Supporting Information

Improved Performance of Solution-Processed n-Type Organic Field-Effect Transistors by Regulating the Intermolecular Interactions and Crystalline Domains on Macroscopic Scale

V. Suresh,^a Satyaprasad P. Senanayak,^b Meenakshi Sharma,^a K. S. Narayan^b* and Parameswar K. Iyer^{a,c}*

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039. India. Fax: +913612582349; Tel: +913612582314; E-mail: <u>pki@iitg.ernet.in</u> ^bJawaharlal Nehru Centre for Advanced Scientific Research Jakkur, Bangalore 560064. India. Fax: +91 8022082750; Tel: +918022082822; E-mail: <u>narayan@jncasr.ac.in</u> ^cCentre for Nanotechnology, Indian Institute of Technology Guwahati,Guwahati-781039. India.

No.	Contents	Page
1.	Synthesis of monomers and Polymers	S2-S4
2.	¹ H NMR Spectra of Br₂-NDIOD	S4
3.	¹³ C NMR Spectra of Br₂-NDIOD	S5
4.	MALDI-TOF Spectra Br₂-NDIOD	S6
5.	¹ H NMR Spectra of NDI-Ph	S7
6.	¹³ C NMR Spectra of NDI-Ph	S8
7.	¹ H NMR Spectra of NDI-BT	S9
8.	¹³ C NMR Spectra of NDI-BT	S10
9.	¹ H NMR Spectra of Br₂-PDIOD	S11
10.	¹³ C NMR Spectra of Br₂-PDIOD	S12
11.	MALDI-TOF Spectra Br₂-PDIOD	S13
12.	¹ H NMR Spectra of PDI-Ph	S14
13.	¹³ C NMR Spectra of PDI-Ph	S15

14.	¹ H NMR Spectra of PDI-BT	S16
15.	¹³ C NMR Spectra of PDI-BT	S17
16.	XRD spectra of the films	S17, S18
17.	Table showing the variation in the FWHM of the XRD spectra	S19
	with annealing of the polymer films	
18.	Typical output and transconductance characteristics for FETs	S19, S20
	fabricated with (a) NDI-BT, (b) PDI-BT (c) N2200	
19.	Transconductance plot showing highest μ_{FET} for NDI-Ph	S21
	and the performance under ambient condition	

Synthesis of Monomers and Polymers

Synthesis of Br₂-NDIOD: A mixture of NTCDA-Br₂ (0.4 g, 0.93 mmol) (*Precaution: The dibromination of NTCDA by dibromoisocyanuric acid has to be carried out in presence of concentrated* H_2SO_4 or Oleum and must be handled with great care), 2-octyldodecylamine (0.629 g, 2.33 mmol), o-xylene (3 mL), and propionic acid (1 mL) were stirred at 140 °C for 6 h. After cooling to room temperature, most of solvents were removed in vacuo, and the residue was purified by column chromatography on silica gel with a mixture of chloroform : hexane (1:2, v/v) as eluent, affording the slightly yellowish red color solid as product (0.61 g, yield 70%). ¹H NMR (600 MHz, CDCl₃, δ ppm): 8.75 (s, 2H), 4.18 (t, 4H), 1.73 (m, 4H), 1.25-1.15 (m, 60H), 0.87 (t, 6H); ¹³C NMR (150MHz, CDCl₃, δ ppm): 163.07, 139.28, 128.87, 128.54, 127.97, 125.60, 124.35, 41.85-14.32 (Aliphatic Carbons). MALDI-TOF: m/z Calcd. 928.41, found. [M+2H]⁺: 930.11; Elemental Analysis Calcd. C, 64.65; H, 8.25; N, 3.02; found, C, 64.16; H, 8.255; N, 1.46.

