Supporting Information

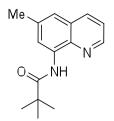
Iron-Catalyzed, Chelation-Induced Remote C–H Allylation of Quinolines via an 8-Amido Assistance

Xuefeng Cong and Xiaoming Zeng*

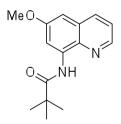
[†]Center for Organic Chemistry, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China

Table of Contents

1. Materials and MethodsS2
2. Preparation of Substrates
3. Investigation of the Key Reaction Parameters for the C5-Allylation of Quinolines
4. General Procedure for Iron-Catalyzed C5-Allylation of 8-Aminoquinolines with Allyl
Alcohols
5. Preliminary Mechanistic ExperimentsS17
6. Gram-Scale C-H Allylation of 1b and Synthetic ApplicationS18
7. Investigation of the Key Reaction Parameters for the C4-Allylation of QuinolinesS20
8. Iron-Catalyzed C4-Selective Allylation of 2-Methyl-N-(quinolin-8-yl)benzamide with
Cinnamyl Diethyl Phosphate or Cinnamyl Methyl EtherS21
9. X-ray Crystallographic Data of Compound 3g and Compound 4aS23
10. ¹ H, ¹³ C and ¹⁹ F NMR Spectra

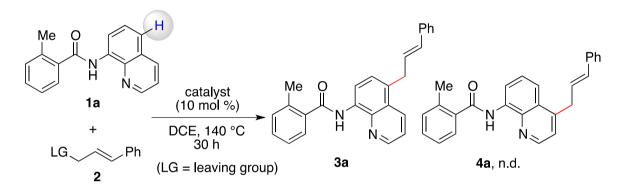

1. Materials and Methods

General. All reactions dealing with air- or moisture-sensitive compounds were carried out in a flame-dried, sealed Schlenk reaction tube under an atmosphere of nitrogen. Analytical thin-layer chromatography was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator (Merck). Flash silica gel column chromatography was performed on silica gel 60N (spherical and neutral, 140–325 mesh). NMR spectra were measured on a Bruker AV-400 spectrometer and reported in parts per million. ¹H NMR spectra were recorded at 400 MHz in CDCl₃ were referenced internally to tetramethylsilane as a standard, and ¹³C NMR spectra were recorded at 100 MHz and referenced to the solvent resonance. The data is presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and/or multiplet resonances, br = broad), coupling constant in Hertz (Hz), and integration. High resolution (HR MS) mass spectra were recorded by ESI-TOF. Melting points were determined with a Hanon MP-300. Infrared spectra were collected on a Thermo Fisher Nicolet 6700 FT-IR spectrometer using ATR (Attenuated Total Reflectance) method. Absorption maxima (v max) are reported in wave numbers (cm⁻¹)


Materials. Unless otherwise noted, materials were purchased from Tokyo Chemical Industry Co., Aldrich Inc., and other commercial suppliers and used as received. Anhydrous iron(III) chloride (98% purity) was purchased from Acros Inc. Fe(acac)₃ (\geq 99.9% purity), Fe(acac)₂ (99.95% purity) and anhydrous FeCl₂ (98% purity) were purchased from Aldrich In. Solvents were dried over CaH₂ (for DCE and CH₃CN) or sodium (for toluene and dioxane) by refluxing for overnight and freshly distilled prior to use.

2. Preparation of Substrates

8-Aminoquinoline-bearing carboxamides were prepared from the reaction of 8-aminoquinolines with carboxylic acids or acyl chlorides according to the literatures.¹ N,2-Dimethyl-N-(quinolin-8-yl)-benzamide was synthesized by methylation of **1a** according to the literature.² Cinnamyl diethyl phosphate,³ *tert*-butyl cinnamyl carbonate,⁴ cinnamyl methyl ether,⁵ and Z-allyl alcohol⁴ were prepared according to the corresponding literatures.


N-(6-Methylquinolin-8-yl)pivalamide: 6-Methylquinolin-8-amine (474.0 mg, 3.0 mmol) and triethylamine (0.63 mL, 4.5 mmol) were dissolved in anhydrous CH₂Cl₂ (10.0 mL) in a 50 mL round-bottom flask followed by dropwise addition of pivaloyl chloride (0.56 mL, 4.5 mmol) through syringe at 0 °C. The reaction mixture was stirred overnight at room temperature. After completion, the reaction was diluted with CH₂Cl₂ (10 mL), washed by NaHCO₃ (saturated aqueous solution, 10 mL), brine (10 mL), and dried over Na₂SO₄. The organic solvent was removed by evaporation. Purification by column chromatography in hexanes/EtOAc (20/1) afforded the title compound (661 mg, 91%) as a white solid. Melting point: 69–71 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.24 (brs, 1H), 8.73 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.70 (d, *J* = 1.6 Hz, 1H), 8.04 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.42–7.39 (m, 1H), 7.26 (d, *J* = 1.2 Hz, 1H), 2.52 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.2, 147.4, 137.71, 137.66, 135.7, 134.3, 128.1, 121.7, 120.3, 118.4, 40.5, 27.9, 22.5. IR (neat): 3365, 2961, 1679, 1532, 1479, 1426, 1381, 1333, 1241, 1179, 922, 853. HRMS (ESI⁺): calcd for C₁₅H₁₉N₂O [M+H]⁺ 243.1497, found 243.1491.

N-(6-Methoxyquinolin-8-yl)pivalamide: 6-Methoxyquinolin-8-amine (522.0 mg, 3.0 mmol) and triethylamine (0.63 mL, 4.5 mmol) were dissolved in anhydrous CH_2Cl_2 (10.0 mL) in a 50 mL round-bottom flask followed by dropwise addition of pivaloyl chloride (0.56 mL, 4.5 mmol) through syringe at 0 °C. The reaction mixture was stirred overnight at room temperature. After completion, the reaction was diluted with CH_2Cl_2 (10 mL), washed by NaHCO₃ (saturated aqueous solution, 10 mL), brine (10 mL), and dried over Na₂SO₄. The

organic solvent was removed by evaporation. Purification by column chromatography in hexanes/EtOAc (20/1) afforded the title compound (697 mg, 90%) as a slight yellow solid. Melting point: 83–85 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.24 (brs, 1H), 8.63 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.55 (d, *J* = 2.8 Hz, 1H), 8.00 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.40–7.37 (m, 1H), 6.78 (d, *J* = 3.4 Hz, 1H), 3.92 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.4, 158.6, 145.8, 135.7, 135.4, 135.1, 129.0, 122.1, 108.5, 99.9, 55.7, 40.5, 27.8. IR (neat): 3362, 2961, 1682, 1627, 1595, 1530, 1453, 1422, 1388, 1334, 1210, 1156, 1048, 922, 879, 831. HRMS (ESI⁺): calcd for C₁₅H₁₉N₂O₂ [M+H]⁺ 259.1447, found 259.1443.

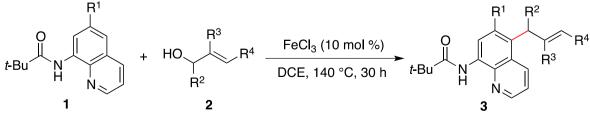
3. Investigation of the Key Reaction Parameters for the C5-Allylation of Quinolines

Table S1. Investigation of the effect of catalysts and solvents for the synthesis of (E)-N-(5-cinnamylquinolin-8-yl)-2-methylbenzamide $(3a)^{a,b}$

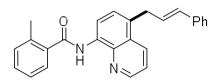
Entry	LG	Catalyst	Solvent	Yield (3a)	Recovery (1a) ^c
1^d	OH (2a)	[Ru(p-cymene)Cl ₂] ₂ /AgSbF ₆	DCE	53%	35%
2	ОН	$AgSbF_6$	DCE	50%	36%
3	ОН	$AgSbF_6$	Dioxane	42%	45%
4	ОН	$AgSbF_6$	Toluene	18%	52%
5	ОН	AgOTf	DCE	42%	46%
6	ОН	Cu(OTf) ₂	DCE	53%	40%
7	ОН	Ni(OTf) ₂	DCE	40%	47%
8	ОН	Fe(OTf) ₂	DCE	40%	49%
9	ОН	FeCl ₃	DCE	62%	28%
10	ОН	FeCl ₃	CH ₃ CN	30%	62%

11	OH	FeCl ₂	DCE	trace	91%
12	ОН	Fe(acac) ₃	DCE	trace	90%
13	OMe	FeCl ₃	DCE	57%	30%
14	OAc	FeCl ₃	DCE	65%	26%
15	OCO ₂ <i>t</i> -Bu	$FeCl_3$	DCE	65%	28%
16	OPO(OEt) ₂	FeCl ₃	DCE	40%	38%

^{*a*} Reaction conditions: **1a** (0.2 mmol), (*E*)-Cinnamic alcohol **2** (0.6 mmol), Catalyst (10 mol %), Solvent (1.0 mL), 140 °C, 30 h. ^{*b*} Isolated yield. ^{*c*} The C4-allylated product **4a** was not detected by ¹H NMR and GC analyses. ^{*d*} [Ru(*p*-cymene)Cl₂]₂ (2.5 mol %) and AgSbF₆ (10 mol %) were used.

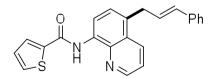

Table S2. Iron-catalyzed C5-allylation of quinolines using simple allyl oxygen electrophiles^{a,b}

O N H N Ib	+ LG 2	FeCl ₃ (10 mol %) ► DCE, 140 °C, 30 h	O N H N Sq
Entry	LG	Yield (3q)	Recovery (1b)
1	OPh	trace	92%
2	OBoc	trace	92%
3	OAc	trace	90%
4	OPO(OEt) ₂	trace	88%


^a Reaction conditions: 1b (0.2 mmol), 2 (0.6 mmol), FeCl₃ (10 mol %), DCE (1.0 mL), 140 °C, 30 h. ^b Isolated yield.

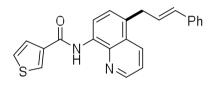
4. General Procedure for Iron-Catalyzed C5-Allylation of 8-Aminoquinolines with Allyl Alcohols

General Procedure

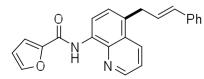


In a dried Schlenk flask were placed 8-Aminoquinolines 1 (0.2 mmol), allyl alcohols 2 (0.6 mmol), FeCl₃ (3.2 mg, 0.02 mmol). Then 1.0 mL of DCE was added with a syringe under nitrogen atmosphere. The resulting mixture was heated at 140 °C for 30 h. After cooling to room temperature, the reaction mixture was diluted with 5.0 mL of CH_2Cl_2 and filtered through a plug of celite, followed by washing with 10–20 mL of CH_2Cl_2 . The combined residue was concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography on silica gel to provide the allylation product **3**.

(E)- 2-Methyl-N-(5-cinnamylquinolin-8-yl)benzamide (Table 2, 3a)

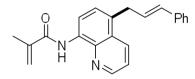

The general procedure was applied to 2-methyl-*N*-(quinolin-8-yl)benzamide (52.5 mg, 0.2 mmol), (*E*)-cinnamic alcohol (80.4 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (47 mg, 62% yield). Melting point: 173–175 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.24 (brs, 1H), 8.88 (d, *J* = 7.6 Hz, 1H), 8.77 (dd, *J* = 4.0, 1.2 Hz, 1H), 8.40 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.52–7.45 (m, 2H), 7.42–7.38 (m, 1H), 7.34–7.27 (m, 6H), 7.21–7.18 (m, 1H), 6.43 (dt, *J* = 16.0, 4.8 Hz, 1H), 6.38 (d, *J* = 16.0 Hz, 1H), 3.95 (d, *J* = 5.2 Hz, 2H), 2.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.3, 148.0, 139.2, 137.3, 136.9, 136.8, 133.8, 133.2, 131.7, 131.5, 130.6, 130.4, 128.70, 128.67, 127.8, 127.4, 127.0, 126.2, 126.1, 121.6, 116.5, 35.7, 20.4. IR (neat): 3349, 3025, 2924, 1673, 1599, 1519, 1494, 1455, 1386, 1326, 1260, 1100, 898, 843. HRMS (ESI⁺): calcd for C₂₆H₂₃N₂O [M+H]⁺ 379.1810, found 379.1815.

(E)-N-(5-Cinnamylquinolin-8-yl)thiophene-2-carboxamide (Table 2, 3b)

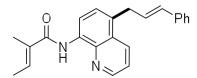

The general procedure was applied to *N*-(quinolin-8-yl)thiophene-2-carboxamide (50.8 mg, 0.2 mmol), (*E*)-cinnamic alcohol (80.4 mg, 0.6 mmol) at 140 °C for 30 h. The crude product

was purified by column chromatography on silica gel (EtOAc/PE = 1/20) to afford the title compound as a white solid (45 mg, 61% yield). Melting point: 151–153 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.63 (brs, 1H), 8.85 (d, *J* = 3.6 Hz, 1H), 8.78 (d, *J* = 7.6 Hz, 1H), 8.40 (d, *J* = 8.8 Hz, 1H), 7.83 (s, 1H), 7.57 (d, *J* = 4.8 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.32–7.25 (m, 4H), 7.21–7.19 (m, 2H), 6.49–6.38 (m, 2H), 3.94 (d, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 160.1, 148.0, 140.4, 139.1, 137.3, 133.4, 133.2, 131.7, 131.0, 130.5, 128.7, 128.6, 128.5, 128.0, 127.8, 127.4, 127.0, 126.2, 121.6, 116.5, 35.7. IR (neat): 3348, 3025, 2974, 2892, 1659, 1530, 1494, 1457, 1388, 1327, 1269, 1050, 966, 910, 850. HRMS (ESI⁺): calcd for C₂₃H₁₉N₂OS [M+H]⁺ 371.1218, found 371.1216.

