Supporting Information

Borane-Protected Cyanides as Surrogates of H-Bonded Cyanides in [FeFe]-Hydrogenase Active Site Models

Brian C. Manor, Mark R. Ringenberg, and Thomas B. Rauchfuss* School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States

Table of Contents

- p. S2, Experimental Procedures
- p. S2, Table S1. pK_a Determination of $(Et_4N)_2[1(BAr^F_3)_2]$ with PhNH₃BAr^{F24}.
- p. S2, Table S2. pK_a Determination of $(Et_4N)_2[1(BAr^{F\#}_3)_2]$ with PyHBAr^{F24}.
- p. S3, Table S3. Selected Bond Distances of $[1(BAr_{3}^{F})_{2}]^{2-}$ and $[1]^{2-}$
- p. S3, Figure S1. IR spectra of $K_2[1]$ and K[2] in MeCN at 20°C.
- p. S4, Figure S2. IR spectrum of $K_2[3]$ in MeCN at 20°C.
- p. S5, Figure S3. IR spectra of $(Et_4N)_2[1(BR_3)_2]$ complexes in CH₂Cl₂ at 20°C.
- p. S6, Figure S4. IR spectra of $(Et_4N)_2[\mathbf{3}(BPh_3)_2]$ in CH₂Cl₂ at 20°C.
- p. S7, Figure S5. IR spectra of Et₄N[H1(BR₃)₂] complexes in CH₂Cl₂ at 20°C.
- p. S8, Figure S6. IR spectra of $Et_4N[H3(BPh_3)_2]$ in CH_2Cl_2 at 20°C.
- p. S9, Figure S7. ¹⁹F NMR of $(Et_4N)_2[1(BAr^{F_3})_2]$ in CD₂Cl₂ at 20°C.
- p. S10, Figure S8. ¹¹B NMR of $(Et_4N)_2[1(BAr_{3}^F)_2]$ in CD₂Cl₂ at 20°C.
- p. S11, Figure S9. ¹H NMR of $(Et_4N)_2[1(BPh_3)_2]$ in CD₂Cl₂ at 20°C. p. S12, Figure S10. ¹¹B NMR of $(Et_4N)_2[1(BPh_3)_2]$ in CD₂Cl₂ at 20°C.
- p. S13, Figure S11. ¹⁹F NMR of $(Et_4N)_2[1(BAr^{F\#_3})_2]$ in CD₂Cl₂ at 20°C. p. S14, Figure S12. ¹¹B NMR of $(Et_4N)_2[1(BAr^{F\#_3})_2]$ in CD₂Cl₂ at 20°C.
- p. S15, Figure S13. Isomerization of $Et_4N[H1(BAr^{F_3})_2]$ in CD_2Cl_2 by ¹H NMR at 20°C.
- p. S16, Figure S14. Isomerization of Et₄N[H1(BAr^F₃)₂] in CD₂Cl₂ by ¹⁹F NMR at 20°C.
- p. S17, Figure S15. ¹¹B NMR of Et₄N[H1(BAr^F₃)₂] in CD₂Cl₂ at 20°C.
- p. S18, Figure S16. Isomerization of the hydride signals of Et₄N[H1(BPh₃)₂] in CD₂Cl₂ by ¹H NMR at 20°C.
- p. S19, Figure S17. Isomerization of the BPh₃ signals of Et₄N[H1(BPh₃)₂] in CD₂Cl₂ by ¹H NMR at 20°C.
- p. S20, Figure S18. Isomerization of Et₄N[H1(BAr^{F#}₃)₂] in CD₂Cl₂ monitered by ¹H NMR at 20°C.
- p. S21, Figure S19. Isomerization of $Et_4N[H1(BAr^{F\#}_3)_2]$ in CD_2Cl_2 monitered by ¹⁹F NMR at 20°C.
- p. S22, Figure S20. ¹H NMR of hydride signals of $Et_4N[H3(BPh_3)_2]$ in CD_2Cl_2 at 20°C.
- p. S23, Figure S21. Oxidation of $(Et_4N)_2[1(BAr^F_3)_2]$ in CH₂Cl₂ by Cyclic Voltamogramm.
- p. S24, Figure S22. Oxidation of $(Et_4N)_2[1(BPh_3)_2]$ in CH_2Cl_2 by Cyclic Voltamogramm.
- p. S25, Figure S23. Oxidation of $(Et_4N)_2[1(BAr^{F\#}_3)_2]$ in CH_2Cl_2 by Cyclic Voltamogramm.
- p. S26, Figure S24. Reduction of $Et_4N[H1(BAr^{F_3})_2]$ in CH_2Cl_2 by Cyclic Voltamogramm.
- p. S27, Figure S25. Reduction of Et₄N[H1(BPh₃)₂] in CH₂Cl₂ by Cyclic Voltamogramm.
- p. S28, Figure S26. Reduction of $Et_4N[H1(BAr^{F\#}_3)_2]$ in CH_2Cl_2 by Cyclic Voltamogramm.
- p. S29, Figure S27. Oxidation of $Et_4N[H1(BAr^{F_3})_2]$ in CH_2Cl_2 by Cyclic Voltamogramm. p. S30, Figure S28. Oxidation of $Et_4N[H1(BAr^{F_3})_2]$ in CH_2Cl_2 by Cyclic Voltamogramm.
- p. S30, References

