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S1. Preparation of functionalized gold nanospheres 

A stock of gold spheres was synthesized according to a literature procedure.
1
 SH-PEG-OCH3 

(MW = 736 Da, MW = 2015 Da, MW = 5079 Da), SH-PEG-COOH (MW = 4975 Da), 

Cetyltrimethylammonium bromide (CTAB), Mercapto undecanoic acid (MUA) and DNA (T10: 

Thymine 10-mer with 5’-Thiolink-C6. T40: Thymine 40-mer with 5’-Biotin-C6. Both purchased 

from Biomers.net), were bound to the particles by overnight incubation at room temperature as 

described by Hanauer et al.
2
 

 

S2. Single particle Polarisation Anisotropy (PA) measurements 

PA measurements were carried out at an optical microscopy system which is based on a 

motorized inverted microscope equipped with a piezo scanning stage, a z-piezo, a spectroscopy 

system, and an autosampler. We use self-made flow cells composed of two microscope cover 

slips. All components are controlled by a central MATLAB based software. A spectral precision 

for the plasmon peak of 0.3 nm is achieved by refining the exact nanoparticle position before 

each measurement. The polarization dependency was investigated by inserting a polarization 

filter in the detection light path. The spectra were acquired every 15° angle from 0° to 180°.  

 

S3. Transmission Electron Microscopy (TEM) 

5 µL of the aqueous solutions of Gold-NPs were deposited on a 300-mesh copper grid with a 

coal film. The samples were dried in air. (HighResolution-)TEM images were obtained on a FEI 

Tecnai F20 at 200 kV. 
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S4. UV-Vis Spectroscopy 

All UV-Vis measurements were recorded on a PerkinElmer LAMBDA 25 UV-Vis 

spectrometer, using water as a reference. 

 

S5. Photon correlation spectroscopy (PCS) 

The normalized light scattering intensity (I(q,t)) autocorrelation function 

 was recorded over a broad time range (10
–7

–10
3
 s) at different 

scattering wave vectors q with an ALV/LSE-5004 goniometer/correlator setup using lasers with 

two different wavelengths λ = 632 nm (HeNe laser) and λ = 532 nm (Compass 215M, Coherent, 

Santa Clara, CA). The scattering vector q = ks-ki with ks and ki being the wave vectors of the 

scattered and incident light, respectively, has magnitude q = (4πn/λ)sin(θ/2) (n and θ are the 

solution refractive index and the scattering angle, respectively). We have performed both 

polarized (VV) and depolarized (VH) PCS experiments using a vertically (V) polarized incident 

laser beam and selected the scattered light polarized vertically (VV-configuration) and 

horizontally (VH-configuration) to the scattered plane (ki,kf). The measurements were carried out 

at temperature T = 20°C. Only for Au-citrate and Au-PEG16, PCS was performed also at 50°C. 

For spherical NPs, the translational diffusion coefficient D
t
 is directly obtained from the 

diffusive relaxation rate  = VV = D
t
q

2
 of the isotropic relaxation function. For this case, no 

scattering in VH can be observed. For anisotropic particles, rotational motion is unequal to the 

translational motion and can be observed in VH geometry. D
r
 is the rotational diffusion 

coefficient and VH = 6D
r
 + D

t
q

2
. The isotropic and anisotropic relaxation functions are: 

        2
/,, qIqItqItqG 
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CVH(q,t) = exp[-Γft]       (S3a) 

CVV(q,t) = af exp[-Γft]

 + as exp[-Γst]            (S3b) 

where Γ(q) is the relaxation time for the fast (f) and slow (s) processes, respectively. The VV 

scattering includes both isotropic and anisotropic contributions and therefore CVV becomes 

bimodal, with fast and slow processes characterized by amplitudes af and as = (1 - af) and rates f 

and s. 

 

 

Figure S1. a) Guinier plot, ln[1/RVV(q)] vs q
2
, for either the total polarized RVV(q) (open circles) 

or the pure isotropic RISO(q) (solid squares) contribution obtained from the relaxation function 

CVV(q,t). b) Grafted layer thickness plot vs. degree of polymerization of the PEG grafts for 

AuNP with d = 44 nm in a log-log presentation yielding a slope ν=0.55 and ν=0.63 below and 

above the scaling (~0.588) exponent for good solvency. 
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Table S1. Characteristic dimensions of grafted Au nanospheres with diameter of 41 nm, 

depolarization ratio at two optical wavelengths and the plasmon resonance wavelength.  