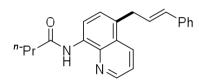
(E)-N-(5-Cinnamylquinolin-8-yl)thiophene-3-carboxamide (Table 2, 3c)


The general procedure was applied to *N*-(quinolin-8-yl)thiophene-3-carboxamide (50.8 mg, 0.2 mmol), (*E*)-cinnamic alcohol (80.4 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/20) to afford the title compound as a white solid (43 mg, 58% yield). Melting point: 157–159 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.57 (brs, 1H), 8.84–8.81 (m, 2H), 8.40 (d, *J* = 8.8 Hz, 1H), 8.15 (s, 1H), 7.68 (d, *J* = 4.8 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.44–7.43 (m, 2H), 7.32–7.25 (m, 4H), 7.17 (t, *J* = 6.8 Hz, 1H), 6.49–6.38 (m, 2H), 3.94 (d, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.1, 148.0, 139.2, 138.6, 137.3, 133.5, 133.2, 131.7, 130.4, 129.0, 128.7, 127.9, 127.4, 127.0, 126.8, 126.5, 126.2, 121.6, 116.4, 35.7. IR (neat): 3352, 3025, 2974, 2892, 1667, 1529, 1494, 1457, 1387, 1327, 1257, 1050, 967, 909, 851. HRMS (ESI⁺): calcd for C₂₃H₁₉N₂OS [M+H]⁺ 371.1218, found 371.1218.

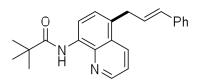
(E)-N-(5-Cinnamylquinolin-8-yl)furan-2-carboxamide (Table 2, 3d)


The general procedure was applied to N-(quinolin-8-yl)furan-2-carboxamide (47.6 mg, 0.2

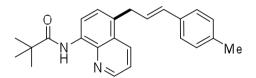
mmol), (*E*)-cinnamic alcohol (80.4 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/20) to afford the title compound as a white solid (36 mg, 51% yield). Melting point: 145–147 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.80 (brs, 1H), 8.88 (d, *J* = 2.8 Hz, 1H), 8.81 (d, *J* = 8.0 Hz, 1H), 8.40 (d, *J* = 8.8 Hz, 1H), 7.62 (s, 1H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.30–7.25 (m, 5H), 7.17 (t, *J* = 7.2 Hz, 1H), 6.58 (s, 1H), 6.49–6.38 (m, 2H), 3.94 (d, *J* = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 156.5, 148.6, 148.1, 144.6, 139.2, 137.3, 133.3, 133.1, 131.7, 130.6, 128.7, 128.6, 127.8, 127.4, 127.0, 126.2, 121.6, 116.6, 115.1, 112.6, 35.7. IR (neat): 3331, 3026, 2973, 1670, 1577, 1527, 1496, 1455, 1390, 1328, 1274, 1175, 1009, 967, 910, 842. HRMS (ESI⁺): calcd for C₂₃H₁₉N₂O₂ [M+H]⁺ 355.1447, found 355.1444.


(E)-N-(5-Cinnamylquinolin-8-yl)methacrylamide (Table 2, 3e)

The general procedure was applied to *N*-(quinolin-8-yl)methacrylamide (42.4 mg, 0.2 mmol), (*E*)-cinnamic alcohol (80.4 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (43 mg, 65% yield). Melting point: 155–157 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.39 (brs, 1H), 8.80 (d, *J* = 4.0 Hz, 1H), 8.76 (d, *J* = 8.0 Hz, 1H), 8.37 (d, *J* = 8.8 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.31–7.24 (m, 4H), 7.17 (t, *J* = 6.8 Hz, 1H), 6.47–6.36 (m, 2H), 6.04 (s, 1H), 5.54 (s, 1H), 3.91 (d, *J* = 5.2 Hz, 2H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 166.5, 147.9, 140.9, 139.3, 137.3, 133.5, 133.1, 131.6, 130.3, 128.7, 127.8, 127.4, 126.9, 126.2, 121.5, 120.7, 116.4, 35.7, 18.9. IR (neat): 3360, 3025, 2961, 1676, 1628, 1525, 1495, 1456, 1388, 1326, 1181, 966, 843. HRMS (ESI⁺): calcd for C₂₂H₂₁N₂O [M+H]⁺ 329.1654, found 329.1652.

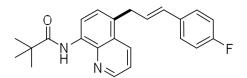

(E)-N-(5-Cinnamylquinolin-8-yl)-2-methylbut-2-enamide (Table 2, 3f)

The general procedure was applied to (*E*)-2-methyl-*N*-(quinolin-8-yl)but-2-enamide (45.2 mg, 0.2 mmol), (*E*)-cinnamic alcohol (80.4 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (43 mg, 63% yield). Melting point: 159–161 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.30 (brs, 1H), 8.80 (d, *J* = 3.2 Hz, 1H), 8.76 (d, *J* = 8.0 Hz, 1H), 8.36 (d, *J* = 8.4 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.31–7.24 (m, 4H), 7.16 (t, *J* = 7.6 Hz, 1H), 6.73 (q, *J* = 6.8 Hz, 1H), 6.47 –6.35 (m, 2H), 3.90 (d, *J* = 4.8 Hz, 2H), 2.07 (s, 3H), 1.87 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.6, 147.8, 139.3, 137.3, 133.8, 133.1, 133.0, 131.9, 131.6, 129.9, 128.7, 128.6, 127.8, 126.9, 126.2, 121.4, 116.3, 35.6, 14.4, 12.6. IR (neat): 3360, 3026, 2925, 1674, 1636, 1522, 1495, 1456, 1381, 1325, 1275, 966, 849. HRMS (ESI⁺): calcd for C₂₃H₂₃N₂O [M+H]⁺ 343.1810, found 343.1806.

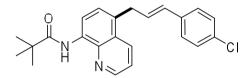

(E)-N-(5-Cinnamylquinolin-8-yl)butyramide (Table 2, 3g)

The general procedure was applied to *N*-(quinolin-8-yl)butyramide (42.8 mg, 0.2 mmol), (*E*)-cinnamic alcohol (80.4 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (44 mg, 67% yield). Melting point: 116–118 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.84 (brs, 1H), 8.80 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.73 (d, *J* = 8.0 Hz, 1H), 8.39 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.48–7.44 (m, 2H), 7.31–7.25 (m, 4H), 7.21–7.17 (m, 1H), 6.41 (dt, *J* = 16.0, 5.2 Hz, 1H), 6.36 (d, *J* = 16.0 Hz, 1H), 3.92 (d, *J* = 5.2 Hz, 2H), 2.53 (t, *J* = 7.6 Hz, 2H), 1.91–1.82 (m, 2H), 1.05 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 171.9, 147.8, 138.9, 137.3, 133.6, 133.2, 131.6, 130.0, 128.73, 128.66, 127.9, 127.4, 126.9, 126.2, 121.5, 116.4, 40.3, 35.7, 19.3, 14.0. IR (neat): 3355, 2962, 1685, 1598, 1520, 1494, 1457, 1388, 1324, 1266, 1187, 966, 844. HRMS (ESI⁺): calcd for C₂₂H₂₃N₂O [M+H]⁺ 331.1810, found 331.1804. Crystals suitable for X-ray diffraction study of **3g** were obtained by slow evaporation of a mixed solution of hexane and ethyl acetate.

(E)-N-(5-Cinnamylquinolin-8-yl)pivalamide (Table 2, 3h)

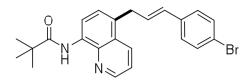

The general procedure was applied to *N*-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), (*E*)-cinnamic alcohol (80.4 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (50 mg, 72% yield). Melting point: 163–165 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.31 (brs, 1H), 8.81 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.73 (d, *J* = 8.0 Hz, 1H), 8.37 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.48–7.43 (m, 2H), 7.31–7.25 (m, 4H), 7.21–7.17 (m, 1H), 6.41 (dt, *J* = 16.0, 5.6 Hz, 1H), 6.35 (d, *J* = 16.0 Hz, 1H), 3.92 (d, *J* = 5.6 Hz, 2H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.3, 147.9, 139.4, 137.3, 133.8, 133.1, 131.5, 129.9, 128.8, 128.7, 127.8, 127.4, 126.9, 126.2, 121.4, 116.1, 40.5, 35.6, 27.9. IR (neat): 3366, 2965, 1667, 1522, 1496, 1455, 1386, 1323, 1273, 1182, 966, 851. HRMS (ESI⁺): calcd for C₂₃H₂₅N₂O [M+H]⁺ 345.1967, found 345.1961.

(E)-N-(5-(3-p-Tolylallyl)quinolin-8-yl)pivalamide (Table 3, 3i)

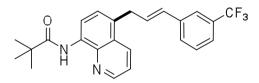

The general procedure was applied to *N*-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), (*E*)-3-*p*-tolylprop-2-en-1-ol (88.8 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (37 mg, 52% yield). Melting point: 151–153 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.31 (brs, 1H), 8.81 (d, *J* = 4.0 Hz, 1H), 8.72 (d, *J* = 7.6 Hz, 1H), 8.38 (d, *J* = 8.4, 1.6 Hz, 1H), 7.47–7.42 (m, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.42–6.31 (m, 2H), 3.90 (d, *J* = 4.8 Hz, 2H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.3, 147.9, 139.4, 137.2, 134.6, 133.7, 133.2, 131.4, 130.1, 129.4, 127.8, 127.7, 126.9, 126.1, 121.4, 116.1, 40.5, 35.7, 27.9, 21.3. IR (neat): 3370, 2958, 1679, 1524, 1495, 1384, 1325, 1181, 969, 929, 846. HRMS (ESI⁺): calcd for C₂₄H₂₇N₂O [M+H]⁺ 359.2123, found

359.2116.

(E)-N-(5-(3-(4-Fluorophenyl)allyl)quinolin-8-yl)pivalamide (Table 3, 3j)

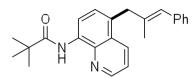

The general procedure was applied to *N*-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), (*E*)-3-(4-fluorophenyl)prop-2-en-1-ol (91.2 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a slight yellow solid (65 mg, 90% yield). Melting point: 145–147 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.31 (brs, 1H), 8.82 (d, *J* = 4.0 Hz, 1H), 8.73 (d, *J* = 7.6 Hz, 1H), 8.36 (d, *J* = 8.4 Hz, 1H), 7.49–7.42 (m, 2H), 7.27–7.24 (m, 2H), 6.98–6.93 (m, 2H), 6.40–6.29 (m, 2H), 3.90 (d, *J* = 4.8 Hz, 2H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.4, 163.4, 161.0, 148.0, 139.4, 133.8, 133.5 (d, *J* = 3.0 Hz), 133.1, 130.4, 129.8, 128.5 (d, *J* = 2.0 Hz), 127.9, 127.7, 127.6, 126.9, 121.5, 116.1, 115.6, 115.4, 40.5, 35.5, 27.9; ¹⁹F NMR (377 MHz, CDCl₃): δ = –115.51. IR (neat): 3364, 2963, 1677, 1601, 1524, 1508, 1385, 1325, 1228, 1157, 967, 910, 841. HRMS (ESI⁺): calcd for C₂₃H₂₄FN₂O [M+H]⁺ 363.1873, found 363.1866.

(E)-N-(5-(3-(4-Chlorophenyl)allyl)quinolin-8-yl)pivalamide (Table 3, 3k)

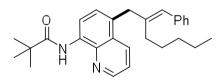

The general procedure was applied to *N*-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), (*E*)-3-(4-chlorophenyl)prop-2-en-1-ol (100.8 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (62 mg, 82% yield). Melting point: 174–176 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.31 (brs, 1H), 8.82 (d, *J* = 4.0 Hz, 1H), 8.73 (d, *J* = 8.0 Hz, 1H), 8.35 (d, *J* = 8.4 Hz, 1H), 7.49–7.45 (m, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.24–7.20 (m, 4H), 6.38 (dt, *J* = 15.6, 6.0 Hz, 1H), 6.28 (d, *J* = 16.0 Hz, 1H), 3.90 (d, *J* = 6.0 Hz, 2H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.4, 148.0, 139.4, 135.8, 133.9, 133.0, 132.9, 130.3,

129.6, 129.5, 128.8, 127.9, 127.4, 126.8, 121.5, 116.1, 40.5, 35.6, 27.9. IR (neat): 3373, 2962, 1672, 1523, 1491, 1385, 1324, 1181, 1092, 1012, 968, 929, 840. HRMS (ESI⁺): calcd for $C_{23}H_{24}CIN_2O [M+H]^+$ 379.1577, found 379.1569.

(E)-N-(5-(3-(4-Bromophenyl)allyl)quinolin-8-yl)pivalamide (Table 3, 3l)

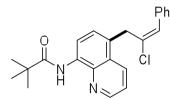

The general procedure was applied to *N*-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), (*E*)-3-(4-bromophenyl)prop-2-en-1-ol (127.2 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (66 mg, 78% yield). Melting point: 171–173 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.30 (brs, 1H), 8.82 (d, *J* = 2.4 Hz, 1H), 8.73 (d, *J* = 7.6 Hz, 1H), 8.34 (d, *J* = 8.4 Hz, 1H), 7.48–7.37 (m, 4H), 7.14 (d, *J* = 7.6 Hz, 2H), 6.46–6.40 (m, 1H), 6.26 (d, *J* = 16.0 Hz, 1H), 3.89 (d, *J* = 6.0 Hz, 2H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.3, 148.0, 139.4, 136.3, 133.9, 133.0, 131.7, 130.4, 129.7, 129.5, 127.9, 127.8, 126.9, 121.5, 121.1, 116.1, 40.5, 35.6, 27.9. IR (neat): 3372, 2964, 1670, 1522, 1486, 1399, 1385, 1324, 1180, 1071, 1008, 968, 911, 839. HRMS (ESI⁺): calcd for C₂₃H₂₄BrN₂O [M+H]⁺ 423.1072, found 423.1076.