Experimental Procedures

K₂[Fe₂(adt)(CO)₄(CN)₂], K₂[3]

A two-necked Schlenk flask was charged with $Fe_2(adt)(CO)_6$ (0.1 g, 0.26 mmol) and KCN (0.050 g, 0.78 mmol) and suspended in MeCN (20 mL). The mixture was refluxed for 6 h and was mointered by IR for completeion. The mixture was filtered through Celite and the filtrate was dried under vacuum. The resulting solid was washed with Et₂O (20 mL) and hexanes (20 mL) and dried under vacuum. Yield 0.090 g (76%). IR (MeCN, cm⁻¹): $v_{CN} = 2078$; $v_{CO} = 1969$, 1929, 1893.

$(Et_4N)_2[Fe_2(pdt)(CO)_4(CNBPh_3)_2], (Et_4N)_2[1(BPh_3)_2]$

A solution of $(Et_4N)_2$ [1] (0.50 g, 0.78 mmol) in CH₂Cl₂ (20 mL) was treated with a solution of BPh₃ (0.38 g, 1.6 mmol) in 20 mL CH₂Cl₂ dropwise. The solvent was evaporated to yield a red oil that was extracted into CH₂Cl₂ (10 mL), layered with pentane (30 mL) and cooled at -30° C for two days producing a red oil. The filtrate was decanted off and the oil was triturated with pentane (3 x 10 mL) to produce a red solid. Yield 0.83 g (94%). Anal. Calcd for C₆₁B₂Fe₂S₂H₇₆O₄N₄ (found): C, 65.03 (65.38); H, 6.80 (7.01); N, 4.97 (5.04). IR (CH₂Cl₂, cm⁻¹): v_{CN} = 2137; v_{CO} = 1984, 1946, 1911. ¹¹B NMR (CD₂Cl₂) δ -4.5. ¹H NMR (CD₂Cl₂): δ 7.50 (12H, d, *o*-Ar*H*); δ 7.13 (12H, t, *m*-Ar*H*); δ 7.01 (6H, t, *p*-Ar*H*); δ 2.44 (16H, m, (CH₃CH₂)₄N), δ 1.96 (4H, t, SCH₂CH₂CH₂S), δ 1.72 (2H, m, SCH₂CH₂CH₂), δ 0.84 (24H, t, (CH₃CH₂)₄N).

$(Et_4N)_2[Fe_2(adt)(CO)_4(CNBPh_3)_2], (Et_4N)_2[3(BPh_3)_2]$

A solution of $(Et_4N)_2$ [**3**] (0.050 g, 0.078 mmol) in CH₂Cl₂ (10 mL) was treated with a solution of BPh₃ (0.038 g, 0.16 mmol) in 10 mL CH₂Cl₂ dropwise. The mixture was filtered through celite and the solvent was evaporated to yield a red oi.1 The oil was triturated with pentane (3 x 10 mL) to produce a red solid. Yield 0.070 g (80%). Anal. Calcd for C₆₀B₂Fe₂S₂H₇₅O₄N₅ (found): C, 63.90 (63.75); H, 6.70 (6.85); N, 6.21 (5.85). IR (CH₂Cl₂, cm⁻¹): $v_{CN} = 2136$; $v_{CO} = 1986$, 1949, 1914.