 
Rh [nm] Rr [nm] 

RVH/RVV
max[nm] 

632nm 532nm

Au-citrate 23.5 ± 0.7 36.3 ± 0.5 0.12 0.02 522 

Au-PEG16 23.0 ± 0.7 31.0 ± 1.5 0.01 0.01 523 

Au-PEG45 24.9 ± 0.7 29.5 ± 0.7 0.01 0.01 524 

Au-PEG107 30.4 ± 0.6 37.6 ± 0.7 0.01 0.01 524 

Au-PEG107-COOH 31.9 ± 0.3 34.7 ± 0.7 0.01 0.01 523 

Au-CTAB 22.8 ± 0.7 32.7 ± 0.3 0.04 0.01 525 

Au-MUA 28.4 ± 0.5 36.6 ± 0.4 0.07 0.02 525 

              

 

Figure S2. a) Absolute Rayleigh ratio for polarized (RVV, hatched areas) and depolarized (RVH, 

solid areas) light scattering and b) depolarization ratio ρ at 532 nm (green) and 632 nm (red) for 

a dilute suspension of Au nanospheres with 41 nm diameter core and different grafts as indicated 

in the plots. 
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S6. Depolarization ratio of naked AuNPs with Green’s tensor simulations 

The effect of size dispersion on bared Au NPs has been investigated using the Green’s tensor 

formalism,
3
 which allows computing the electromagnetic field scattered by a small object 

embedded in a multilayered environment, under an arbitrary monochromatic illumination of 

pulsation ω. It relies on the resolution of the Lippmann-Schwinger equation: 

       
 ∫         ω   ̿̿ ̿            

 

 

where V is the NP’s volume,    the complex incident electric field,   the complex total electric 

field, and        is the wavevector of the light in the vacuum. The tensor         ω  is the 

Green's function of the homogeneous water environment, which is analytical for every couple 

       in the whole space. Moreover, the tensor   ̿̿ ̿    is defined by: 

  ̿̿ ̿      ̿      

where    is the dielectric constant of water, and   ̿   is the gold dielectric constant, tensorial if 

the particle is polycrystalline, as explained earlier. 

The first step of the simulation is the discretization of the Au NP in small polarizable cells, 

which allows accessing the NP internal field in every discretization point by numerically solving 

the Lippmann-Schwinger equation. The second step is the computation of the electric field 

scattered at infinity in the plane perpendicular to the incidence plane of the incident plane wave, 

through: 

     
 ∫           ω   ̿̿ ̿            
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where       are the detection directions and           ω  is the asymptotic Green’s function. 

Then, the polarized    
   

 and depolarized    
   

 intensities in the       direction are: 

   
    |        

  

‖  ‖
|
 

    
    |       |     

   
 

Finally, the scattered intensities are numerically averaged on the incident field orientation in 

order to obtain                   . 

 

 

S7. Theoretical model for the AuNPs polycrystallinity 

A basic phenomenological model for the gold polycrystallinity has been implemented in the 

theoretical calculations. In this very simple approach, the polycrystalline particle is described as 

a spheroidal particle cut into several parallel slices of equal thickness l, along the direction of one 

of the principal axis, as shown in Fig. S3. When the particle is cut in 2, 3, 4, …, n parts (n being 

called in the following the polycrystallinity order), l takes the values 2R/2, 2R/3, 2R/4, … , 2R/n. 

Each interface between two slices behaves as a barrier that increases the collisions rate of 

electrons moving normally to it, due to the shortening of the electrons mean free path in that 

direction. For electrons moving parallel to the cut planes, the absorption rate can as well be 

increased due to a shortening of the mean-free path by the NP outer surface, when its diameter 

becomes smaller than the bulk free electron mean free path. This effect can be taken into account 

in the gold dielectric constant by increasing the absorption rate of the free-electrons contribution 

to      , the dielectric constant of the bulk gold. Such corrections are usually applied to describe 
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the dielectric constant of gold NP of very small diameter, typically 20 nm and below.
4
 In this 

model, the dielectric constant reads: 

                         
     

where        is the bulk contribution of the free electrons: 

         
  

 

       
 

and    
     is the corrected contribution of the free electrons: 

   
       

  
 

      ̃ 
         with         ̃    

 

 
 

                                                                

Figure S3. Schematic representation of the polycrystalline gold nanoparticle, cut into four slices 

of thickness l along the z-direction.  