(E)-N-(5-(3-(3-(Trifluoromethyl)phenyl)allyl)quinolin-8-yl)pivalamide (Table 3, 3m)

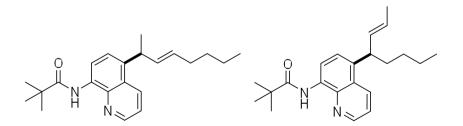

The general procedure was applied to *N*-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), (*E*)-3-(3-(trifluoromethyl)phenyl)prop-2-en-1-ol (121.2 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (58 mg, 70% yield). Melting point: 141–143 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.32 (brs, 1H), 8.83 (d, *J* = 4.0 Hz, 1H), 8.75 (d, *J* = 8.0 Hz, 1H), 8.35 (d, *J* = 8.4, 1.6 Hz, 1H), 7.53 (s, 1H), 7.50–7.43 (m, 4H), 7.35 (t, *J* = 7.6 Hz, 1H), 6.50 (dt, *J* = 15.6, 6.0 Hz, 1H), 6.34 (d, *J* = 16.0 Hz, 1H), 3.94 (d, *J* = 6.0 Hz, 2H), 1.44 (s,

9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.4, 148.0, 139.4, 138.1, 134.0, 133.0, 131.2, 131.1, 130.9, 130.2, 129.33, 129.27, 129.1, 129.0, 128.0, 126.8, 125.6, 123.8 (q, *J* = 4.0 Hz), 122.8 (q, *J* = 3.0 Hz), 121.5, 116.1, 40.5, 35.5, 27.9; ¹⁹F NMR (377 MHz, CDCl₃): δ = -62.78. IR (neat): 3363, 2965, 1678, 1525, 1496, 1385, 1328, 1165, 1126, 1072, 966, 911, 842. HRMS (ESI⁺): calcd for C₂₄H₂₄F₃N₂O [M+H]⁺ 413.1841, found 413.1834.

(E)-N-(5-(2-Methyl-3-phenylallyl)quinolin-8-yl)pivalamide (Table 3, 3n)

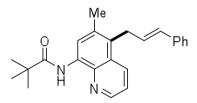

The general procedure was applied to *N*-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), (*E*)-2-methyl-3-phenylprop-2-en-1-ol (88.8 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (57 mg, 80% yield). Melting point: 70–72 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.32 (brs, 1H), 8.80 (d, *J* = 4.0 Hz, 1H), 8.74 (d, *J* = 8.0 Hz, 1H), 8.41 (d, *J* = 8.8 Hz, 1H), 7.46–7.43 (m, 2H), 7.30–7.25 (m, 2H), 7.18–7.16 (m, 3H), 6.23 (s, 1H), 3.87 (s, 2H), 1.86 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.3, 147.9, 142.6, 139.3, 138.2, 137.8, 133.8, 133.3, 129.4, 128.9, 128.8, 128.2, 127.4, 127.1, 126.3, 132.5, 1182, 1050, 929, 842. HRMS (ESI⁺): calcd for C₂₄H₂₇N₂O [M+H]⁺ 359.2123, found 359.2115.

(E)-N-(5-(2-Benzylideneheptyl)quinolin-8-yl)pivalamide (Table 3, 30)

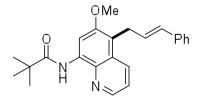

The general procedure was applied to *N*-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), (*E*)-2-benzylideneheptan-1-ol (122.4 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a colorless oil (63 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃): δ = 10.32 (brs, 1H), 8.80 (d, *J* = 4.0 Hz, 1H), 8.74 (d, *J* = 8.0 Hz, 1H), 8.37 (d, *J* = 8.4 Hz, 1H), 7.46–7.43 (m,

2H), 7.29–7.25 (m, 2H), 7.14 (t, J = 7.2 Hz, 1H), 7.10 (d, J = 8.0 Hz, 2H), 6.06 (s, 1H), 3.87 (s, 2H), 2.22 (t, J = 8.0 Hz, 2H), 1.58 (m. 2H), 1.44 (s, 9H), 1.29–1.27 (m. 4H), 0.86 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 177.3$, 147.9, 142.6, 139.4, 138.2, 133.7, 133.4, 129.6, 128.9, 128.6, 128.2, 127.4, 127.3, 126.3, 121.3, 116.0, 40.5, 40.3, 32.1, 31.4, 28.3, 27.9, 22.6, 14.2. IR (neat): 3367, 2956, 1679, 1521, 1494, 1396, 1383, 1326, 1181, 932, 842. HRMS (ESI⁺): calcd for C₂₈H₃₅N₂O [M+H]⁺ 415.2749, found 415.2742.

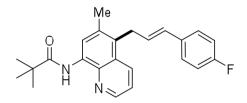
(E)-N-(5-(2-Chloro-3-phenylallyl)quinolin-8-yl)pivalamide (Table 3, 3p)


The general procedure was applied to *N*-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), (*E*)-2-chloro-3-phenylprop-2-en-1-ol (100.8 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a colorless oil (35 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃): δ = 10.33 (brs, 1H), 8.83 (d, *J* = 1.2 Hz, 1H), 8.77 (d, *J* = 7.6 Hz, 1H), 8.36 (d, *J* = 8.4 Hz, 1H), 7.52–7.48 (m, 4H), 7.31–7.21 (m, 3H), 6.29 (s, 1H), 4.17 (s, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.4, 148.1, 139.3, 134.8, 134.6, 133.1, 132.9, 129.4, 129.1, 128.3, 127.9, 127.0, 126.9, 126.2, 121.7, 116.0, 43.6, 40.5, 27.9. IR (neat): 3365, 2965, 1682, 1522, 1495, 1385, 1325, 1181, 1142, 913, 842. HRMS (ESI⁺): calcd for C₂₃H₂₄ClN₂O [M+H]⁺ 379.1577, found 379.1580.

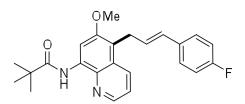
(*E*)-*N*-[5-(Oct-3-en-2-yl)quinolin-8-yl]pivalamide (Table 3, 3r) and (*E*)-*N*-[5-(oct-2-en-4-yl)quinolin-8-yl]pivalamide (Table 3, 3s)


The general procedure was applied to *N*-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), (*E*)-oct-3-en-2-ol (76.8 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by

column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title mixed compounds as a colorless oil (39 mg, 58% yield). The ratio of **3r/3s** (2.3/1) was determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃): δ = 10.30 (brs, 1H), 8.79 (dd, *J* = 4.0, 1.2 Hz, 1H), 8.76–8.72 (m, 1H), 8.47–8.43 (m, 1H), 7.47–7.40 (m, 2H), 5.69–5.60 (m, 1H), 5.46–5.39 (m, 1H), 4.13–4.06 (m, 0.63H, **3r**), 3.90–3.85 (m, 0.28 H, **3s**), 2.03–1.98 (m, 1.39 H), 1.85–1.79 (m, 0.76 H), 1.65–1.63 (m, 1.73 H), 1.42 (m, 8H), 1.30–1.25 (m, 4H), 0.84 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.2, 147.7, 136.1, 135.3, 135.0, 134.6, 133.2, 132.8, 132.6, 130.3, 126.6, 126.4, 125.3, 125.1, 124.7, 121.1, 121.0, 116.2, 116.1, 43.0, 40.4, 36.9, 35.6, 32.3, 31.7, 30.1, 27.9, 22.9, 22.3, 21.2, 18.1, 14.2, 14.1.


(E)-N-(5-Cinnamyl-6-methylquinolin-8-yl)pivalamide (Table 3, 3t)

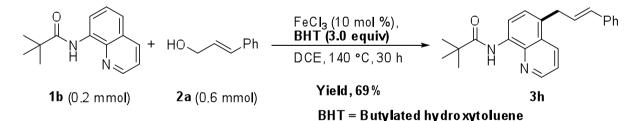
The general procedure was applied to *N*-(6-methylquinolin-8-yl)pivalamide (48.4 mg, 0.2 mmol), (*E*)-cinnamic alcohol (80.4 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (56 mg, 78% yield). Melting point: 141–143 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.30 (brs, 1H), 8.74 (m, 2H), 8.31 (d, *J* = 8.8 Hz, 1H), 7.44–7.41 (m, 1H), 7.24–7.23 (m, 4H), 7.18–7.13 (m, 1H), 6.35 (dt, *J* = 15.6, 5.6 Hz, 1H), 6.21 (d, *J* = 16.4 Hz, 1H), 3.90 (d, *J* = 5.6 Hz, 2H), 2.53 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.5, 147.0, 138.3, 137.4, 135.8, 133.2, 132.8, 130.7, 128.6, 127.9, 127.3, 127.2, 126.4, 126.1, 121.6, 119.6, 40.5, 31.1, 27.9, 20.7. IR (neat): 3369, 2962, 1678, 1578, 1527, 1481, 1406, 1364, 1179, 966, 929, 891. HRMS (ESI⁺): calcd for C₂₄H₂₇N₂O [M+H]⁺ 359.2123, found 359.2126.


(E)-N-(5-Cinnamyl-6-methoxyquinolin-8-yl)pivalamide (Table 3, 3u)

The general procedure was applied to *N*-(6-methoxyquinolin-8-yl)pivalamide (51.6 mg, 0.2 mmol), (*E*)-cinnamic alcohol (80.4 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a slight yellow oil (59 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ = 10.39 (brs, 1H), 8.83 (s, 1H), 8.64 (d, *J* = 4.0 Hz, 1H), 8.25 (d, *J* = 8.4 Hz, 1H), 7.41–7.38 (m, 1H), 7.24–7.20 (m, 4H), 7.12 (t, *J* = 7.6 Hz, 1H), 6.34 (dt, *J* = 15.6, 5.6 Hz, 1H), 6.24 (d, *J* = 16.4 Hz, 1H), 4.02 (s, 3H), 3.90 (d, *J* = 5.6 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.7, 155.2, 145.6, 137.6, 134.83, 134.80, 132.3, 130.2, 128.9, 128.5, 127.9, 127.0, 126.1, 122.0, 113.9, 104.4, 56.6, 40.5, 27.9, 27.7. IR (neat): 3361, 2961, 1677, 1617, 1578, 1522, 1483, 1455, 1401, 1349, 1212, 1169, 1113, 965, 937, 867. HRMS (ESI⁺): calcd for C₂₄H₂₇N₂O₂ [M+H]⁺ 375.2073, found 375.2077.

(E)-N-(5-(3-(4-Fluorophenyl)allyl)-6-methylquinolin-8-yl)pivalamide (Table 3, 3v)

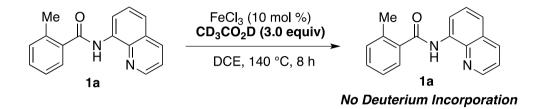
The general procedure was applied to *N*-(6-methylquinolin-8-yl)pivalamide (48.4 mg, 0.2 mmol), (*E*)-3-(4-fluorophenyl)prop-2-en-1-ol (91.2 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a white solid (67 mg, 89% yield). Melting point: 141–143 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.29 (brs, 1H), 8.74 (m, 2H), 8.29 (d, *J* = 8.4 Hz, 1H), 7.44–7.41 (m, 1H), 7.16 (t, *J* = 6.0 Hz, 2H), 6.89 (t, *J* = 8.4 Hz, 2H), 6.25 (dt, *J* = 16.0, 5.6 Hz, 1H), 6.07 (d, *J* = 16.0 Hz, 1H), 3.87 (d, *J* = 5.2 Hz, 2H), 2.52 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.5, 163.3, 160.9, 147.0, 138.3, 135.8, 133.5 (d, *J* = 3.0 Hz), 133.2, 132.7, 129.5, 127.6 (d, *J* = 3.0 Hz), 127.5, 127.1, 126.3, 121.6, 119.6, 115.5, 115.3, 40.5, 31.0, 27.9, 20.6; ¹⁹F NMR (377 MHz, CDCl₃): δ = –115.19. IR (neat): 3364, 2965, 1675, 1526, 1481, 1406, 1227, 1179, 967, 928, 842. HRMS (ESI⁺): calcd for C₂₄H₂₆FN₂O [M+H]⁺ 377.2029, found 377.2032.

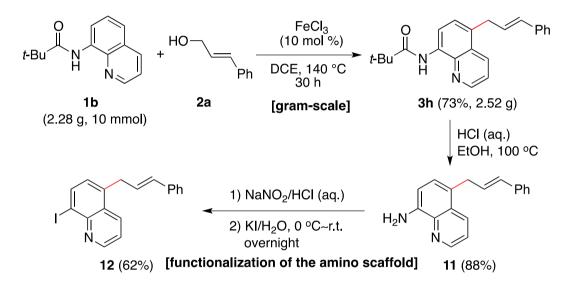


(E)-N-(5-(3-(4-Fluorophenyl)allyl)-6-methoxyquinolin-8-yl)pivalamide (Table 3, 3w)

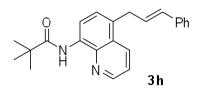
The general procedure was applied to *N*-(6-methoxyquinolin-8-yl)pivalamide (51.6 mg, 0.2 mmol), (*E*)-3-(4-fluorophenyl)prop-2-en-1-ol (91.2 mg, 0.6 mmol) at 140 °C for 30 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound as a slight yellow solid (70 mg, 89% yield). Melting point: 121–123 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.38 (brs, 1H), 8.83 (s, 1H), 8.65 (d, *J* = 3.6 Hz, 1H), 8.24 (d, *J* = 8.4 Hz, 1H), 7.42–7.39 (m, 1H), 7.18 (t, *J* = 6.4 Hz, 2H), 6.89 (t, *J* = 8.4 Hz, 2H), 6.26 (dt, *J* = 15.6, 5.2 Hz, 1H), 6.19 (d, *J* = 16.0 Hz, 1H), 4.02 (s, 3H), 3.89 (d, *J* = 5.2 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.7, 163.3, 160.8, 155.2, 145.6, 134.8 (d, *J* = 2.0 Hz), 133.8 (d, *J* = 3.0 Hz), 132.2, 129.0, 128.6 (d, *J* = 3.0 Hz), 127.9, 127.6, 127.5, 122.0, 115.5, 113.8, 104.4, 56.6, 40.6, 27.9, 27.6; ¹⁹F NMR (377 MHz, CDCl₃): δ = -115.57. IR (neat): 3360, 2967, 1674, 1525, 1486, 1456, 1401, 1349, 1228, 1113, 967, 937, 841. HRMS (ESI⁺): calcd for C₂₄H₂₆FN₂O₂ [M+H]⁺ 393.1978, found 393.1976.