Et₄N[Fe₂(µ-H)(pdt)(CO)₄(CNBPh₃)₂], Et₄N[H1(BPh₃)₂]

A solution of $(Et_4N)_2[1(BPh_3)_2]$ (100 mg, 0.089 mmol) in CH₂Cl₂ (3 mL) was treated with HCl in ether (0.087 mL, 2 M, 0.178 mmol) resulting in the color of the solution lightening and some percipitate forming. The reaction solution was cooled in a -30°C freezer to precipite Et₄NCl from solution and was then passed through a plug of celite. The solution was dried under vacuum and the resulting oil was triturated with pentane (3x10 mL) and left to dry under vacuum overnight, yielding a red solid. Yield 85 mg (96 %). IR (CH₂Cl₂, cm⁻¹) v_{CN} = 2180; v_{CO} = 2064, 2043, 2009. ¹H NMR (CD₂Cl₂): δ -13.2 (s Fe-*H*), δ -16.1 (s Fe-*H*), δ -19.2 (s Fe-*H*).

Run	Initial HB	Initial $[1(\mathbf{BR}_3)_2]^2$	Eq $[1(BR_3)_2]^2$	$Eq [H1(BR_3)_2]$	Eq HB	Eq B	pK _a
1	1.07	1	0.40	0.60	0.47	0.60	10.9
2	0.40	1	0.71	0.29	0.11	0.29	10.7
3	1.91	1	0.26	0.74	1.17	0.74	10.9

Table S1. pK_a Determination of $(Et_4N)_2[\mathbf{1}(BAr_3^F)_2]$ with PhNH₃BAr^{F24} in MeCN.

 $pK_{a}^{MeCN} = 10.8 \pm 0.2$

Table S2. pK_a Determination of $(Et_4N)_2[1(BAr^{F\#}_3)_2]$ with PyHB	Ar ^{F24} in MeCN.
--	----------------------------

Run	Initial HB	Initial $[1(\mathbf{BR}_3)_2]^2$	Eq $[1(BR_3)_2]^2$	Eq $[H1(BR_3)_2]$	Eq HB	Eq B	pK _a
1	1.33	1	0.16	0.84	0.49	0.84	13.5
2	0.66	1	0.42	0.58	0.08	0.58	13.5
3	2.08	1	0.09	0.91	1.17	0.91	13.4

 $pK_{a}^{MeCN} = 13.5 \pm 0.1$

Bond Distances (Å)	$[1(BAr^{F}_{3})_{2}]^{2}$	$[1]^2$
Fe-Fe	2.519(1)	2.517(2)
Fe-CN _{avg}	1.873(6)	1.93(1)
C≡N _{avg}	1.158(8)	1.16(2)
Fe-CO _{avg}	1.761(10)	1.74(2)
C≡O _{avg}	1.156(10)	1.17(3)

Table S3. Selected Bond Distances of $[1(BAr_{3}^{F})_{2}]^{2}$ and $[1]^{2}$, 1

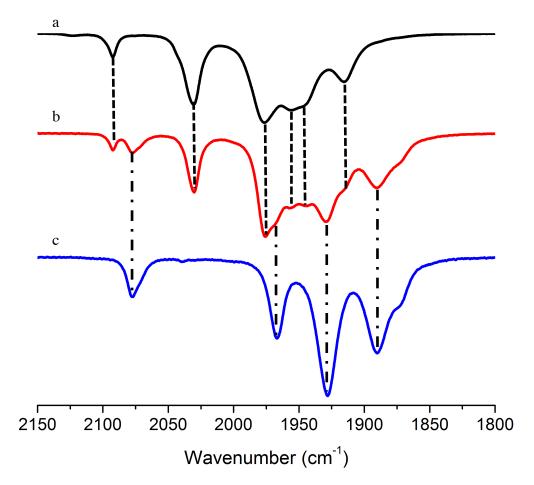


Figure S1. IR spectra in MeCN at 20°C. of a) K[2], b) reaction mixture for the synthesis of $K_2[1]$ and c) $K_2[1]$.

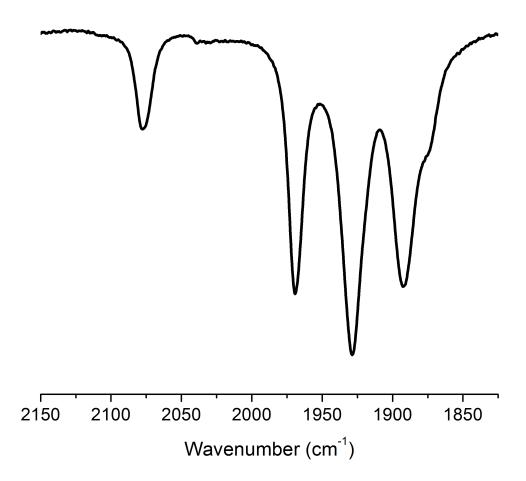


Figure S2. IR spectrum of $K_2[3]$ in MeCN at 20°C.