The bulk absorption rate   is increased by a factor inversely proportional to the length scale L 

(slice thickness and/or particle dimensions). More precisely, in the direction perpendicular to the 

cut, L=l, whereas along the two parallel directions, L=2R. 
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S8. Depolarization ratio of grafted AuNPs with an analytical model in the quasi-static 

approximation 

In the quasi-static approximation, where the wavelength of the incident plane wave is large 

compared to the nanoparticle dimensions, the retardation effects of the wave inside the particle 

can be neglected. It can be shown that the polarization inside a spheroid is then homogeneous 

and proportional to the incident electric field through: 

  
 ̄̄   

 
   

where the tensorial polarizability  ̄̄    is diagonal inside the principal-axes frame of the 

spheroid: 

 ̄̄    [

    
    

    

] 

Each diagonal term can be written as: 

      
     

        
                     (1) 

where              and    is the depolarization factor, which depends on the shape of the 

particle. Notice the dependency of the gold dielectric constant       on the direction        , 

necessary to describe the NP’s polycrystallinity. 

We will consider spheroids for which the symmetry axis is the z-axis. If b is the length of the 

semi-major axis and a the length of the semi-minor axis, the    factors are given Table S2.
5
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Table S2. Depolarization factors of a spheroid of semi-major axis length b and two identical 

semi-minor axis lengths a. 

          (       )     (      ) 

  √       √     

       

   
(ln (

   

   
)    )   

    

  
(
 

 
 atan      )        

     
√    

 
 

 

whereas               . 

The expression (1) can be generalized to a core-shell spheroid. With unchanged notations for 

the gold spheroidal core and considering the external shape of the shell (dielectric constant   ) 

with the same symmetry axis z, semi-major and semi-minor axis lengths respectively  ’ and  ’, 

the polarizability components are:
5
 

      

                 
              

          
                              

 

with: 

  
   

     
 

and: 

             

The depolarization factors    and   
  have the same expression as in Table S2. 
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Finally, after averaging the AuNP orientation, the depolarization ratio                    

is:
6
  

       
|         |

 
  |     |

 

 |        |
 
 |         |

  

As an illustration, figure S4a shows the evolution of the maximum depolarization ratio   

(occurring for a wavelength of about 532 nm) of a coreshell nanoparticle with spherical gold 

core and spheroidal shell with different refractive indexes ngraft. The value a'+b' = 25 nm is kept 

constant while b' is varied from 0nm to 25 nm. The polycrystallinity order is fixed to n=2, the cut 

plane being perpendicular to the NP revolution axis. The depolarization ratio is minimal for a 

spherical shell. Figure S4b shows the ratio                        as a function of b', for 

different values of the shell refractive indexes. In order to obtain     , the NP must be oblate, 

with a minimum value for b' decreasing with ngraft. 

 

Figure S4. a) Depolarization ratio for spherical gold cores as a function of the coating 

thickness and anisotropy along the particle long axis; b) ratio =(532 nm)/(632 nm). Black: 

ngraft=1.40, red: ngraft=1.46 (PEG), green: ngraft=1.50 (citrate), blue: ngraft=1.60 (DNA).  
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Table S3. Dimensions of the soft shell around the gold core for capturing the experimental data 

for    
 and   . 

 p a [nm] b [nm]  

Au-citrate 1.3 22.01 28.6 2.95 

Au-PEG16 1.2 25.7 30.8 2.35 

Au-PEG45 1.2 29.5 35.4 1.85 

Au-PEG107 1.2 34.7 41.6 1.33 

Au- PEG107-COOH 1.2 34.9 41.9 1.55 

Au-DNAT10 1.1 31.0 34.1 1.95 

Au-DNAT40 1.1 35.0 38.5 1.55 

 

 

S9. Perrin’s equations
7
 

   
  

   

          
 

   
       

              
 

         
 

√    
  [  √    ] 
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Fig. S5. The proportionality factor (black)=Vh/V0 (Vh and V0 denote the hydrodynamic and the 

geometrical volume) vs. 1/a
3
 for different grafts;  approaches 1 at large a, and therefore 

Vh = V0. 
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