5. Preliminary Mechanistic Experiments

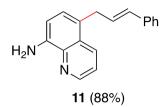

5.1 The Effect of Radical Scavenger on the Reaction of *N*-(quinolin-8-yl)pivalamide with Cinnamic Alcohol


In a dried Schlenk flask were placed *N*-(quinolin-8-yl)pivalamide (45.6 mg, 0.2 mmol), (*E*)-cinnamic alcohol (80.4 mg, 0.6 mmol), butylated hydroxytoluene (132.0 mg, 0.6 mmol), and FeCl₃ (3.2 mg, 0.02 mmol). Then 1.0 mL of DCE was added with a syringe under molecular nitrogen atmosphere. The resulting mixture was heated at 140 °C for 30 h. After cooling to room temperature, the reaction mixture was diluted with 5.0 mL of CH₂Cl₂ and

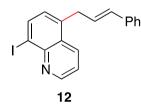
filtered through a plug of celite, followed by washing with 10-20 mL of CH₂Cl₂. The combined residue was concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography on silica gel to provide the desired product **3h** (69%).


5.2 Deuterium Experiment

6. Gram-Scale C-H Allylation of 1b and Synthetic Application


6.1 Synthesis of 3h

In a dried Schlenk flask were placed *N*-(quinolin-8-yl)pivalamide **1b** (2.28 g, 10.0 mmol), (*E*)-cinnamic alcohol **2a** (4.32 g, 30.0 mmol), FeCl₃ (162 mg, 1.0 mmol). Then 50 mL of DCE was added with a syringe under molecular nitrogen atmosphere. The resulting mixture was heated at 140 °C for 30 h. After cooling to room temperature, the reaction mixture was diluted with 25 mL of CH₂Cl₂ and filtered through a plug of celite, followed by washing with


20–30 mL of CH_2Cl_2 . The combined residue was concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography on silica gel to provide the desired product **3h** (2.52 g, 73%).

6.2 Synthesis of 11

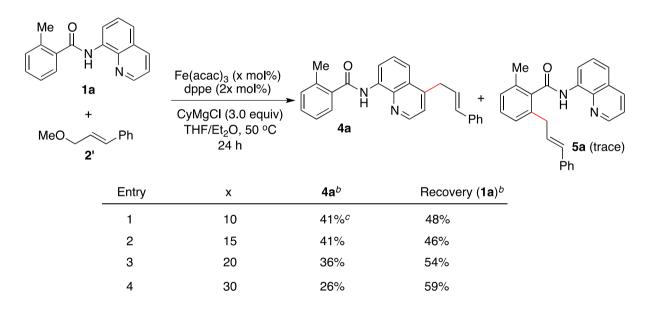
3h (1.03 g, 3 mmol) was dissolved in EtOH (20 mL) in a 100 mL tube then concentrated hydrochloric acid (7.5 mL) was added. The tube was sealed and stirred at 100 °C for 24 h. The resulting mixture was concentrated under vacuum and cooled to 0 °C. 3 N NaOH was added dropwise until the pH was alkaline. The solution was extracted with DCM, dried over Na₂SO₄, concentrated under reduced pressure and purified by silica gel chromatography to give **11** as a yellow oil (686 mg, 88 %). ¹H NMR (400 MHz, CDCl₃): δ = 8.76 (d, *J* = 2.8 Hz, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 7.39–7.36 (m, 1H), 7.31–7.22 (m, 6H), 7.16 (t, *J* = 7.2 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.48–6.35 (m, 2H), 4.93 (brs, 2H), 3.84 (d, *J* = 5.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 147.2, 143.0, 139.1, 137.6, 132.7, 131.0, 129.6, 128.6, 127.8, 127.6, 126.2, 124.4, 121.2, 109.9, 35.5. IR (neat): 3473, 3373, 3024, 2894, 1610, 1588, 1506, 1477, 1367, 1337, 1124, 965, 822. HRMS (ESI⁺): calcd for C₁₈H₁₇N₂ [M+H]⁺ 261.1392, found 261.1392.

6.2 Synthesis of 12

A mixture of **6** (156 mg, 0.6 mmol), water (3.0 ml) and concentrated HCl (1.0 mL) was cooled to 0 $^{\circ}$ C, and then a solution of NaNO₂ (69.0 mg, 1.0 mmol) in water (0.5 mL) was added dropwise. After stirring for 15 min, a solution of KI (166.0 mg, 1.0 mmol) in water (0.5 mL) was added slowly. Then the resulting mixture was warmed to room temperature and

stirred for overnight. The solution was neutralized by 3 N NaOH and the organic phase was extracted with CH₂Cl₂ (10 mL × 3). The combined organic layer was then washed with sodium sulfite aqueous, brine and dried over anhydrous Na₂SO₄. The crude product was purified by silica gel chromatography to give the desired **12** as a white solid (138 mg, 62 %). Melting point: 91–93 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.01 (d, *J* = 3.2 Hz, 1H), 8.35 (d, *J* = 8.4 Hz, 1H), 8.29 (d, *J* = 7.2 Hz, 1H), 7.48–7.45 (m, 1H), 7.31–7.26 (m, 4H), 7.20 (d, *J* = 7.6 Hz, 1H), 6.47–6.37 (m, 2H), 3.95 (d, *J* = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 151.2, 147.5, 140.0, 138.0, 137.1, 133.3, 132.3, 128.7, 128.4, 128.0, 127.7, 127.6, 126.3, 121.9, 102.1, 35.6. IR (neat): 2924, 2853, 1595, 1495, 1453, 1275, 967, 900, 833. HRMS (ESI⁺): calcd for C₁₈H₁₅IN [M+H]⁺ 372.0249, found 372.0253.

7. Investigation of the Key Reaction Parameters for the C4-Allylation of Quinolines


Table S3. Investigation of the effect of iron catalysts, ligands, Grignard reagents and temperature for the synthesis of (E)-N-(4-cinnamylquinolin-8-yl)-2-methylbenzamide $(4a)^{a,b}$

Me C	$ \begin{array}{c} N \\ H \\ 1a \\ + \\ \hline Ph \\ 2 \end{array} $	iron catalyst (10 ligand (20 m RMgCl (3.0 e Solvent, Temp 24 h) mol%) ol%) equiv)	Me O N H 4a	N	H + Ph	5a (trace) Ph
Entry	Iron	LG	Ligand	RMgCl	Solvent	Temp	Yield
	Catalyst	LO	EG Elguid	idinger	Sorvent	(°C)	$(4a)^c$
1	$Fe(acac)_3$	OPO(OEt) ₂	dppe	CyMgCl	THF	rt	33%
2	$Fe(acac)_2$	OPO(OEt) ₂	dppe	CyMgCl	THF	rt	30%
3	FeCl ₂	$OPO(OEt)_2$	dppe	CyMgCl	THF	rt	trace
4	Fe(OTf) ₂	OPO(OEt) ₂	dppe	CyMgCl	THF	rt	32%
5	$Fe(acac)_3$	OPO(OEt) ₂	-	CyMgCl	THF	rt	trace
6	$Fe(acac)_3$	$OPO(OEt)_2$	dcype	CyMgCl	THF	rt	23%
7	$Fe(acac)_3$	OPO(OEt) ₂	dppb	CyMgCl	THF	rt	trace
8	$Fe(acac)_3$	$OPO(OEt)_2$	dtbpy	CyMgCl	THF	rt	trace

9	$Fe(acac)_3$	$OPO(OEt)_2$	TMEDA	CyMgCl	THF	rt	trace
10	$Fe(acac)_3$	OPO(OEt) ₂	dppe	<i>i</i> PrMgCl	THF	50	30%
11	$Fe(acac)_3$	OPO(OEt) ₂	dppe	CyMgCl	Et ₂ O	rt	n.d.
12	$Fe(acac)_3$	OPO(OEt) ₂	dppe	CyMgCl	THF	0	n.d.
13	Fe(acac) ₃	$OPO(OEt)_2$	dppe	CyMgCl	THF	50	36%
14	$Fe(acac)_3$	OPO(OEt) ₂	dppe	CyMgCl	THF	70	trace
15	Fe(acac) ₃	OMe	dppe	CyMgCl	THF	50	41%

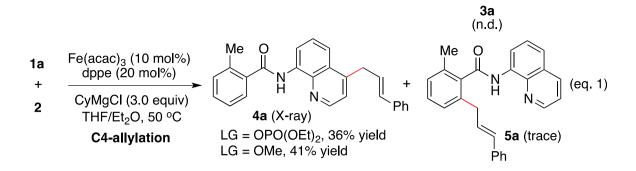
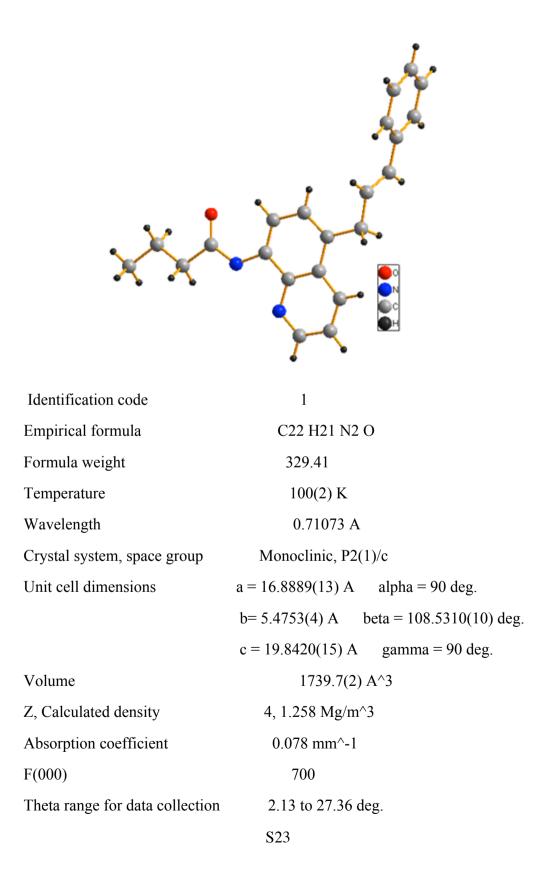

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2** (0.45 mmol), Catalyst (10 mol%), Ligand (20 mol %), RMgCl (3.0 equiv), Solvent (0.75 mL), 0-70 °C, 24 h. ^{*b*} Isolated yield. ^{*c*} The C5-allylated product **3a** was not detected by ¹H NMR and GC analyses.

Table S4. Investigation of the effect of the amount of iron catalyst for the synthesis of (E)-N-(4-cinnamylquinolin-8-yl)-2-methylbenzamide $(4a)^a$

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2'** (0.45 mmol), Fe(acac)₃ (x mol%), dppe (2x mol %), CyMgCl (3.0 equiv), THF (0.75 mL), 50 °C, 24 h. ^{*b*} ¹H NMR yield using 1,1,2,2-tetrachloroethane as an internal standard. ^{*c*} Isolated yield.


8. Iron-Catalyzed C4-Selective Allylation of 2-Methyl-N-(quinolin-8-yl)-benzamide with Cinnamyl Diethyl Phosphate or Cinnamyl Methyl Ether

mL Schlenk placed $Fe(acac)_3$ (10.6 mg, 0.03 In а 10 tube were mmol). 1,2-bis(diphenylphosphino)ethane (24.0 mg, 0.06 mmol), 2-methyl-N-(quinolin-8-yl)benzamide (78.6 mg, 0.30 mmol), cinnamyl diethyl phosphate (121.5 mg, 0.45 mmol) or cinnamyl methyl ether (66.6 mg, 0.45 mmol), and THF (0.75 mL). To the mixture was added an Et₂O solution of CyMgCl (2.0 M, 0.45 mL, 0.90 mmol) dropwise at 0 °C. The reaction mixture was stirred at 50 °C for 24 h, and then quenched by the addition of saturated NH₄Cl aqueous solution (10.0 mL). The resulting mixture was stirred at room temperature for 10 min, and then extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: hexane/EtOAc = 40/1) to afford the title compound as a white solid 4a (cinnamyl diethyl phosphate: 41 mg, 36%; cinnamyl methyl ether: 46 mg, 41%). Melting point: 165–167 °C; ¹H NMR (400 MHz, CDCl₃): δ = 10.34 (brs, 1H), 8.94 (d, J = 7.6 Hz, 1H), 8.69 (d, J = 4.4 Hz, 1H), 7.79 (dd, J = 8.4, 1.2 Hz, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.60 (t, J = 8.4 Hz, 1H), 7.42–7.28 (m, 8H), 7.20 (tt, J = 7.2, 1.2 Hz, 1H), 6.50 (d, J = 16.0 Hz, 1H), 6.41 $(dt, J = 15.6, 6.0 \text{ Hz}, 1\text{H}), 4.00 (d, J = 6.0 \text{ Hz}, 2\text{H}), 2.61 (s, 3\text{H}); {}^{13}\text{C} \text{ NMR}$ (100 MHz, CDCl₃): *δ* = 168.4, 148.2, 146.9, 138.8, 137.0, 136.9, 136.8, 135.4, 133.0, 131.5, 130.4, 128.7, 127.7, 127.5, 127.4, 126.5, 126.3, 126.2, 121.9, 117.9, 116.4, 35.7, 20.4. IR (neat): 3315, 3022, 2927, 1665, 1595, 1522, 1479, 1414, 1387, 1333, 1255, 1096, 906, 823, 848. HRMS (ESI^{+}) : calcd for C₂₆H₂₃N₂O $[M+H]^{+}$ 379.1810, found 379.1803. Crystals suitable for X-ray diffraction study of 4a were obtained by slow evaporation of a mixed solution of hexane and ethyl acetate.