Synthesis of NDI-Ph: To a three neck round bottom flask Br₂-NDIOD (0.1 g, 0.107 mmol) and benzene-1,4-diboronic acid (0.0177 g, 0.107 mmol), were added and degassed thrice by freeze thaw cycles. Aqueous solution of K₂CO₃ (0.147 g, 1.07 mmol) in 2 mL deoxygenated water were added under nitrogen. (0.006 g, 0.004 mmol) of Pd(PPh₃)₄, two drops of aliquat and 6 mL THF were added under nitrogen atmosphere, degassed thrice by freeze thaw cycles (15 minutes each). The dark red solution was stirred at 80 °C for 36h. Phenyl boronic acid was added under nitrogen and the reaction was continued for other 12h. The brown sticky mixture was cooled to room temperature. The mixture was extracted with CHCl₃, washed with 100 mL water thrice and dried over anh. MgSO₄. The solution was concentrated to 5 mL and dropped in 50 mL methanol. The brown color precipitate was filtered and washed with methanol twice (0.076 g, Yield 84 %). ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.5-8.8 (br, m, 2H), 7.4-7.8 (br, m, 4H), 4.0 (br, m, 4H), 1.67 (br, m, 4H), 1.2 (br, m, 60H), 0.87 (br, m, 6H); ¹³C NMR (150MHz, CDCl₃, δ ppm): 163.06, 135.66, 132.00, 131.10, 128.76, 125.07, 124.68, 124.19, 41.14-14.32 (Aliphatic Carbons); GPC: Mn: 6811; Mw: 13579; PDI: 1.99.

Synthesis of NDI-BT: To a three neck round bottom flask, Br₂-NDIOD (0.1 g, 0.107 mmol) and 2,1,3-benzothiadiazole bisboronic ester (0.0415 g, 0.107 mmol), were added and degassed thrice by freeze thaw cycles. Aqueous solution of K₂CO₃ (0.147 g, 1.07 mmol) in 2 mL deoxygenated water was added under nitrogen flow. (0.006 g, 0.004 mmol) of Pd(PPh₃)₄, two drops of aliquat and 6 mL THF were added under nitrogen atmosphere, degassed twice by freeze thaw cycles. The dark red solution was stirred at 80 °C for 36h. Phenyl boronic acid was added under nitrogen and the reaction was continued for other 12h. The brown sticky mixture was cooled to room temperature. The mixture was extracted with CHCl₃, washed with 100 mL water thrice and dried over anh. MgSO₄. The solution was concentrated to 5 mL and dropped in 50 mL methanol. The brown color precipitate was filtered and washed with methanol twice (0.082 g, Yield 85%) ¹HNMR (400 MHz, CDCl₃, δ ppm): 8.85 (br, m, 2H), 7.6 (br, m, 2H), 4.15 (br, m, 4H), 1.7 (br, m, 4H), 1.2 (br, m, 60H), 0.85 (br, m, 6H); ¹³C NMR (150 MHz, CDCl₃, δ ppm): 163.07, 135.42, 132.18, 131.10, 129.98, 129.06, 124.68, 124.19, 41.14-14.33 (Aliphatic Carbons); GPC: Mn: 5171; Mw: 6627; PDI: 1.74.

Synthesis of Br₂-PDIOD: A mixture of PTCDA-Br₂ (0.4 g, 0.72 mmol) (*Precaution: The dibromination of PTCDA by bromine in concentrated* H_2SO_4 and must be handled with great *care*), octadecylamine (0.58 g, 2.18 mmol), o-xylene (3 mL), and propionic acid (1 mL) were stirred at 140 °C for 6h. After cooling to room temperature the solvents were removed in vacuo and the product was purified by column chromatography on silica gel, using a mixture of chloroform: hexane (1:2, v/v) as eluent, yielding red color solid as product (0.49 g, yield 65%). ¹H NMR (600 MHz, CDCl₃, δ ppm): 9.47 (d, J = 8.0 Hz, 2H), 8.90 (s, 2H), 8.69 (d, J = 8.0 Hz, 2H), 4.184 (t, 4H), 1.729 (m, 4H), 1.25-1.42 (m, 60H), 0.853 (t, 6H); ¹³C NMR (150MHz, CDCl₃, δ ppm): 163.08, 162.57, 138.20, 133.18, 133.02, 130.21, 129.47, 128.71, 127.16, 123.43, 123.00, 120.99, 41.05-14.32 (Aliphatic Carbons); MALDI-TOF: m/z calcd. 1053.44, found, [M+2H]⁺ : 1055.47; Elemental Analysis Calcd. C, 68.43; H, 7.66; N, 2.66; found, C, 68.33; H, 7.19; N, 1.84.

