Supporting Information ## An Investigation into the Hydrogen Storage Characteristics of Ca(BH₄)₂:LiNH₂ and Ca(BH₄)₂:NaNH₂: Evidence of Intramolecular Destabilization Natchapol Poonyayant,^{1,2} Vitalie Stavila,^{2,*} Eric H. Majzoub,³ Leonard E. Klebanoff,² Richard Behrens,² Natee Angboonpong ^{1,2} Mutlu Ulutagay-Kartin,² Pasit Pakawatpanurut,¹ Ethan Hecht,² Joe S. Breit⁴ ^{*}Corresponding author: : Tel. (925) 294-3059; E-mail: vnstavi@sandia.gov Figure S1. Schematic representation of the STMBMS apparatus. ¹ Department of Chemistry, Center for Alternative Energy, and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand ² Sandia National Laboratories, Livermore, CA 94551 ³Center for Nanoscience, Departments of Physics and Astronomy, and Department of Chemistry and Biochemistry, University of Missouri, St. Louis ⁴System Concept Center, Boeing Commercial Airplanes, Everett, WA 98203 **Figure S2.** XRD patterns of $Ca(BH_4)_2 + MNH_2$ systems, where M = Li, Na along with their starting materials and possible metathesis products. **Figure S3.** XRD patterns of as synthesized LiCa(BH_4)₂(NH_2), rehydrogenated LiCa(BH_4)₂(NH_2) (under 106 bar H_2 pressure at 230 °C) in comparison with the calculated patterns of Ca H_2 and LiH. The diffraction peaks corresponding to an unidentified phase (at 19.4°, 35.7° and 39.2°) are marked with asterisks. **Figure S4:** STMBMS data examining the initial release of hydrogen (top) and ammonia (bottom) from $LiCa(BH_4)_2(NH_2)$. Both hydrogen and ammonia release associated with $LiCa(BH_4)_2(NH_2)$ are reported as the dotted difference curve, identifying gas release not associated with THF emission.