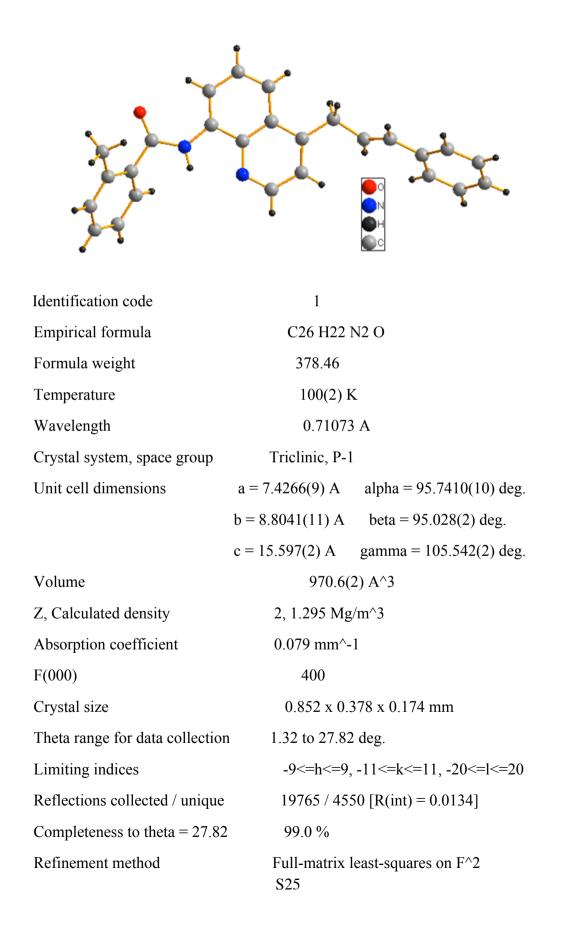
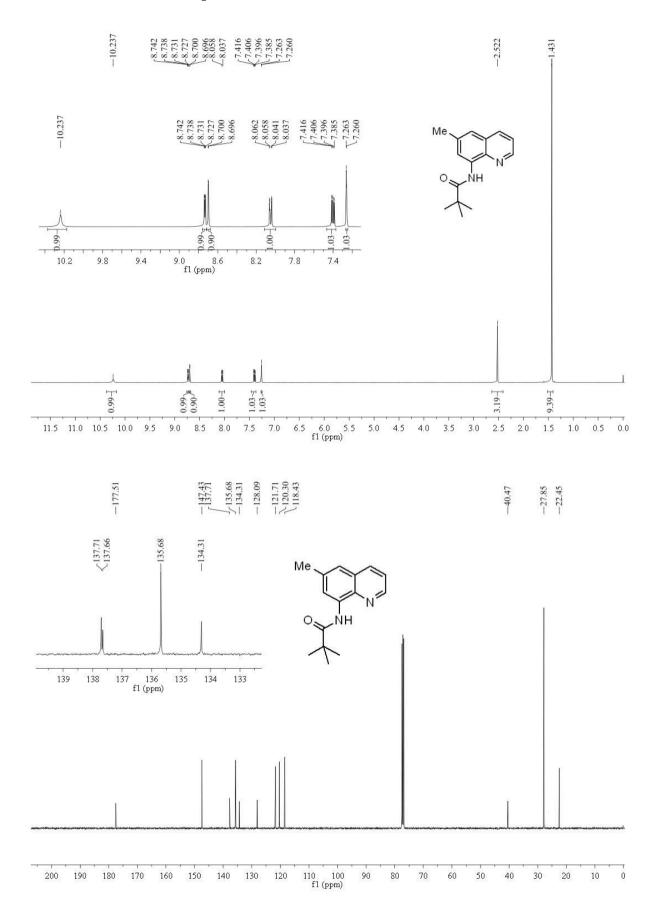
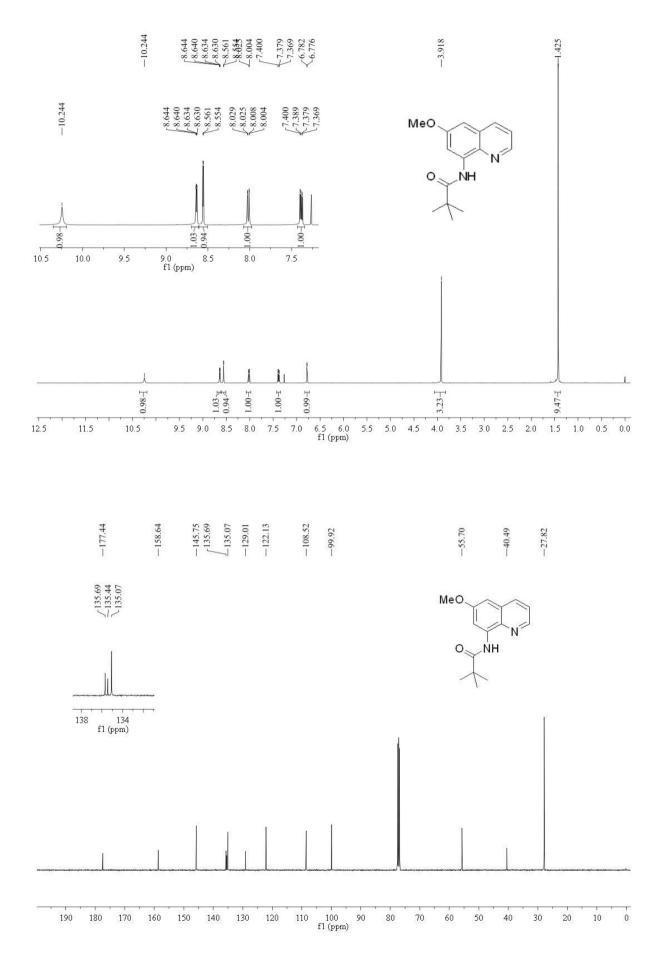
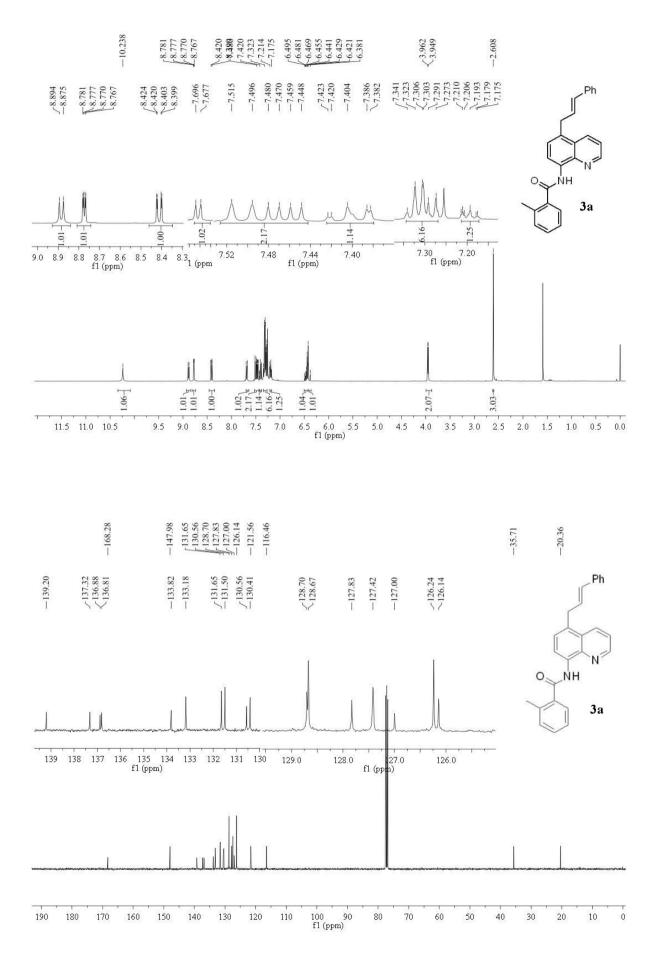

9. X-ray Crystallographic Data of Compound 3g and Compound 4a

Table S5. Crystallography data and structure refinement for 3g (CCDC 995433)

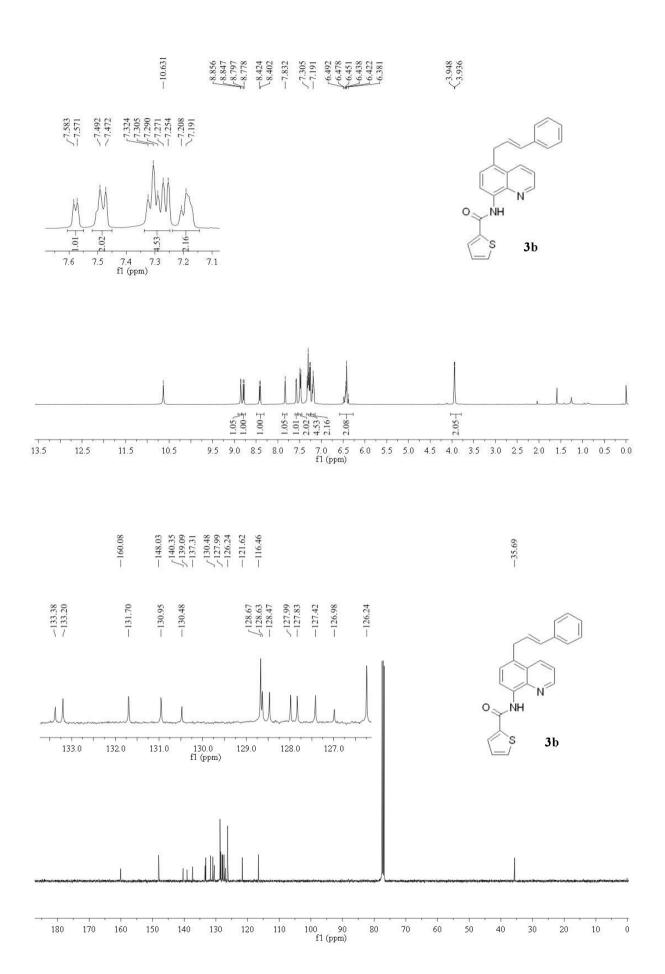
Limiting indices	-17<=h<=21, -7<=k<=7, -25<=l<=25
Reflections collected / unique	21286 / 3923 [R(int) = 0.0210]
Completeness to theta $= 27.36$	99.9 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3923 / 0 / 227
Goodness-of-fit on F ²	1.007
Final R indices [I>2sigma(I)]	R1 = 0.0443, wR2 = 0.1178
R indices (all data)	R1 = 0.0534, wR2 = 0.1253
Largest diff. peak and hole	0.822 and -0.191 e.A^-3

