Supplementary Information for

High-resolution solid-state oxygen-17 NMR of actinide-bearing compounds: an insight into the 5*f*-chemistry

Laura Martel^{*1}, Nicola Magnani¹, Jean-Francois Vigier¹, Jacobus Boshoven¹, Chris Selfslag¹, Ian Farnan², Jean-Christophe Griveau¹, Joseph Somers¹, Thomas Fanghänel¹

¹European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmoltz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

²Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.

*laura.martel@ec.europa.eu

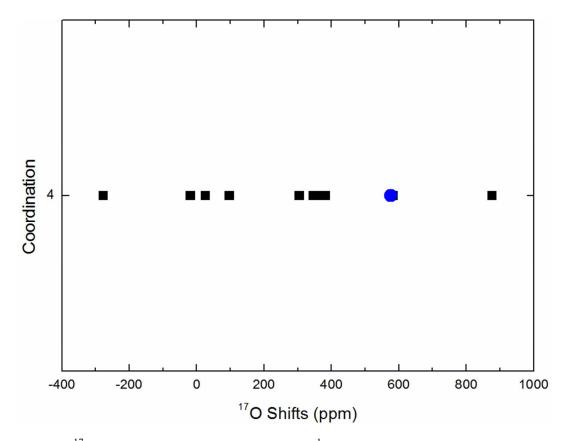


Figure S1: ¹⁷O shifts of diamagnetic metal oxides¹ (black squares) compared with that of ThO₂ (blue circle).

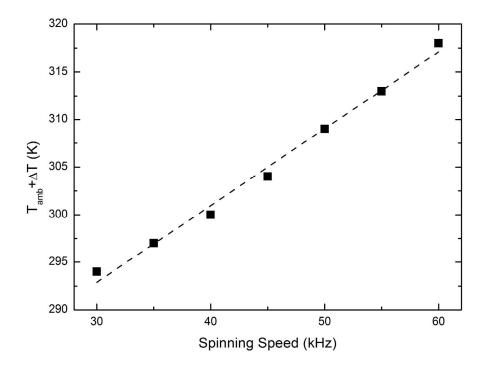


Figure S2: Evolution of the temperature (room temperature (T_{amb}) with a gradient of temperature (ΔT)) with increasing spinning speed. The temperatures have been determined using Pb(NO₃)₂ correlations² The dashed line is a linear fit.

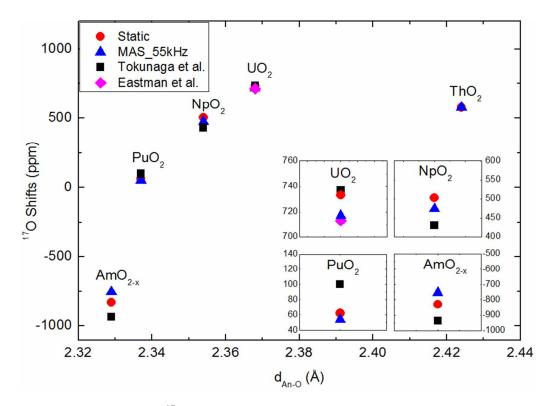


Figure S3: Evolution of the ¹⁷O shift as a function of the An-O distance. The results obtained in this study (static and MAS at 55 kHz) are compared with the previous static experiments published by Tokunaga et al.³ (black squares) and Eastman et al. (pink diamond) ⁴. The insets give a better view to compare the ¹⁷O shifts of each sample obtained in this study and by the other authors.

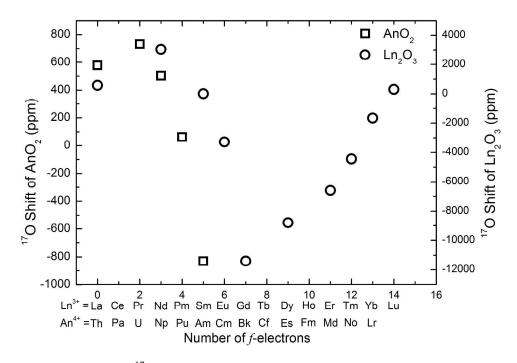


Figure S4: Evolution of the ¹⁷O chemical shifts in lanthanide (Ln_2O_3) (from reference 5) and actinides (AnO_2) dioxides as a function of the number of *f*-electrons.

Table S1: B_4 and B_6 are the crystal field (CF) parameters which appear in H_{CF} (see Equation 4 in main text), and are taken from the given literature references. $A\langle S_z \rangle$ is calculated in several different ways to show the relevant trends: RS = Russell-Saunders coupling, no CF (i.e. only the lowest pure ${}^{2S+1}L_J$ manifold is accounted for without removing its zero-field degeneracy); IC = Intermediate coupling, no CF (i.e. H_{FI} is diagonalized in order to take into account the mixing of excited ${}^{2S'+1}L'_J$ manifolds into the ground one, which remains 2J+1-fold degenerate in zero field); $RS+CF = H_{CF}$ is diagonalized within the lowest pure ${}^{2S+1}L_J$ manifold, and $A\langle S_z \rangle$ is calculated as a thermal average over the so-obtained wavevectors; $IC+CF = H_{FI} + H_{CF}$ is diagonalized over the whole $5f^n$ configuration states, and $A\langle S_z \rangle$ is calculated as a thermal average over the so-obtained states, and $A\langle S_z \rangle$ is calculated as a thermal average over the so-obtained states, and $A\langle S_z \rangle$ is calculated as a thermal average over the so-obtained states, and $A\langle S_z \rangle$ is calculated as a thermal average over the so-obtained states.

Name	B_4 (cm ⁻¹)	B_6 (cm ⁻¹)	$A\langle S_z \rangle$ (RS)	$\begin{array}{c} A\langle S_z \rangle \\ (RS+CF) \end{array}$	$A(S_z)$ (IC)	$A\langle S_z \rangle$ (IC+CF)
ThO ₂			0	0	0	0
UO_2	-7950	3400	-3.20	-2.90	-2.24	-2.12
NpO_2	-8500	3400	-4.91	-4.42	-3.13	-2.97
PuO_2	-9750	4000	-4.80	-4.59	-1.12	-1.46
AmO_2	-2200	_	-1.79	-1.97	-1.70	-0.14

References

- 1 K. J. D. Mackenzie and M. E. Smith, Multinuclear Solid-State NMR of Inorganic Materials, *Pergamon Materials Series*.
- 2. Bielecki, A.; Burum, D.P. J. Magn. Reson. A, 116, 215-220 (1995).
- 3. Tokunaga, Y., et al. NMR studies of actinide dioxides. J. Alloys Compd., **444–445**, 241–245 (2007).
- 4. Eastman, M. P.; Hecht, H. G.; Lewis, W. B. J. Chem. Phys. 54, 4141-4146 (1971).
- 5. Yang, S.; Shore, J.; Oldfield, E. J. Magn. Reson., 99,408-412 (1992).