Synthesis of PDI-Ph: To a three neck round bottom flask Br₂-PDIOD (0.1 g, 0.095 mmol) and benzene-1, 4-diboronic acid (15.7mg, 0.0949mmol) were added and degassed thrice by freeze thaw cycles. Aqueous solution of K₂CO₃ (0.131 g, 0.949 mmol) in 2 mL deoxygenated water were added under nitrogen. (0.0054 mg, 0.004 mmol) of Pd(PPh₃)₄, two drops of aliquat and 6 mL THF were added under nitrogen atmosphere, degassed thrice by freeze thaw cycles. The dark red solution was stirred at 80 °C for 36h. Phenyl boronic acid was added under nitrogen and the reaction was continued for other 12h. The brown sticky mixture was cooled to room temperature. The mixture was extracted with CHCl₃, washed with 100 mL water thrice and dried over anh. MgSO₄. The solution was concentrated to 5 mL and dropped in 50 mL methanol. The precipitate was filtered and washed with methanol twice to get black color solid. (0.076 g, Yield 83%) ¹H NMR (600MHz, CDCl₃, δ ppm): 8.57 (br, m, 2H), 8.30 (br, m, 4H), 7.69 (br, m, 2H), 4.1-4.4 (br, m, 4H), 1.67 (br, m, 4H), 1.2 (br, m, 60H), 0.86 (br, m, 6H); ¹³C NMR (150 MHz, CDCl₃, δ ppm): 163.49, 163.18, 136.50, 135.50, 134.61, 133.88, 132.30, 131.45, 129.14, 128.70, 126.45, 124.50, 123.46, 123.22, 40.97-14.16 (Aliphatic Carbons); GPC: Mn: 16082; Mw: 24657; PDI: 1.53.

Synthesis of PDI-BT: To a three neck round bottom flask Br₂-PDIOD (0.1 g, 0.095 mmol), 2,1,3-benzothiadiazole bisboronic ester (0.037 g, 0.0949 mmol), were added and degassed thrice by freeze thaw cycles. Aqueous solution of K_2CO_3 (0.131 g, 0.949 mmol) in 2 mL deoxygenated water were added under nitrogen. (0.0054 g, 0.004 mmol) of Pd(PPh₃)₄, two drops of aliquat and 6 mL THF were added under nitrogen atmosphere, degassed thrice by freeze thaw cycles. The

dark red solution was stirred at 80 °C for 36h. Phenyl boronic acid was added under nitrogen and the reaction was continued for other 12h. The brown sticky mixture was cooled to room temperature. The mixture was extracted with CHCl₃, washed with 100 mL water thrice and dried over anh. MgSO₄. The solution was concentrated to 5 mL and dropped in 50 mL methanol .The precipitate was filtered and washed with methanol twice to get black color solid. (0.084 g, Yield 86%). ¹H NMR (600 MHz, CDCl₃, δ ppm): 8.76 (br, m, 2H), 8.10 (br, m, 4H), 7.83 (br, m, 2H), 4.1-4.4 (br, m, 4H), 1.67 (br, m, 4H), 1.2 (br, m, 60H), 0.86 (br, m, 6H); ¹³C NMR (150 MHz, CDCl₃, δ ppm): 163.46, 163.23, 136.19, 134.54, 133.04, 132.31, 132.00, 131.80, 131.43, 129.07, 128.52, 127.79, 124.19, 123.24, 40.99-14.31 (Aliphatic Carbons); GPC: Mn: 30619 Da; Mw: 35739 Da; PDI: 1.16.

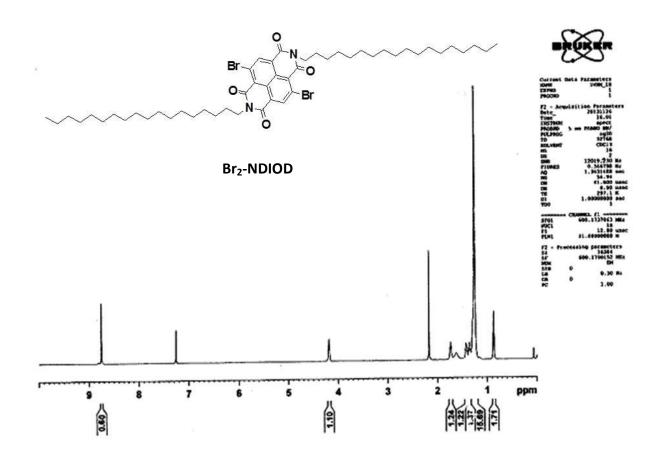


Figure S1: ¹H NMR Spectra of Br₂-NDIOD (CDCl₃, 600MHz)