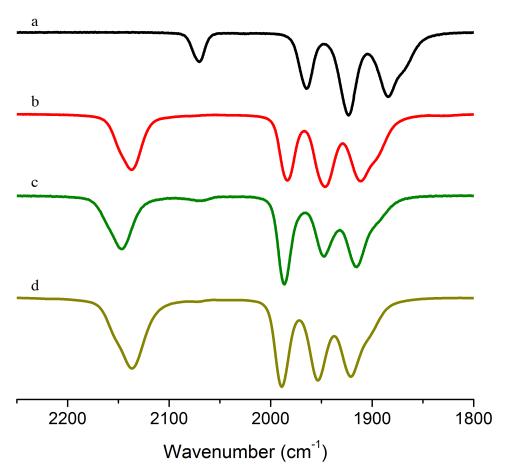


Figure S3. IR spectra of $(Et_4N)_2[1(BR_3)_2]$ complexes in CH_2Cl_2 at 20°C. a) $(Et_4N)_2[1]$, b) $(Et_4N)_2[1(BPh_3)_2]$, c) $(Et_4N)_2[1(BAr^{F_4}_3)_2]$, d) $(Et_4N)_2[1(BAr^{F_4}_3)_2]$.

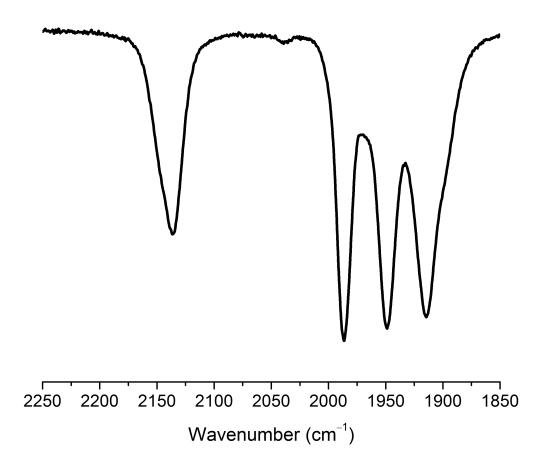


Figure S4. IR spectra of $(Et_4N)_2[3(BPh_3)_2]$ in CH_2Cl_2 at 20°C.

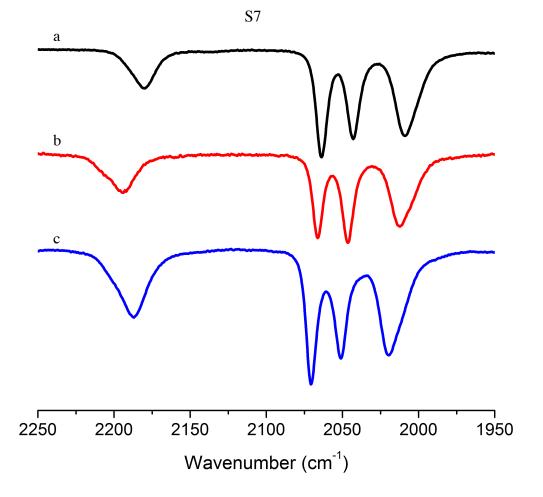


Figure S5. IR spectra of $Et_4N[H1(BR_3)_2]$ complexes in CH_2Cl_2 at 20°C. a) $Et_4N[H1(BPh_3)_2]$, b) $Et_4N[H1(BAr^{F_3})_2]$, c) $Et_4N[H1(BAr^{F_3})_2]$.

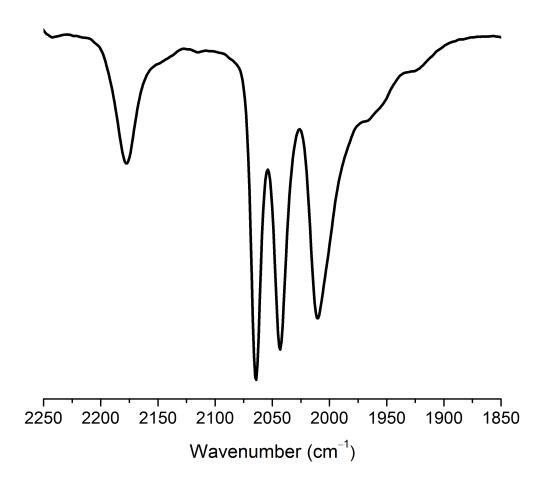


Figure S6. IR spectra of $Et_4N[H3(BPh_3)_2]$ in CH_2Cl_2 at 20°C.

