Supplementary Information

On the visibility of Al surface sites of γ-alumina: a combined computational and experimental point of view

Raphael Wischert^{*a*,†}, Pierre Florian^{*b*}, Christophe Copéret^{*a*},

Dominique Massiot^b and Philippe Sautet^{c,*}

a) Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8037 Zürich, Switzerland.

b) CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans, France.

c) Université de Lyon, CNRS, Institut de Chimie de Lyon, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon Cedex 07, France.

[†]present address: Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS – Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China. *NMR experiments.* Experiments were performed on a Bruker Avance III wide bore 850 (20.0 T) spectrometer operating at a ²⁷Al Larmor frequency of 221.5 MHz. The samples were packed in a 2.5 mm zirconia rotor inside an argon-filled glove box and then spun at 30 kHz using pure nitrogen gas. The single pulse experiments were acquired typically with a radio-frequency field v_{rf} (= $\omega_{rf}/2\pi$) of 50 kHz and a pulse length of 0.5 µs (i.e. less than $\pi/6\omega_{rf}(I + 1/2)$ to ensure quantitativity.¹ Large spectral widths were used to avoid folding of the spinning sideband's manifold followed by a manual baseline deconvolution, and 500 scans were accumulated. {¹H}²⁷Al Variable Amplitude Cross Polarizations experiments were performed at a spinning speed of 30 kHz using ²⁷Al and ¹H radio-frequency field strengths of 15 kHz (leading to an approx. 33kHz nutation frequency of the central transition) and 60 kHz respectively and a linear ramp on the ¹H channel (80% to 120% of the Hartmann-Hahn condition). A contact time of 1.5ms and a recycle delay of 1.3 s were used, 54000 (resp. 250000) scans being accumulated for the sample heat-treated at 300°C (resp. 500°C).

Simulations were performed using the Gaussian Isotropic Model^{2,3} (Czjzek, d=5) implemented in the DMFit program⁴ allowing to retrieve the relative populations, mean isotropic chemical shift (δ_{iso}), width of the Gaussian distribution of δ_{iso} (Δ_{CS}) and the mean quadrupolar coupling constant (C_Q). The simulation derived from the DFT calculations were performed using a model taking into account second-order quadrupolar broadening with an additional Gaussian distribution of isotropic chemical shift ($\Delta\delta_{iso} = 5$ ppm) and quadrupolar coupling constant ($\Delta C_Q = 1$ MHz). All lines were constraint to have the same area. Isotropic chemical shielding σ_{iso} were converted to isotropic chemical shift δ_{iso} using previously published correlations.⁵

Calculations. Geometry optimization was performed in periodic boundary using the Perdew-Wang (PW91) functional,⁶ as implemented in the VASP code.^{7,8} The Projected Augmented Wave (PAW)⁹ method was adopted for the description of atomic cores. A tight convergence of the plane-wave expansion was obtained with a cut-off of 400 eV, in accordance with the selected PAW atomic radii. Structural optimization was stopped when forces on individual atoms were below 0.01 eV/Å. On surface slabs the Brillouin zone integration was performed with a 3 x 3 x 1 k-point grid generated by the Monkhorst-Pack algorithm,⁷ while a 5 x 5 x 5 k-point grid was used for the bulk of γ -Al₂O₃. For the optimization of the bulk the "Accurate" setting of VASP was chosen and the cut-off energy and convergence criterium on the forces were increased to 520 eV and 0.001 eV/Å

boehmite (γ -AlOOH).¹⁰ This model adopts the P2₁/m space group. Our reoptimized cell parameters are a = 5.577 Å, b = 8.399 Å, c = 8.069, α = 90.528°, V = 377.95 Å³ and thus very close to the originally published values. The unit cell contains 16 Al and 32 O atoms of which 12 Al (75%) are in octahedral and 4 (25%) are in tetrahedral coordination.