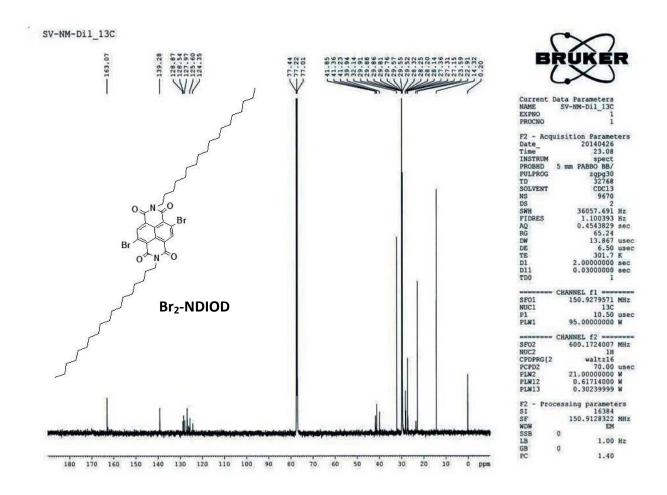


Figure S2: ¹³C NMR Spectra of Br₂-NDIOD (CDCl₃, 150 MHz)

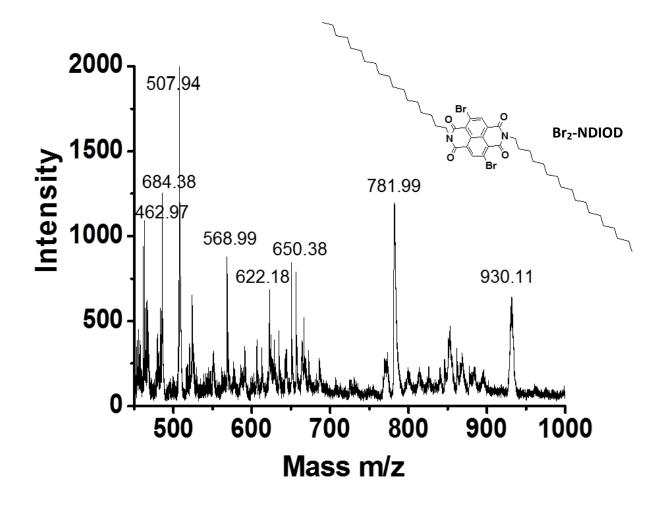


Figure S3: MALDI-TOF Spectra of Br₂-NDIOD

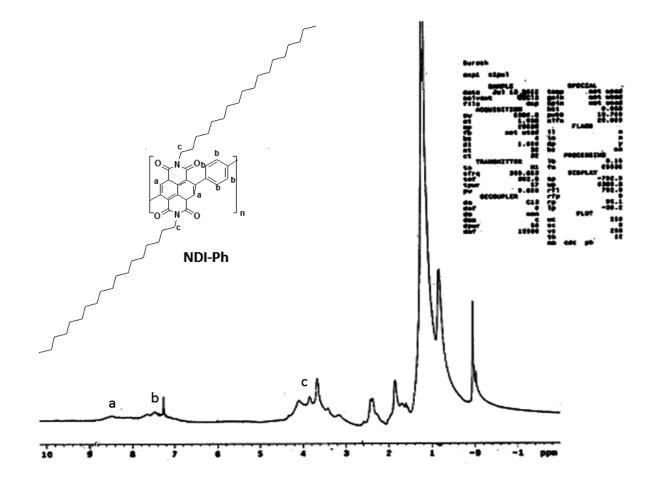


Figure S4: ¹H NMR Spectra of NDI-Ph (CDCl₃, 400MHz)

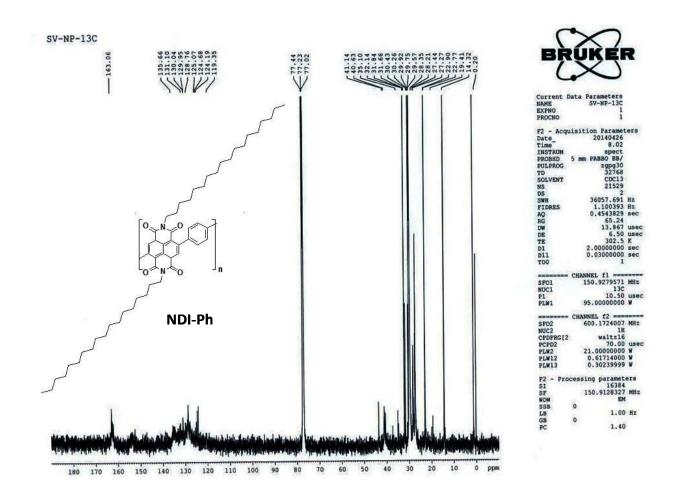


Figure S5: ¹³C NMR Spectra of NDI-Ph (CDCl₃, 150 MHz)