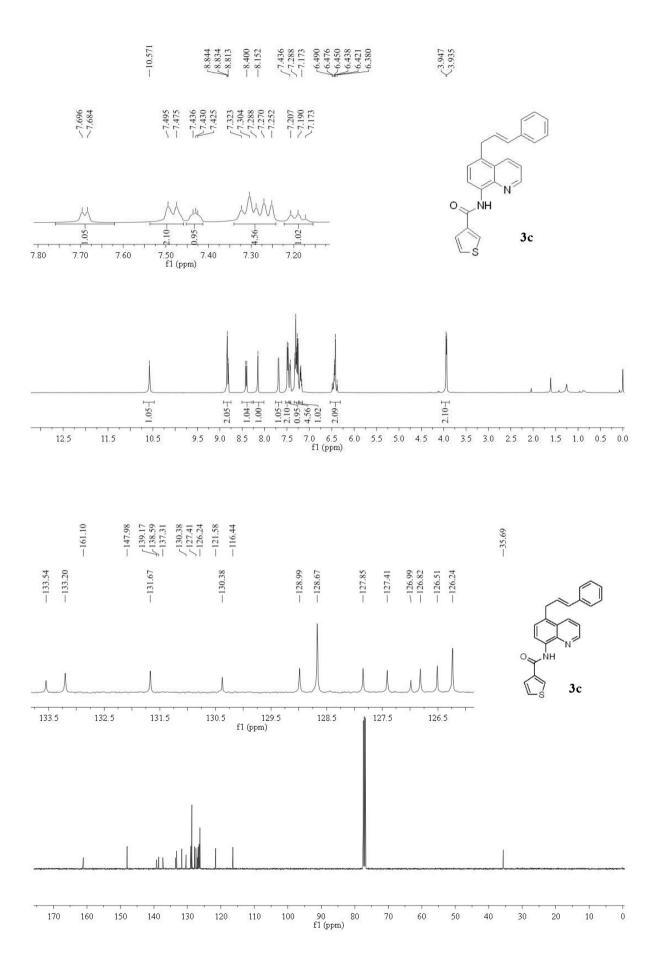


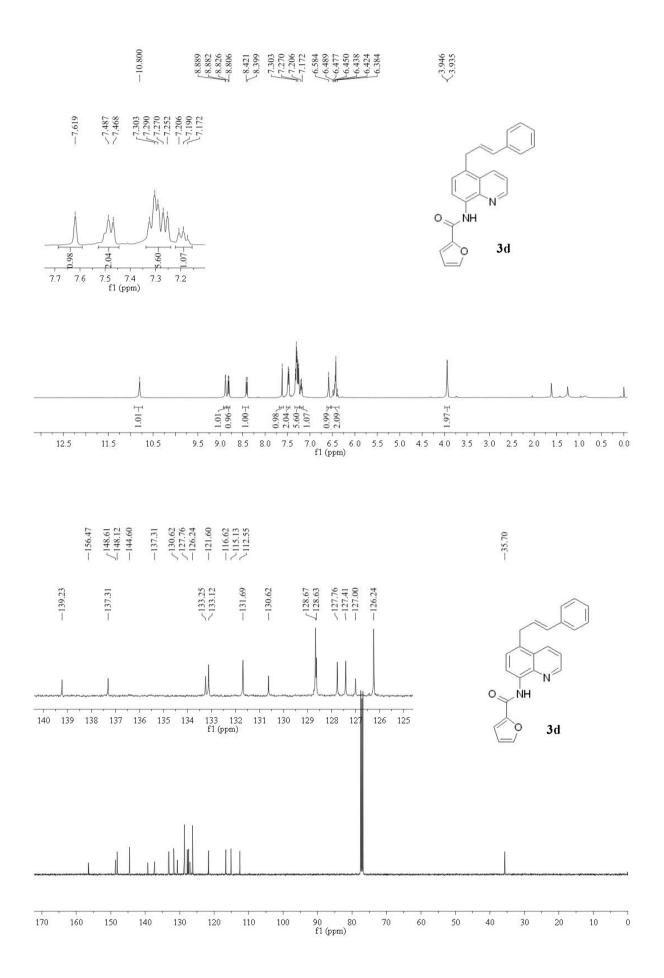


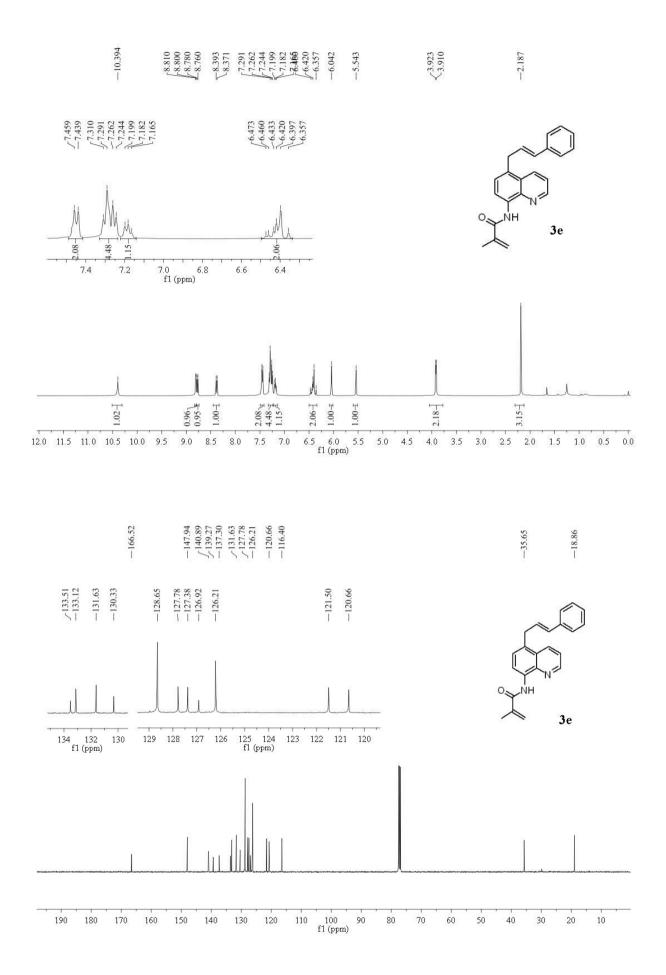

Data / restraints / parameters	4550 / 0 / 263
Goodness-of-fit on F^2	1.046
Final R indices [I>2sigma(I)]	R1 = 0.0379, wR2 = 0.1046
R indices (all data)	R1 = 0.0402, wR2 = 0.1071
Largest diff. peak and hole	0.331 and -0.249 e.A^-3

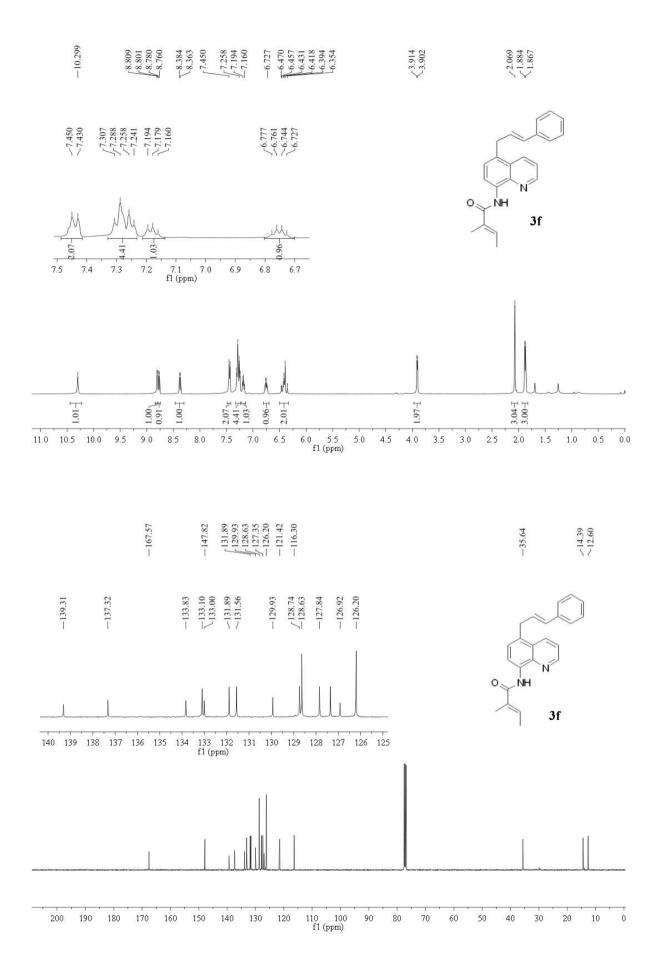
References

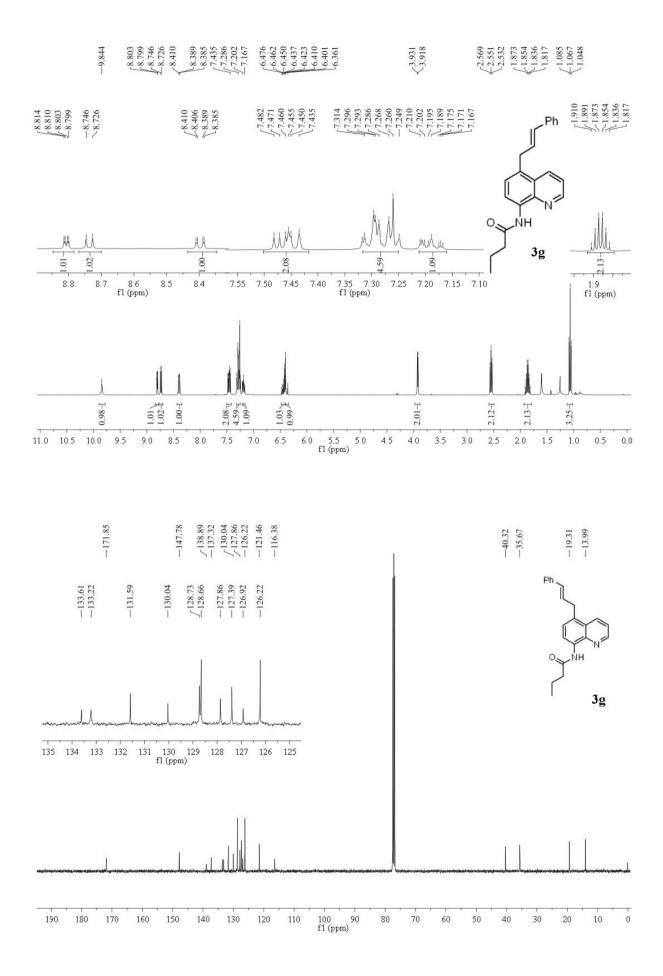

- (1) (a) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237. (b) Gou, F.-R.; Wang, X.-C.; Huo, P.-F.; Bi, H.-P.; Guan, Z.-H.; Liang, Y.-M. Org. Lett. 2009, 11, 5726. (c) Yang, Y.; Shi, L.; Zhou, Y.; Li, H.-Q.; Zhu, Z.-W.; Zhu, H.-L. Bioorg. Med. Chem. Lett. 2010, 20, 6653. (d) Ano, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2012, 14, 354. (e) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2013, 135, 5308.
- (2) Yapi, A.-D.; Desbois, N.; Chezal, J.-M.; Chavignon, O.; Teulade, J.-C.; Valentin, A.; Blache, Y. *Eur. J. Med. Chem.* 2010, 45, 2854.
- (3) Luchaco-Cullis, C. A.; Mizutani, H.; Murphy, K. E.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2001, 40, 1456.
- (4) Fan, S.; Chen, F.; Zhang, X. Angew. Chem. Int. Ed. 2011, 50, 5918.
- (5) Matsubara, R.; Jamison, T. F. J. Am. Chem. Soc. 2010, 132, 6880.