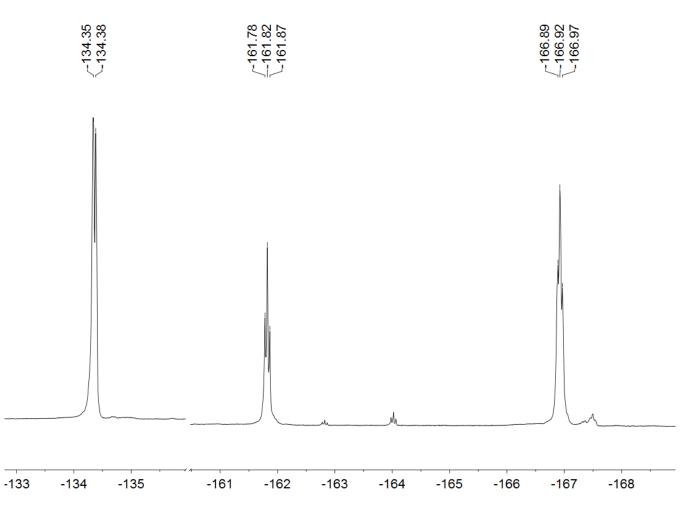


Figure S7. ¹⁹F NMR of $(Et_4N)_2[1(BAr^F_3)_2]$ in CD_2Cl_2 at 20°C.

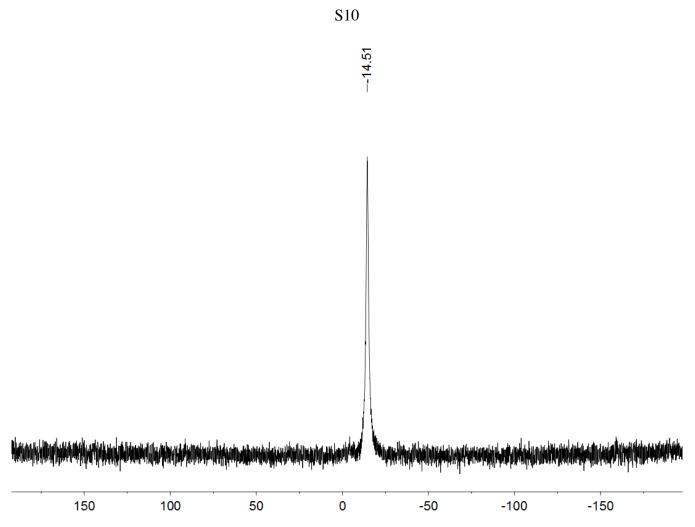


Figure S8. ¹¹B NMR of $(Et_4N)_2[\mathbf{1}(BAr^F_3)_2]$ in CD₂Cl₂ at 20°C.

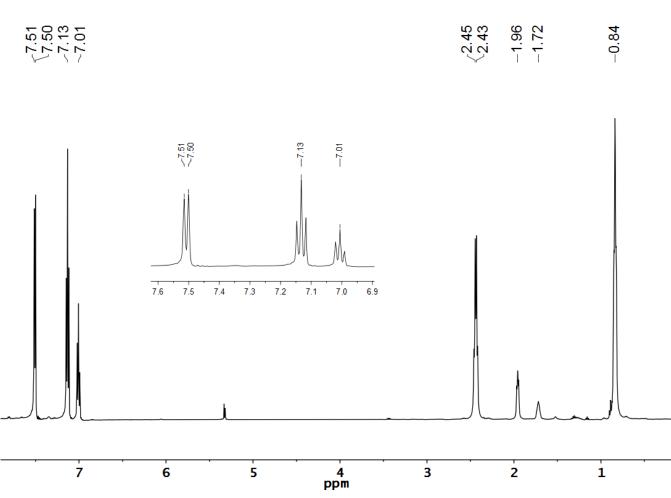


Figure S9. ¹H NMR of $(Et_4N)_2[1(BPh_3)_2]$ in CD_2Cl_2 at 20°C. Inset: ¹H NMR signals of aryl region.

