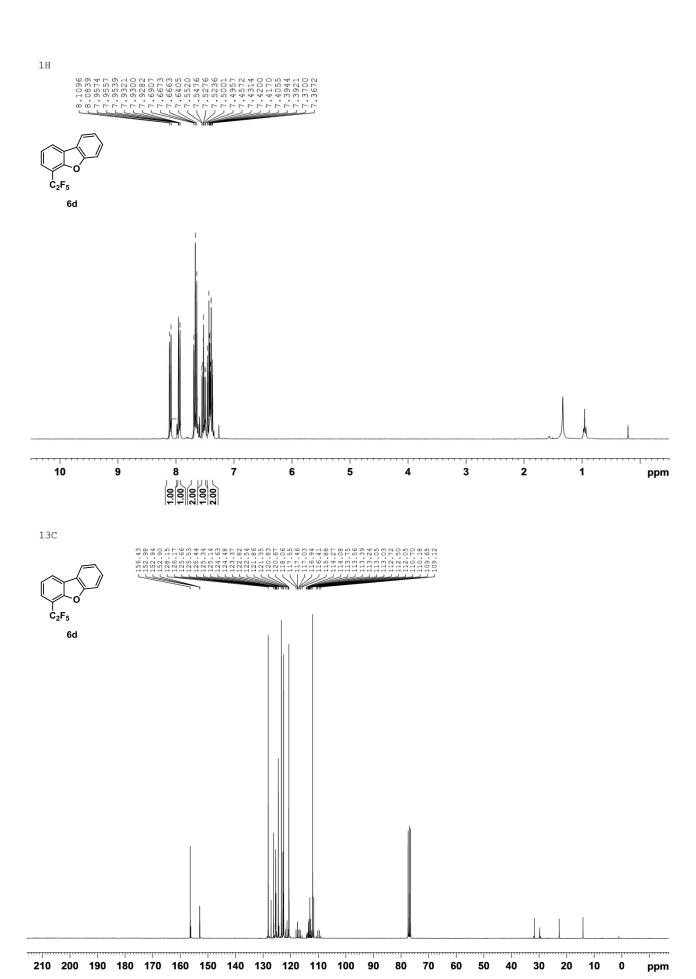



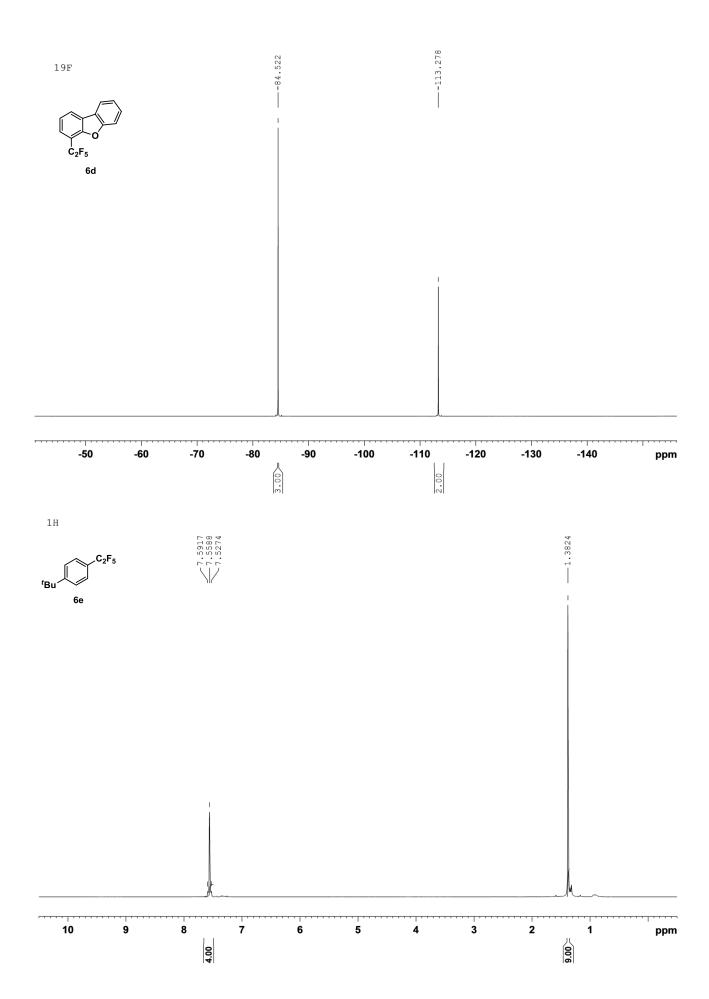



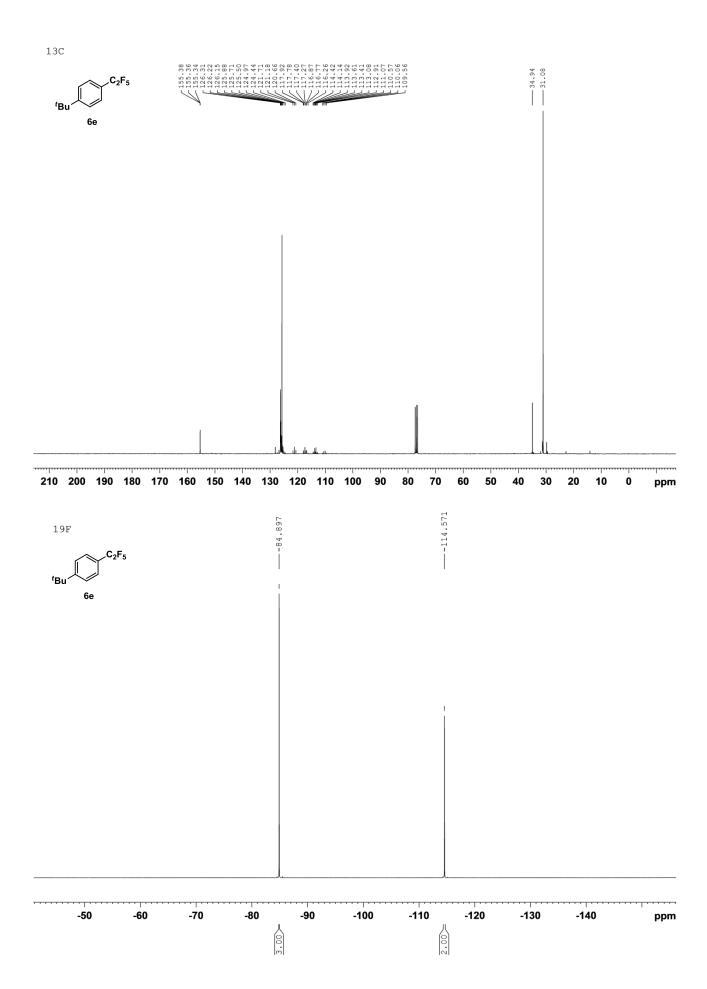