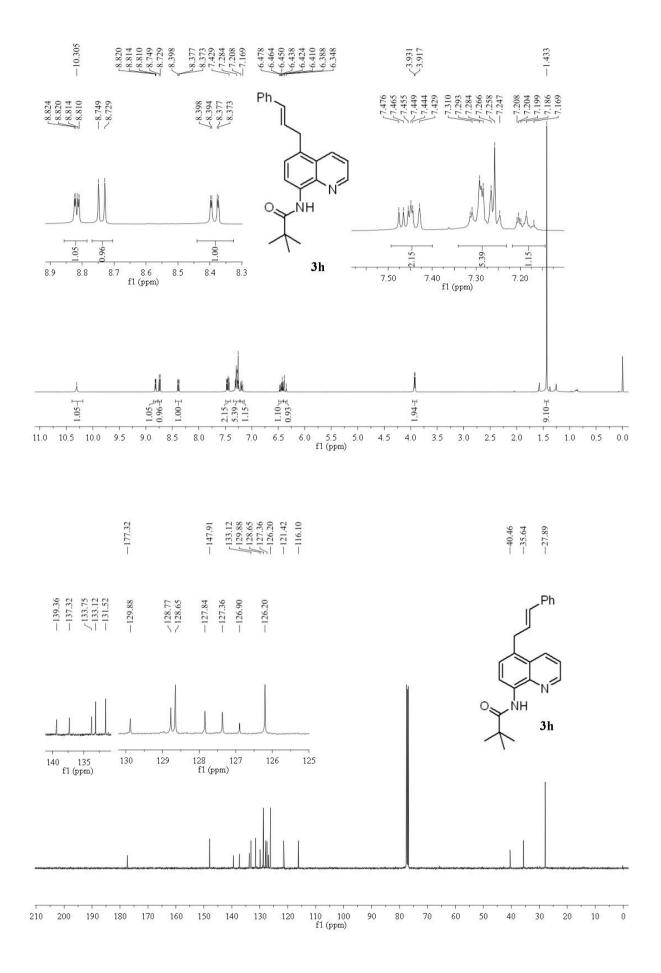


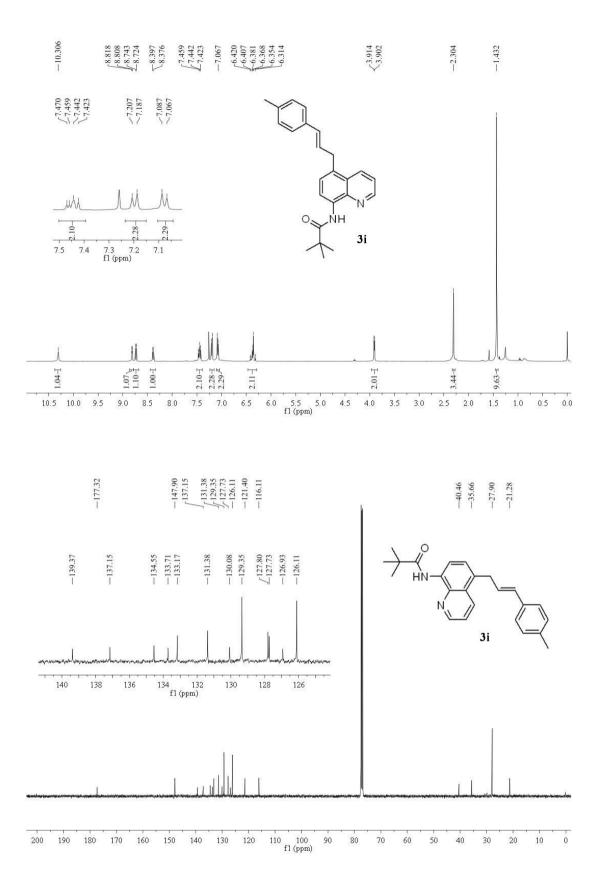


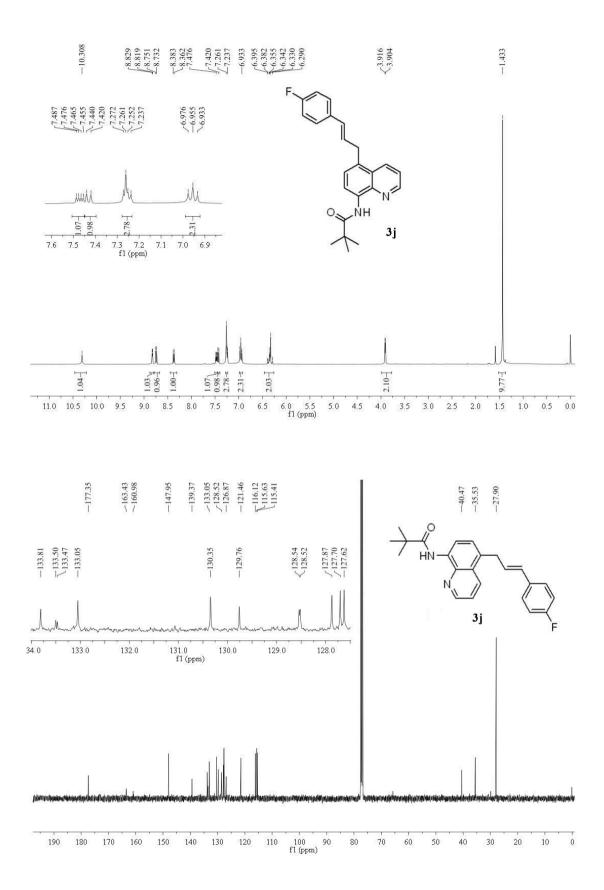


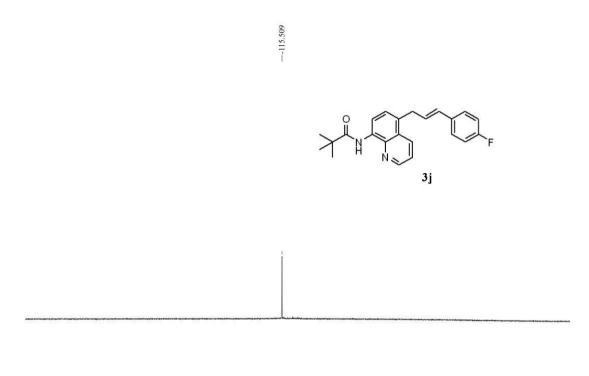

S29

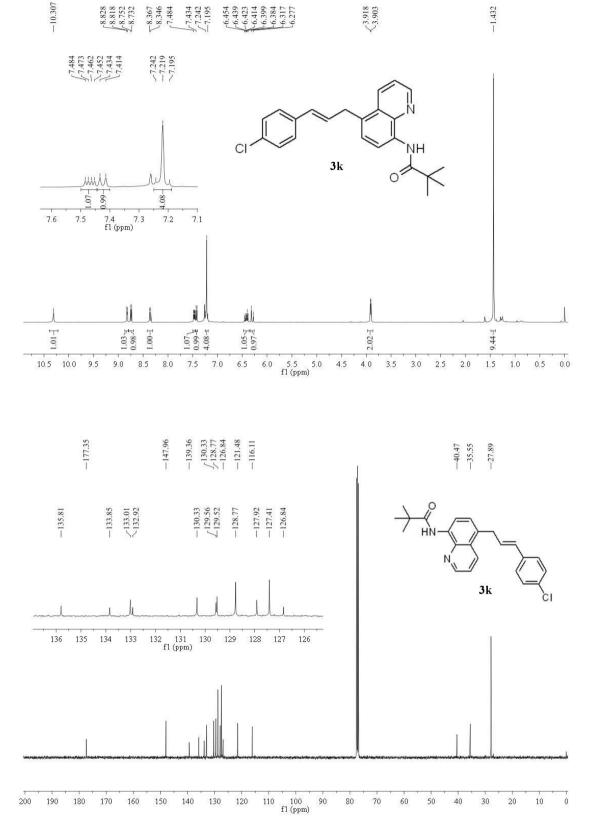


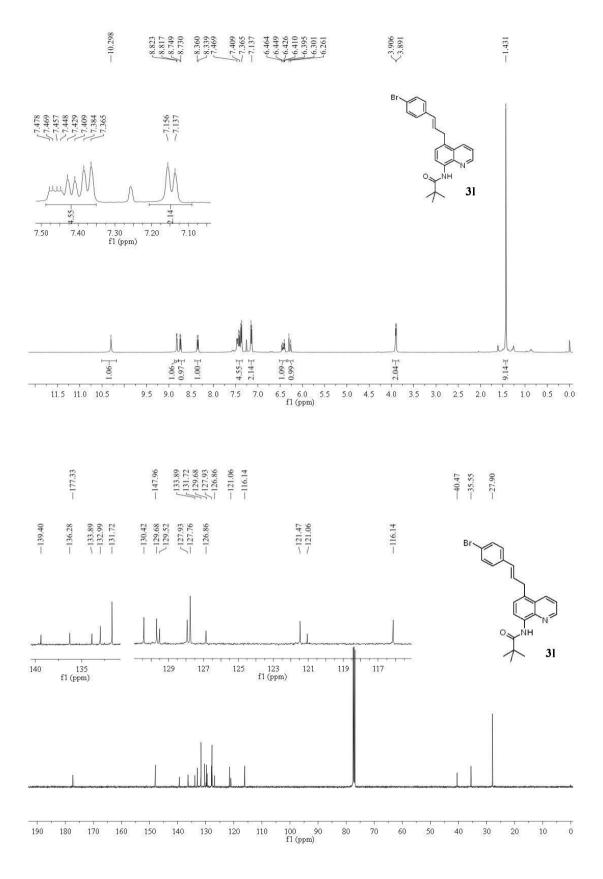


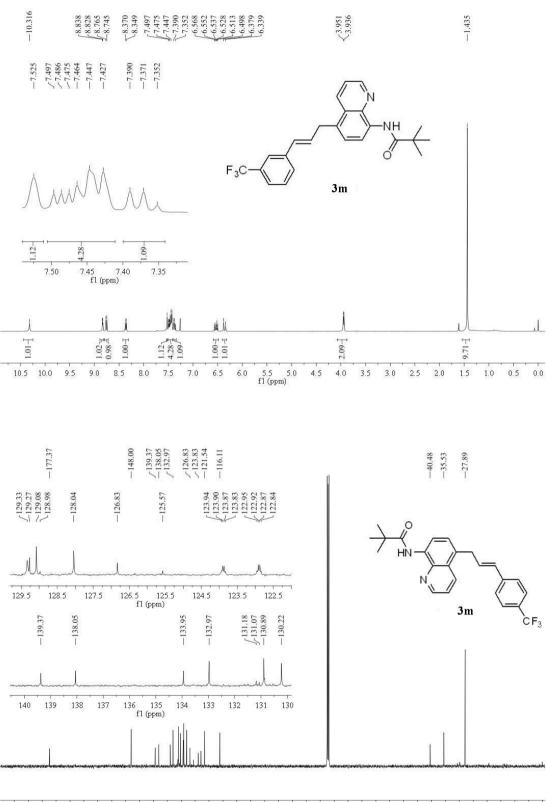


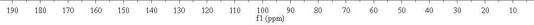


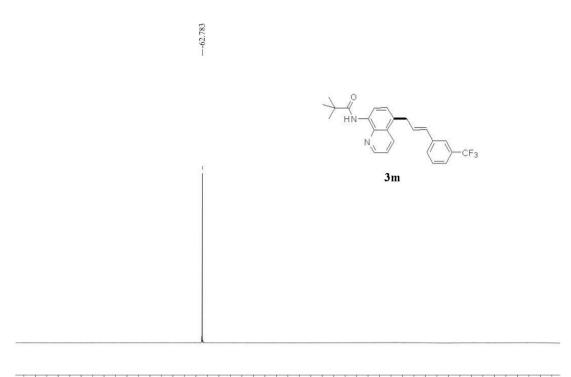


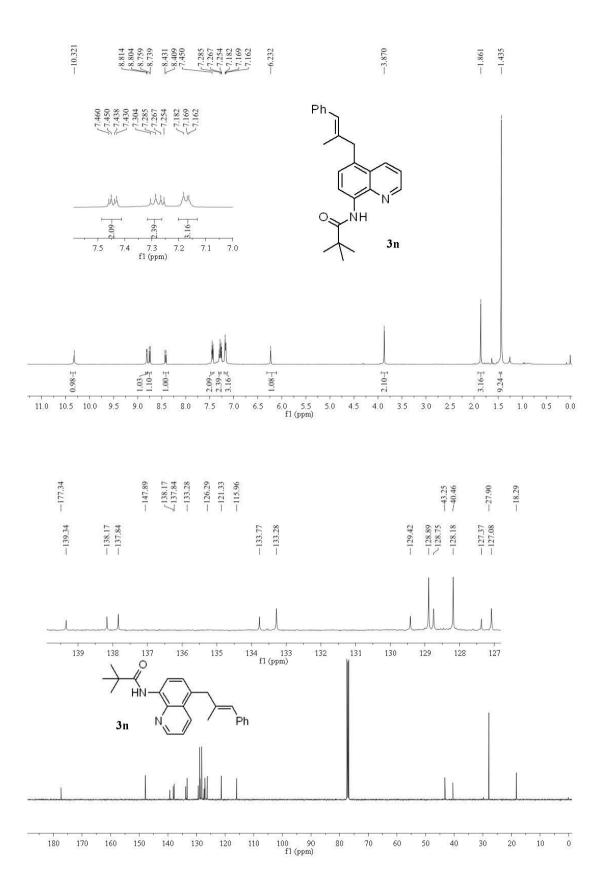


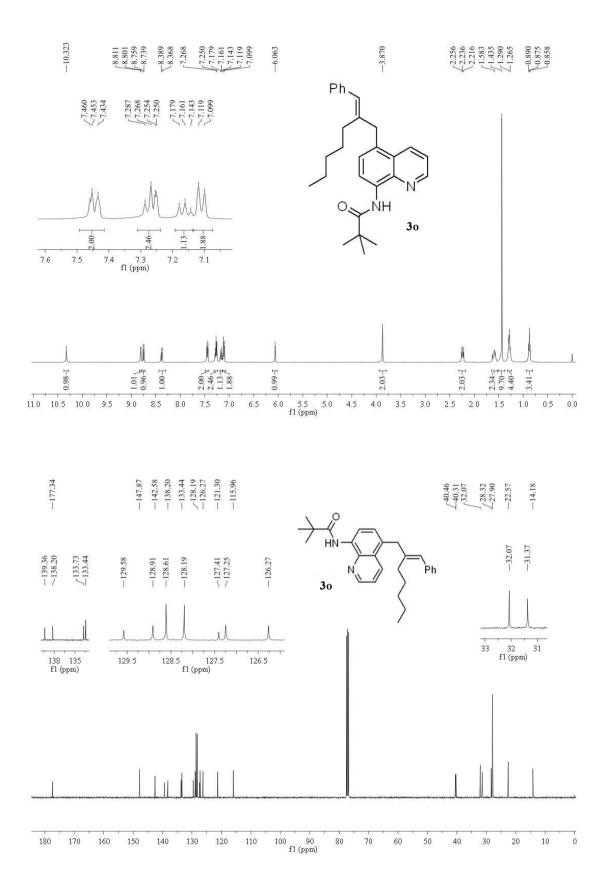



-85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 f1 (ppm)

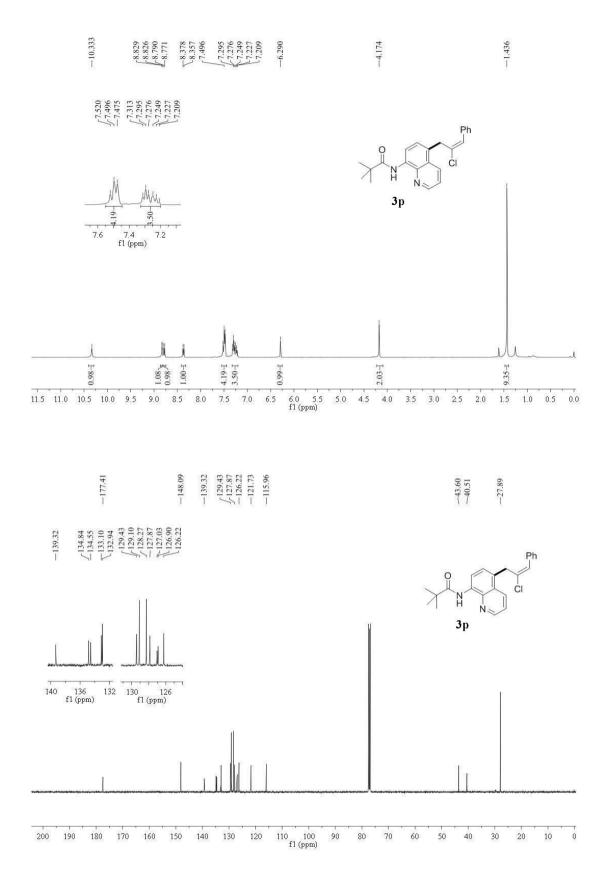

3.918
3.903 -10.307 $\begin{array}{c} 8.8.28\\ 8.818\\ 8.818\\ 8.752\\ 8.752\\ 8.732\\ 8.346\\ 7.344\\ 7.484\\ 7.7434\\ 7.7424\\ 7.7195\\ 7.7195\\ 7.7195\\ 7.7195\\ 6.439\\ 6.6439\\ 6.6439\\ 6.6334\\ 6.6334\\ 6.6317\\ 6.6277\end{array}$