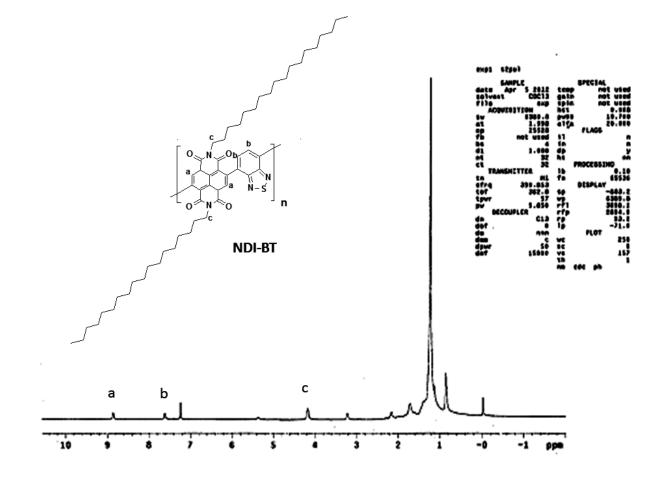


Figure S6: ¹H NMR Spectra of NDI-BT (CDCl₃, 400 MHz)

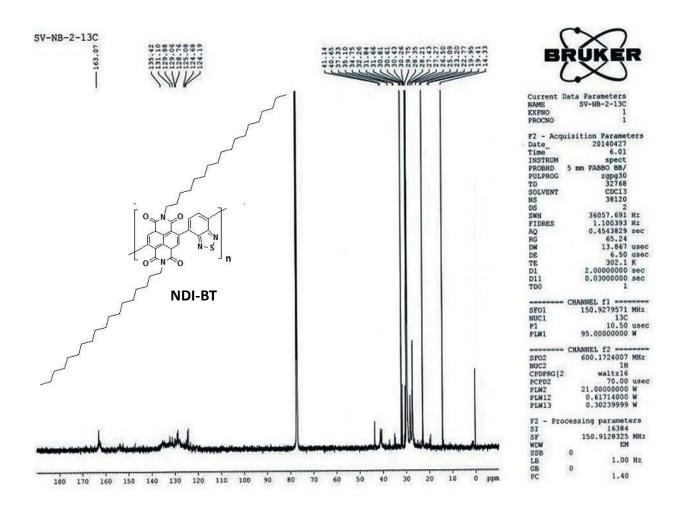


Figure S7: ¹³C NMR Spectra of NDI-BT (CDCl₃, 150 MHz)

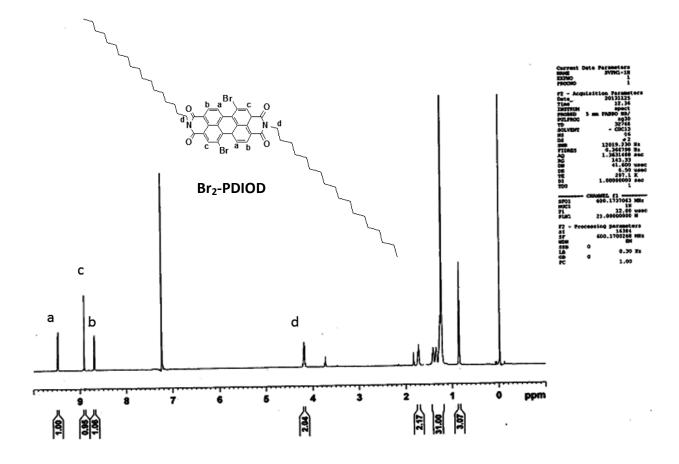


Figure S8: ¹H NMR Spectra of Br₂-PDIOD (CDCl₃, 600 MHz)

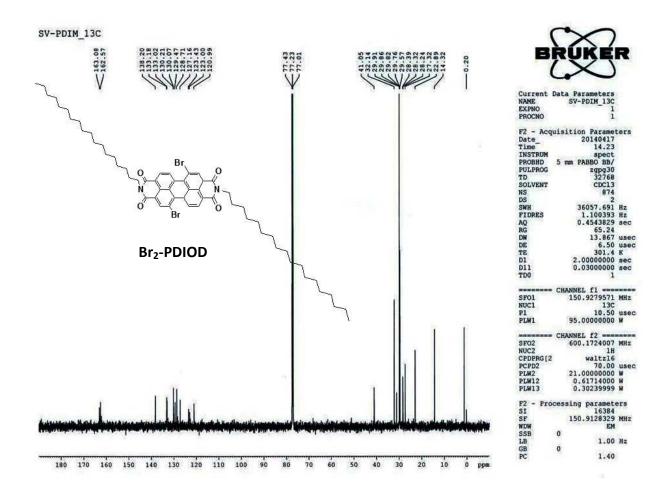


Figure S9: ¹³C NMR Spectra of Br₂-PDIOD (CDCl₃, 150 MHz)