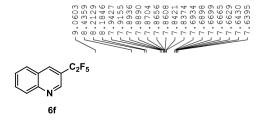



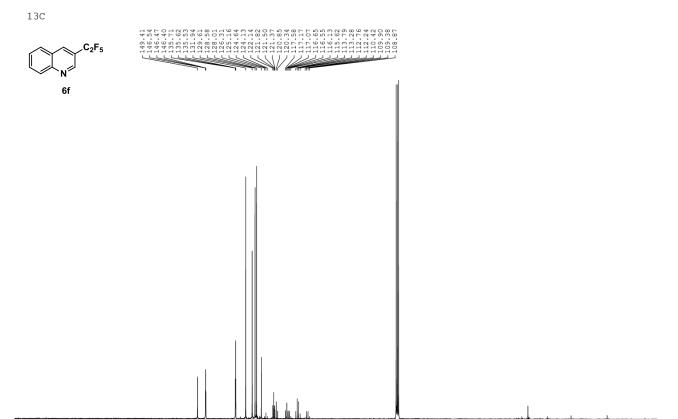







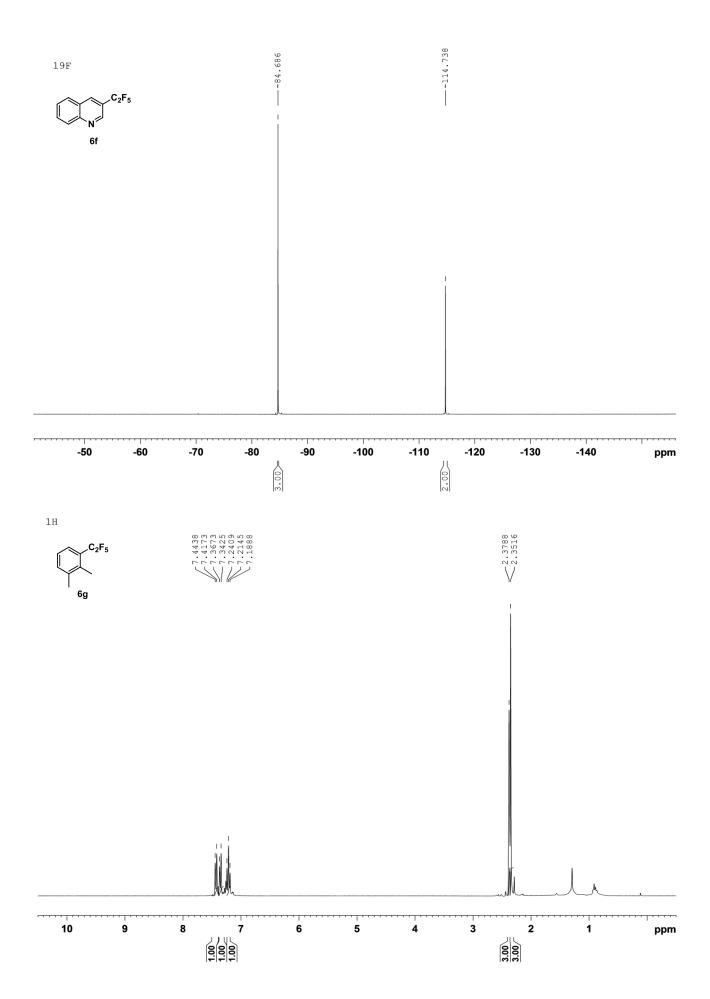