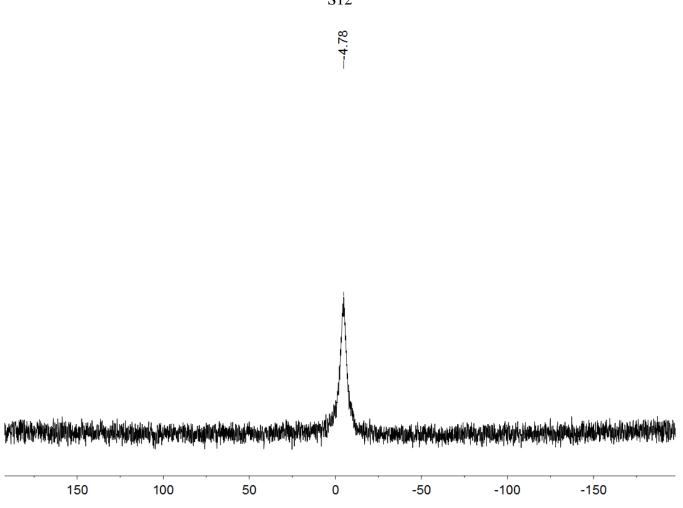


Figure S10. ¹¹B NMR of $(Et_4N)_2[1(BPh_3)_2]$ in CD_2Cl_2 at 20°C.

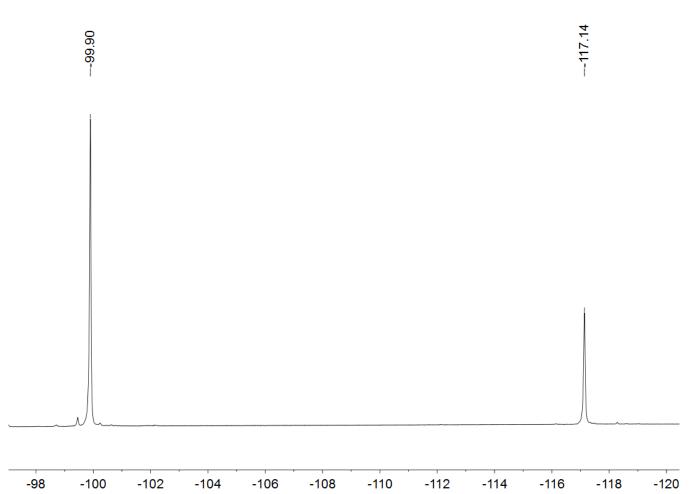
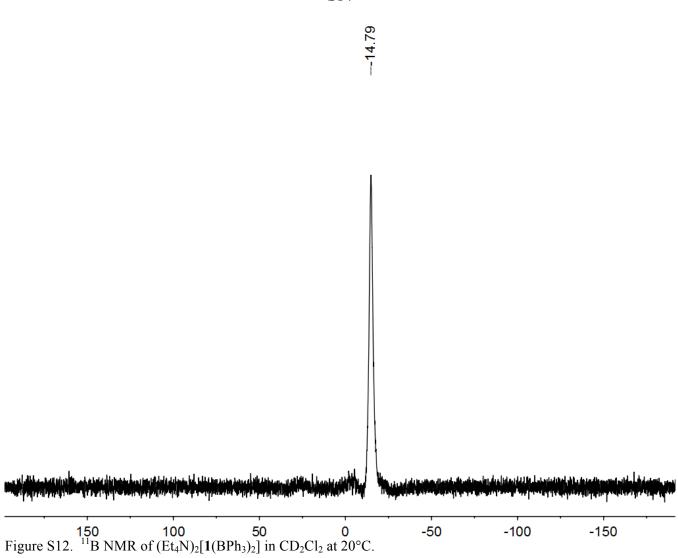



Figure S11. ¹⁹F NMR of $(Et_4N)_2[1(BAr^{F\#}_3)_2]$ in CD_2Cl_2 at 20°C.

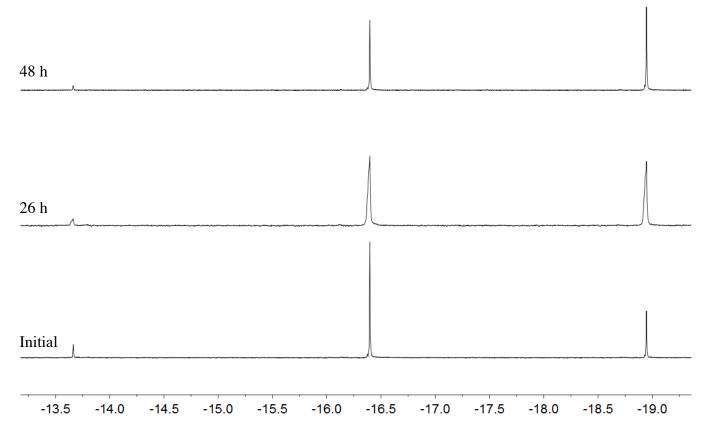


Figure S13. Isomerization of $Et_4N[H1(BAr_3)_2]$ in CD_2Cl_2 by ¹H NMR at 20°C.