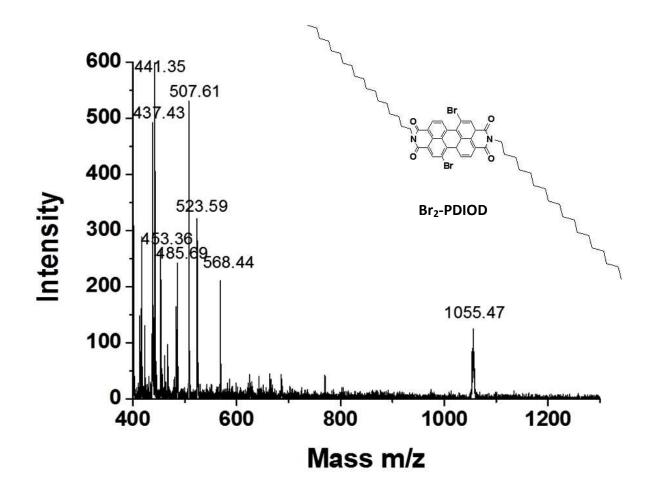


Figure S10: MALDI-TOF Spectra of Br₂-PDIOD

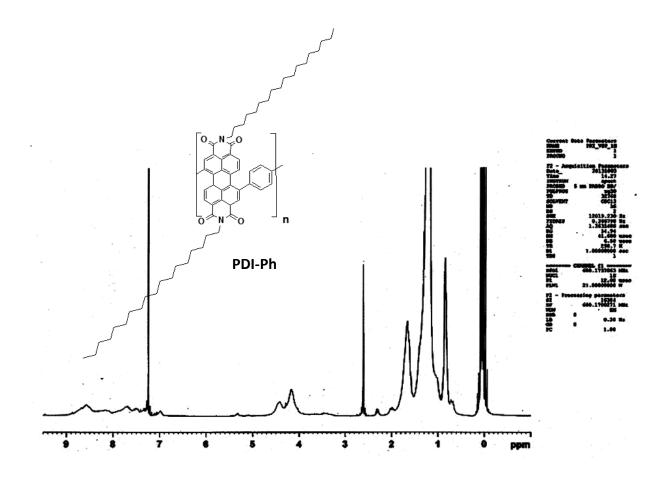


Figure S11: ¹H NMR Spectra of PDI-Ph polymer (CDCl₃, 600 MHz)

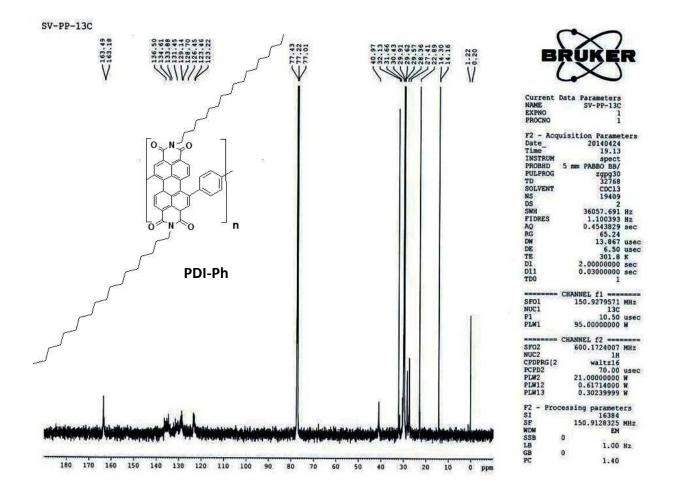


Figure S12: ¹³C NMR Spectra of PDI-Ph (CDCl₃, 150 MHz)