NMR parameters were calculated with the CASTEP code on structures optimized with VASP. The PBE functional^{11,12} and on-the-fly generated ultrasoft pseudopotentials were used. For the cut-off energy a value of 489 eV was used, corresponding to the "Fine" setting. NMR parameters are known to be very structure-sensitive, therefore we checked the accuracy of the calculated parameters on a bulk γ -Al₂O₃ unit cell expanded or compressed by 2 vol%, the typical accuracy of DFT-GGA calculations. Compared to the optimized cell, the maximal deviations of $\delta,$ C_q and η_q were 2.1 ppm, 0.6 Mhz and 0.04, respectively, and thus negligible. The NMR calculation were carried out with the PBE functional and ultrasoft on-the-fly generated pseudopotentials on structures optimized with PW91 and PAW potentials. To check if this would introduce any error, we also optimized the bulk in CASTEP (5x5x5 Monkhorst-Pack grid, 489 eV, finite basis correction, fixed number of plane waves), yielding a very similar structure (a = 5.568 Å, b = 8.380 Å, c = 8.042, α = 90.473°, V = 375.26 Å³) and NMR parameters almost identical to those found with the VASP-optimized bulk. Experimentally Al(NO₃)₃ in nitric acid was used as reference but from a computational point of view the description of this system is not trivial. Therefore α -Al₂O₃ (corundum) was used as reference. The structure was optimized in VASP using a 9x9x9 Monkhorst Pack Γ -centered grid. The calculated unit cell volume was 255.3 Å^3 which is in excellent agreement with the experimental value (253.5 Å³).¹³ NMR was calculated in CASTEP using the same k-point grid, yielding an absolute magnetic shielding value for Al, $\sigma_1(\alpha - Al_2O_3)$, of 531.38 ppm. The experimental isotropic chemical shift of α -Al₂O₃ with respect to Al(NO₃)₃ is 10.7 ppm, therefore all chemical shifts are referenced as follows:

$$\delta = \sigma_{(\alpha} - Al_2O_3) - \sigma_{iso} + 10.7 \text{ ppm}$$

 σ_{iso} being the calculated absolute magnetic shieldings of the nucleus in question. The Electric Field Gradient (EFG) tensor is described by the quadrupolar coupling constant, $C_Q = eQV_{zz}/h$ and the assymetry parameter $\eta_q = (V_{xx} - V_{yy})/V_{zz}$. Note, that while C_Q can have positive or negative values this information is only accessible by calculation. Experiments only provide the absolute value. The calculated C_Q value for the octahedral Al in α -Al₂O₃ is 2.43 MHz, which is in excellent agreement with the experimental value of 2.38 MHz.¹⁴ For the quadrupole moment of ²⁷Al, we used the default value of 0.1466 barn set in CASTEP and recommended by Pyykkö.¹⁵

- (1) Lippmaa, E.; Samoson, A.; Magi, M. J. Am. Chem. Soc. 1986, 108, 1730.
- (2) Caër, G. L.; Brand, R. A. J. Phys.: Condens. Matter 1998, 10, 10715.
- (3) d'Espinose de Lacaillerie, J.-B.; Fretigny, C.; Massiot, D. *J. Magn. Reson.* **2008**, *192*, 244.
- (4) Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.;
- Bujoli, B.; Gan, Z.; Hoatson, G. Magn. Reson. Chem. 2002, 40, 70.
- (5) Cadars, S.; Guégan, R.; Garaga, M. N.; Bourrat, X.; Le Forestier, L.; Fayon, F.;
- Huynh, T. V.; Allier, T.; Nour, Z.; Massiot, D. Chem. Mater. 2012, 24, 4376.
- (6) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
- (7) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.
- (8) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
- (9) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
- (10) Krokidis, X.; Raybaud, P.; Gobichon, A. E.; Rebours, B.; Euzen, P.; Toulhoat, H. J.
- Phys. Chem. B 2001, 105, 5121.
- (11) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- (12) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.
- (13) <u>http://www.mindat.org/min-1136.html</u>
- (14) Jakobsen, H. J.; Skibsted, J.; Bildsøe, H.; Nielsen, N. C. Journal of Magnetic

Resonance (1969) 1989, 85, 173.

(15) Pyykkö, P. Mol. Phys. 2008, 106, 1965.

Figure S1. SEM micrographs of the γ -Al₂O₃ used in this study. The length scale in the bottom left corner corresponds in both pictures to 1 μ m.

Figure S2. Tilted view of the structures given in figure 1: a) fully dehydrated (100), b) fully dehydrated (110), c) hydrated (110), and d) hydrated (111) terminations of γ -Al₂O₃ showing different types of surface Al atoms. X(μ -OH)_w(OH)_y represents an Al atom with a total coordination number of X, including w bridging μ -OH and y terminal OH-groups. Only the top two layers are shown. Al: yellow, O: red, H: white balls.

Figure S3. NMR parameters (δ_{iso} , C_Q in brackets) for the (partially) hydrated (110) and (111) terminations of γ -Al₂O. Only the top two layers are shown. A dashed line indicates the unit cell. Al: yellow, O: red, H: white balls.

Figure S4. Tilted top view of the (100) termination of γ -Al₂O₃. Al: grey, O: red. Distances are indicated in Å.

Figure S5. "Direct" quantitative one-pulse experiment on γ -Al₂O3. heat treated at 300°C along with its simulation (red dashed line) and individual components (orange, purple and green) using the GIM model.

Figure S6. Simulations, using the GIM model, of 27 Al NMR lines shapes as a function of increasing C_Q and for two different magnetic fields. The areas have been normalized and a spinning speed of 30 kHz has been assumed.