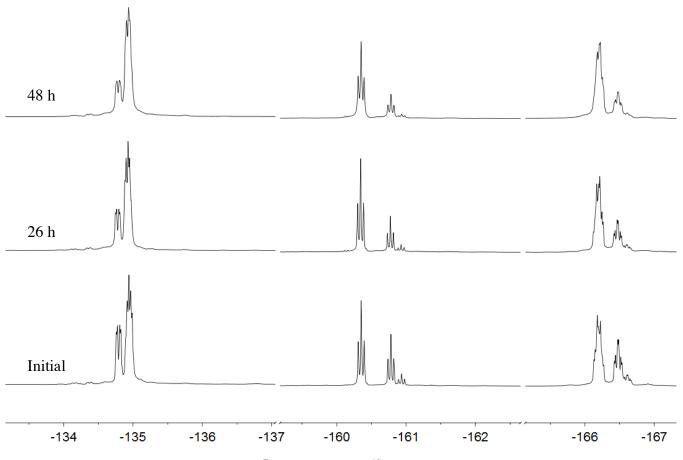
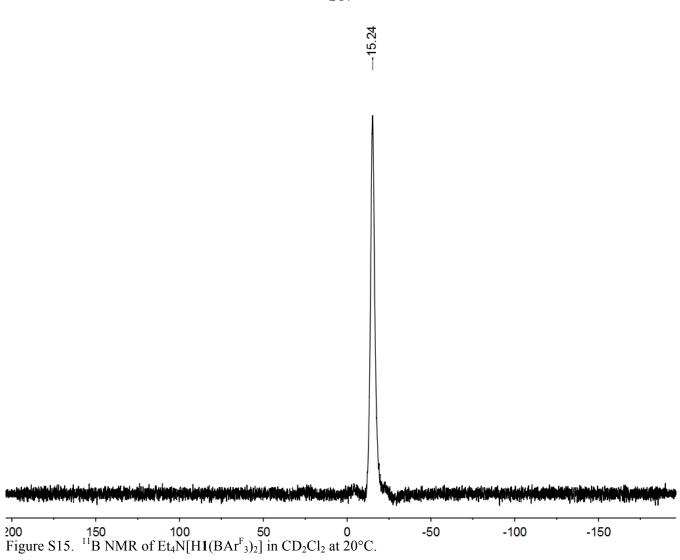



Figure S14. Isomerization of $Et_4N[H1(BAr^F_3)_2]$ in CD_2Cl_2 by ¹⁹F NMR at 20°C.

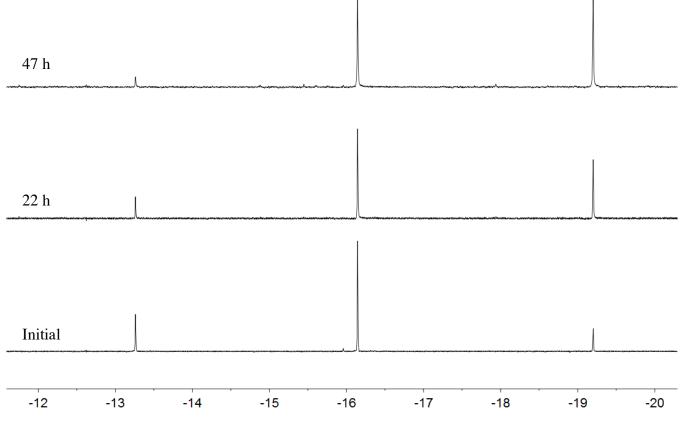


Figure S16. Isomerization of the hydride signals of $Et_4N[H1(BAr^F_3)_2]$ in CD_2Cl_2 by ¹H NMR at 20°C.