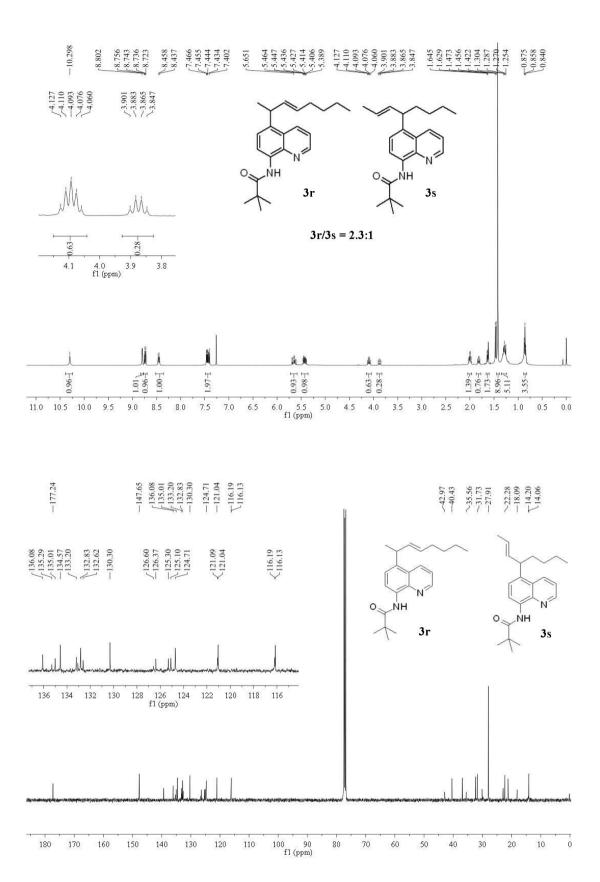

S40

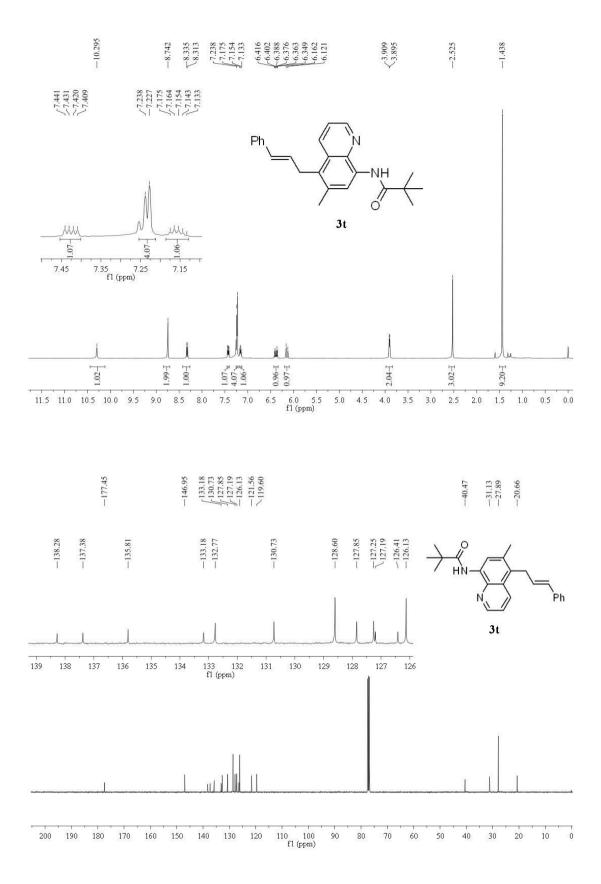




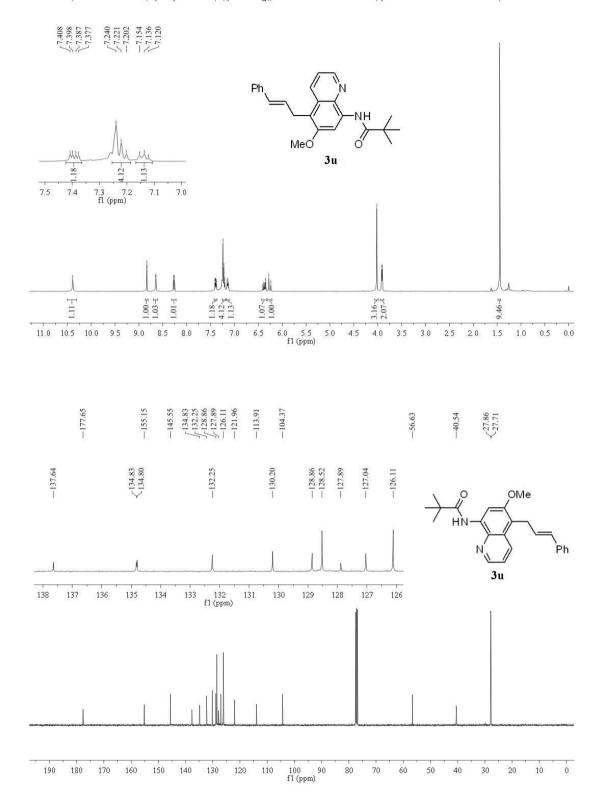
0

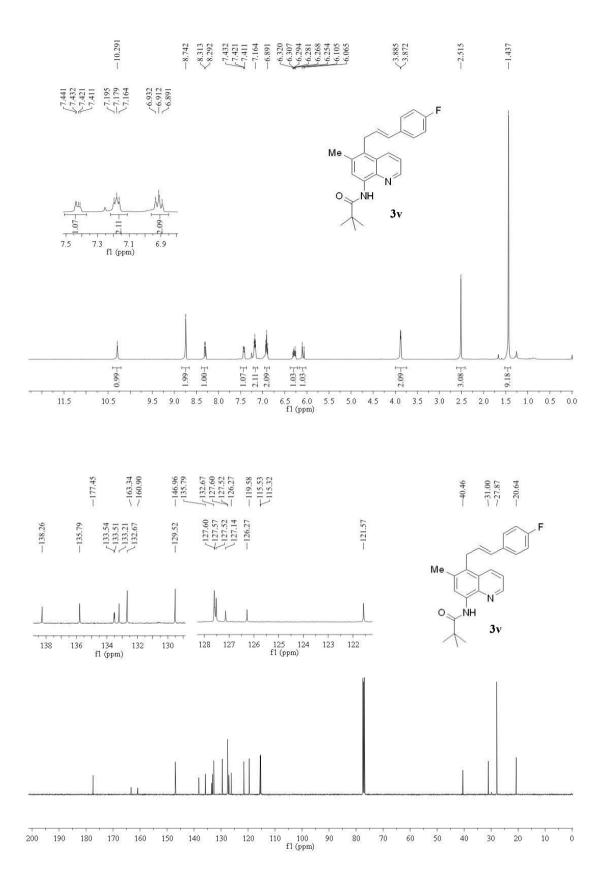


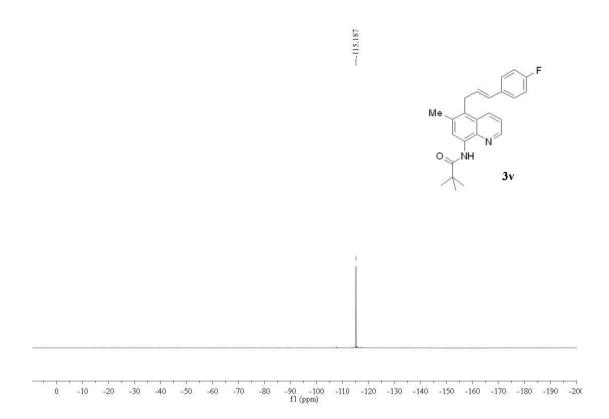

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -140 -160 -180 -200 f1 (ppm)

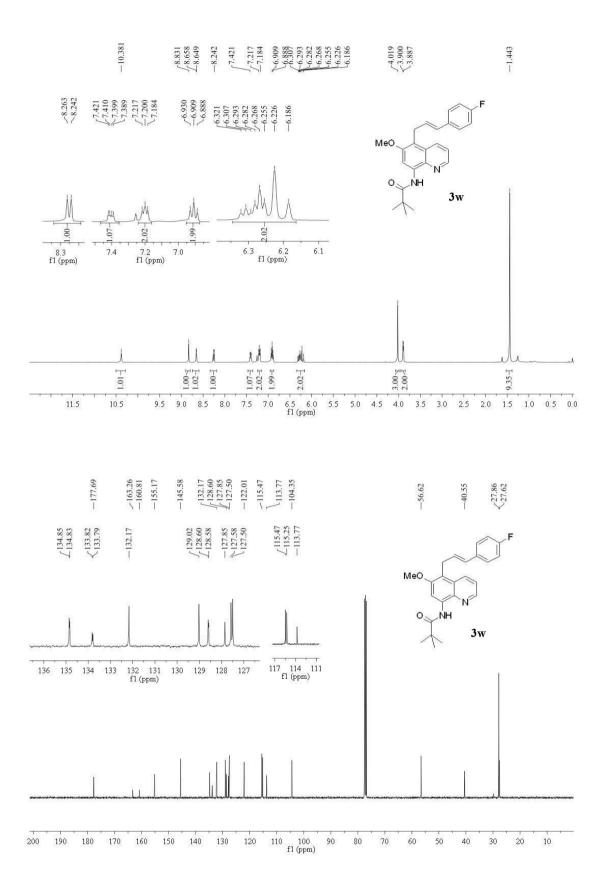


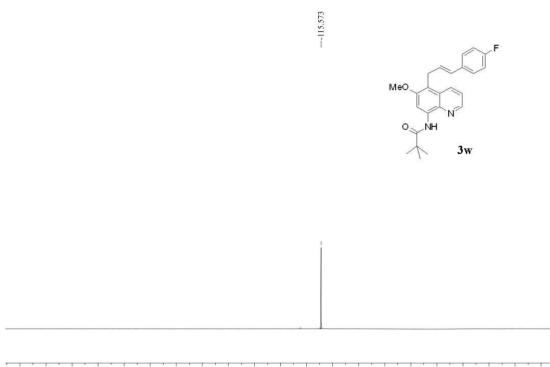
S45

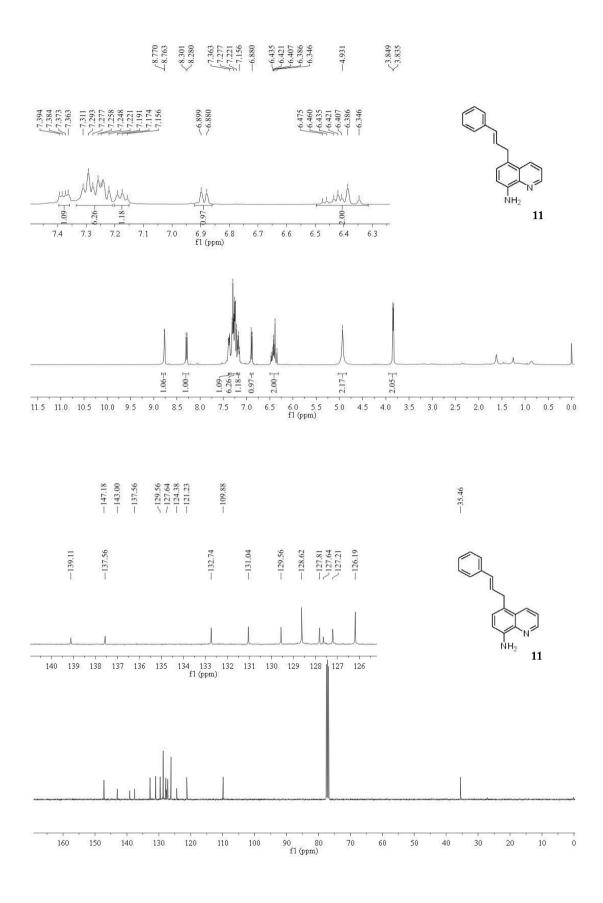


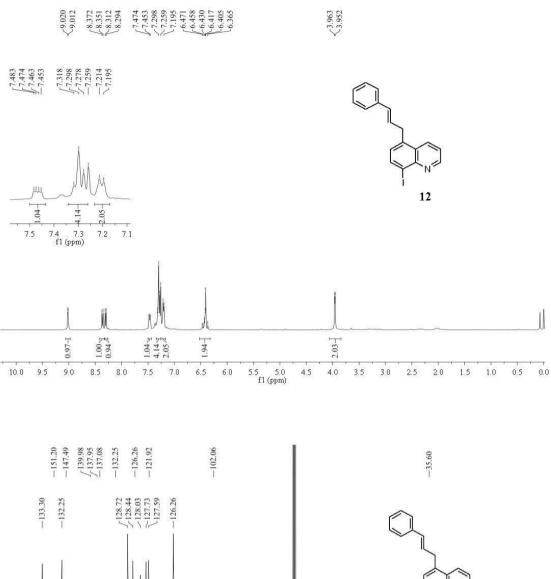


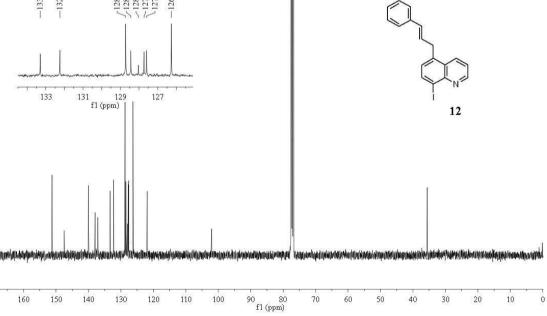


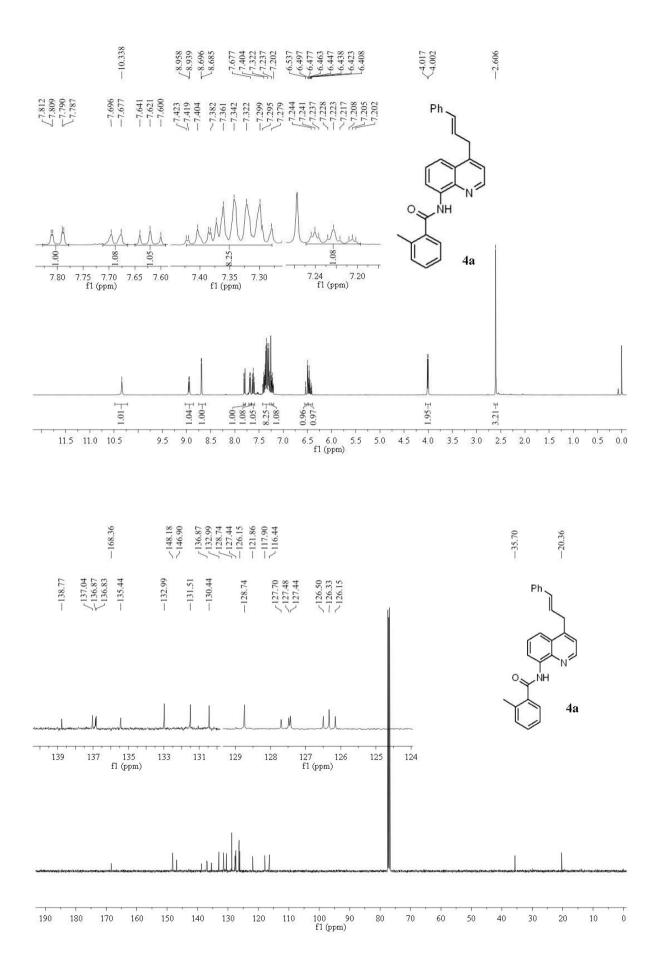

-10.385-10.385-10.385-10.385-10.385-10.385-1.120-1.1


-1.443








0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

J