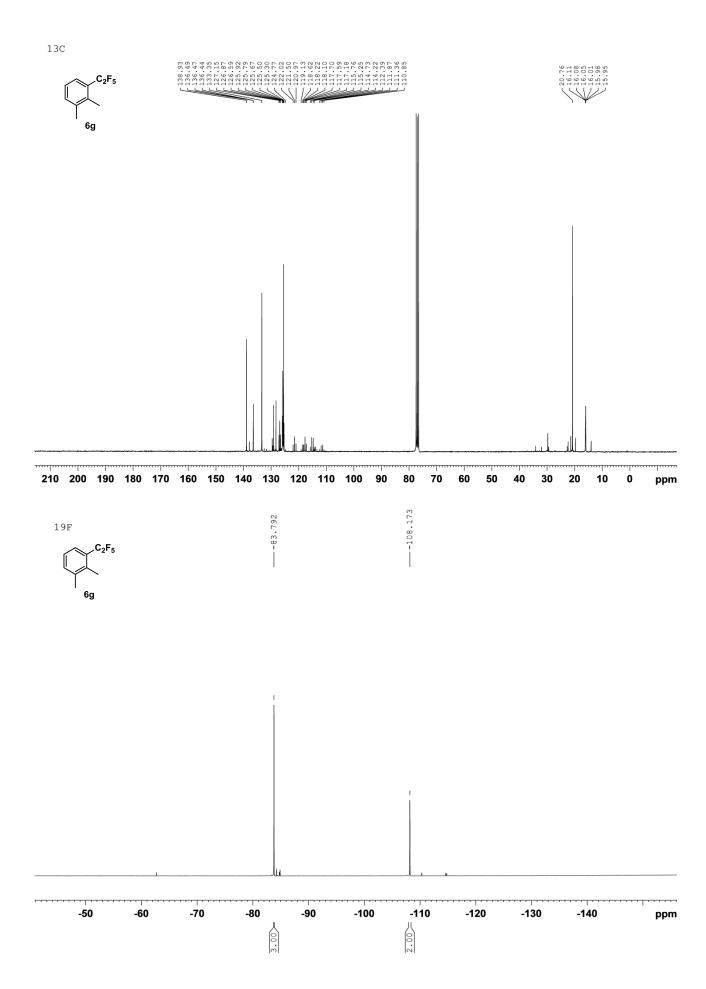


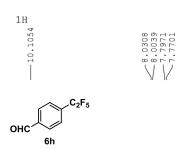


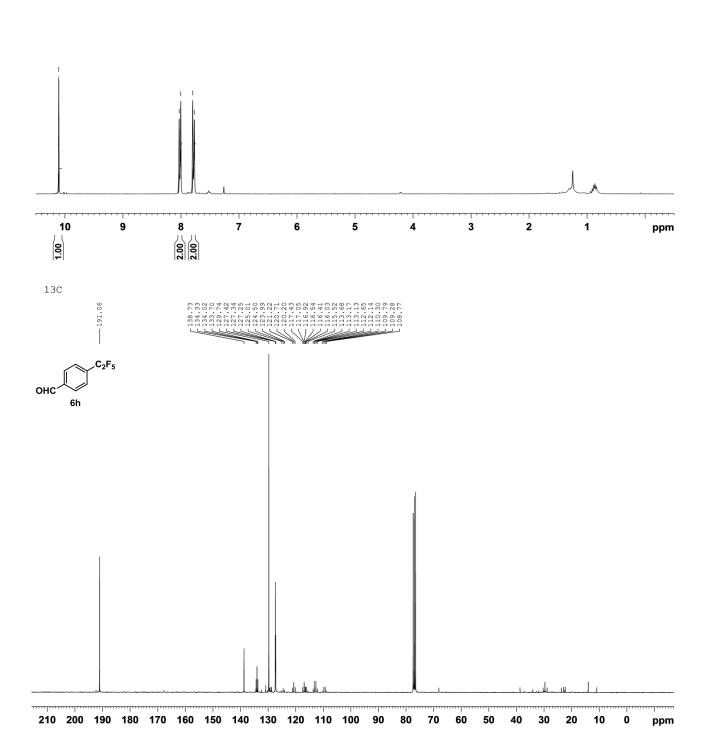


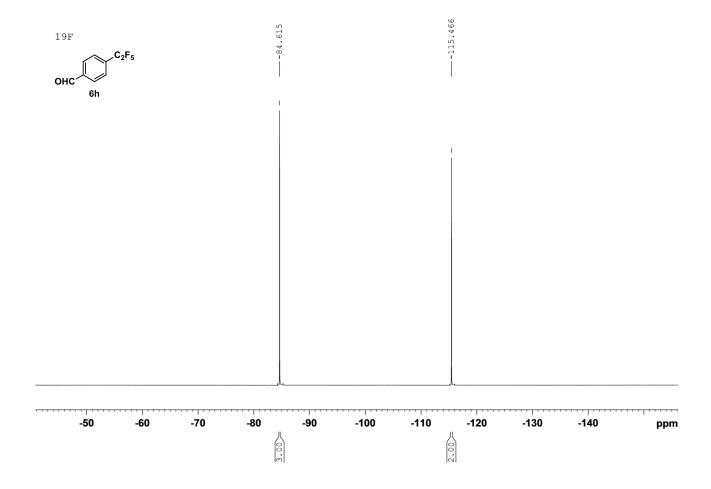




80 70


ppm


210 200 190 180 170 160 150 140 130 120 110 100 90