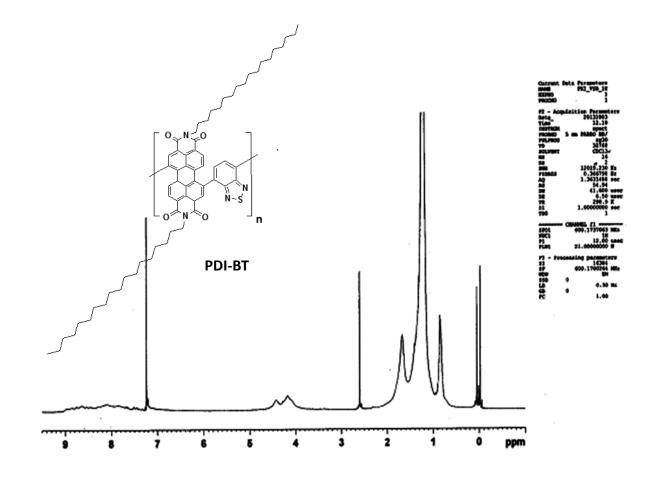


Figure S13: ¹H NMR Spectra of PDI-BT polymer (CDCl₃, 600 MHz)

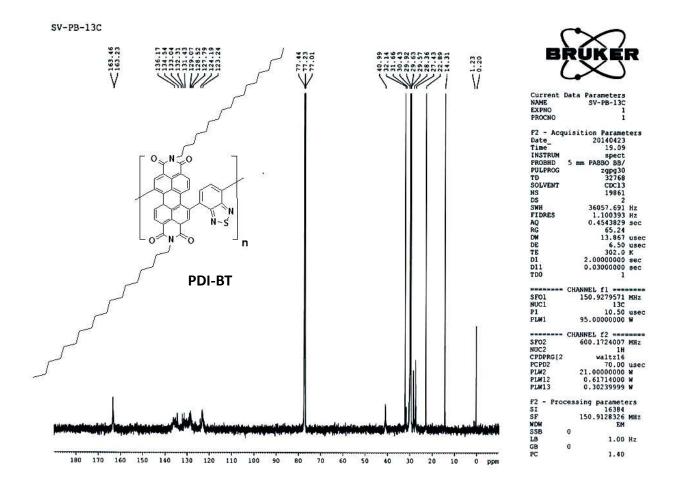
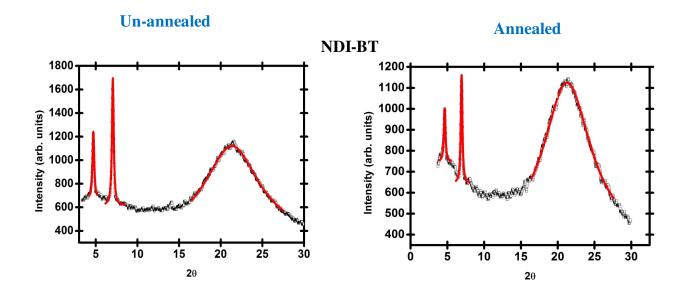



Figure S14: ¹³C NMR Spectra of PDI-BT (CDCl₃, 150 MHz)

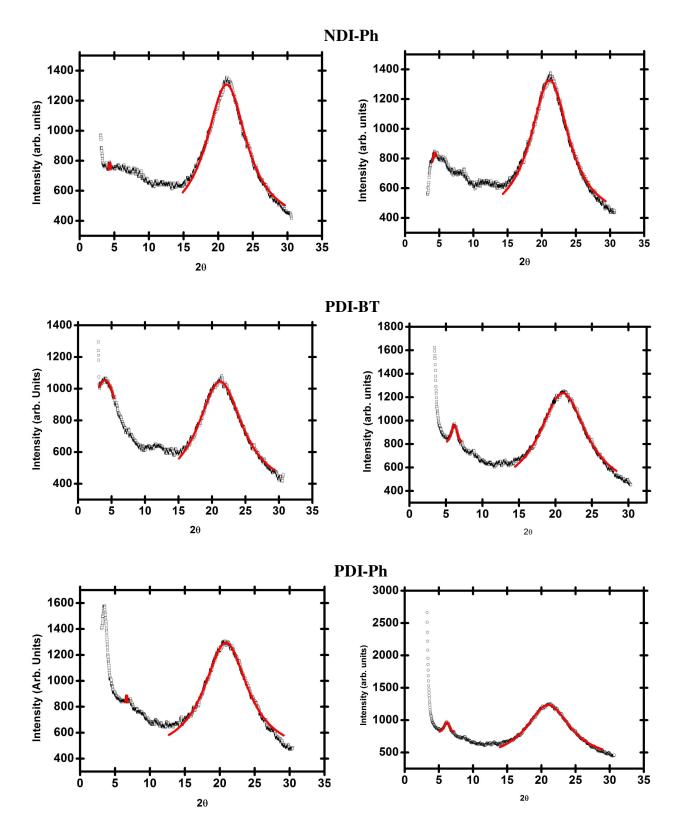
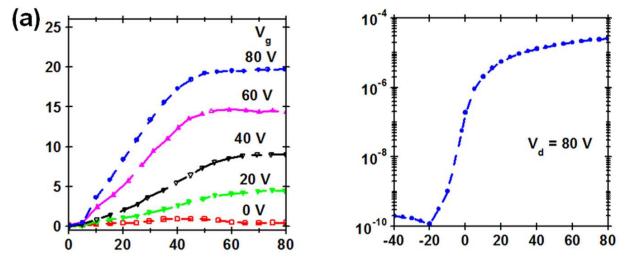



Figure S15: XRD spectra of the annealed (right side) and as spun (left side) polymer films fitted with Lorentzian to correctly estimate the peaks.

		As cast films	Annealed Films
Polymers	(00n)	FWHM	FWHM
NDI-Ph	(001)	0.3326	0.5331
	π-π	7.1387	6.8727
NDI-BT	(001)	0.2542	0.2526
	(002)	-	-
	π-π	8.0554	7.9907
PDI-Ph	(001)	-	-
	(002)	1.0112	0.713
	π-π	7.9777	7.6657
PDI-BT	(001)	-	-
	(002)	7.1364	1.0482
	π-π	8.2268	7.9777

Table S1: Table showing the variation in the FWHM of the XRD spectra with annealing of the polymer films.

S19

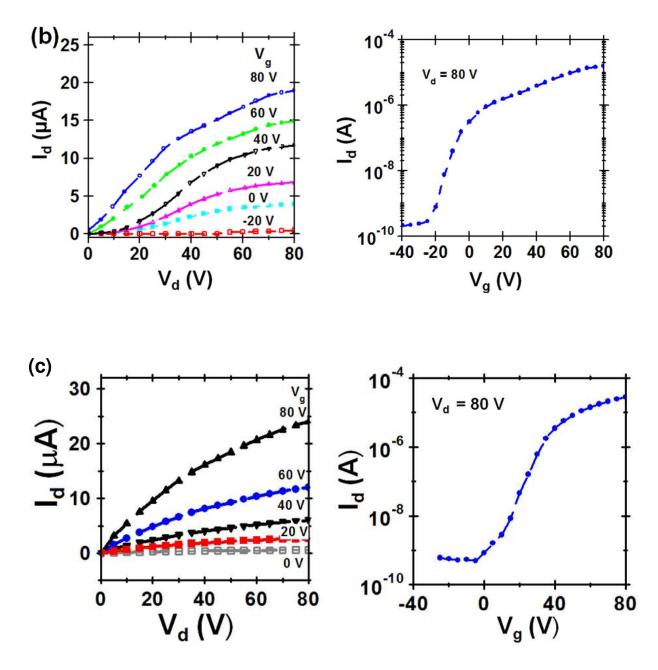


Figure S16: Typical output and transconductance characteristics for FETs fabricated with (a) NDI-BT; (b) PDI-BT and (c) N2200. Typical BCB dielectric capacitance ($C_i \sim 2 - 4 \text{ nF/cm}^2$) and device dimensions are W $\approx 1 \text{ mm}$ and L $\approx 60\text{-}100 \text{ µm}$.

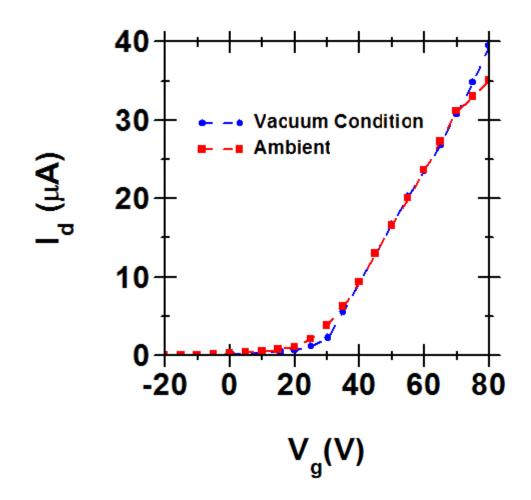


Figure S17: Typical transconductance characteristics for FETs fabricated with NDI-Ph polymer. Typical BCB dielectric capacitance ($C_i \sim 2 - 4 \text{ nF/cm}^2$) and device dimensions are W $\approx 1 \text{ mm}$ and L $\approx 100 \text{ µm}$.