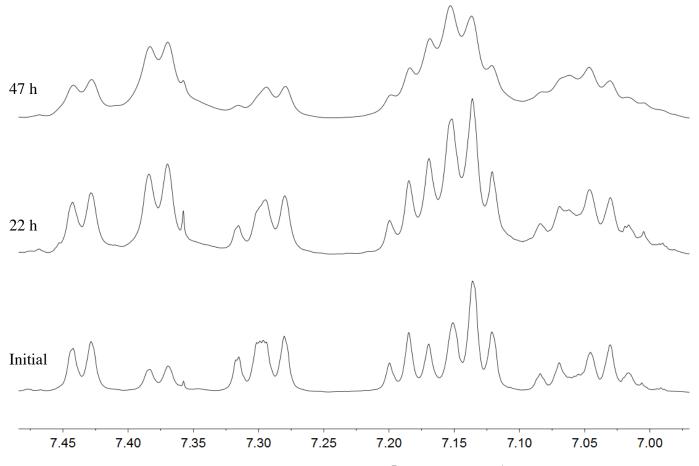


Figure S17. Isomerization of the BPh₃ signals of $Et_4N[H1(BAr^{F_3})_2]$ in CD_2Cl_2 by ¹H NMR at 20°C.

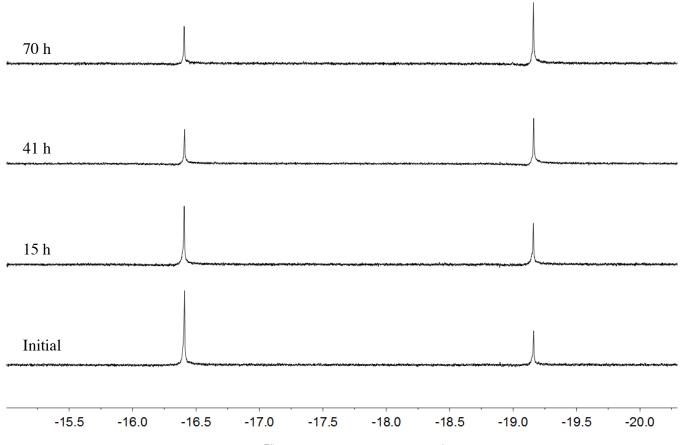


Figure S18. Isomerization of $Et_4N[H1(BAr^{F\#}_3)_2]$ in CD_2Cl_2 monitered by ¹H NMR at 20°C.

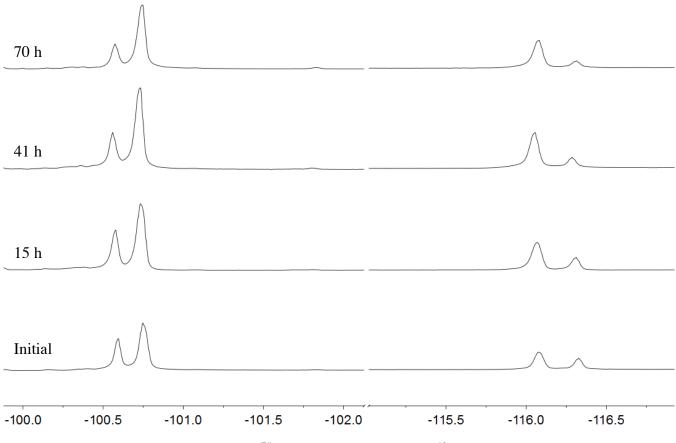
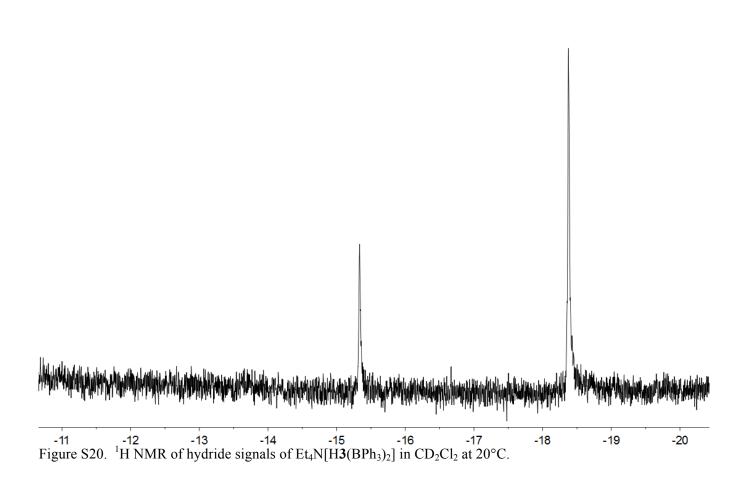



Figure S19. Isomerization of $Et_4N[H1(BAr^{F#}_3)_2]$ in CD_2Cl_2 monitered by ¹⁹F NMR at 20°C.

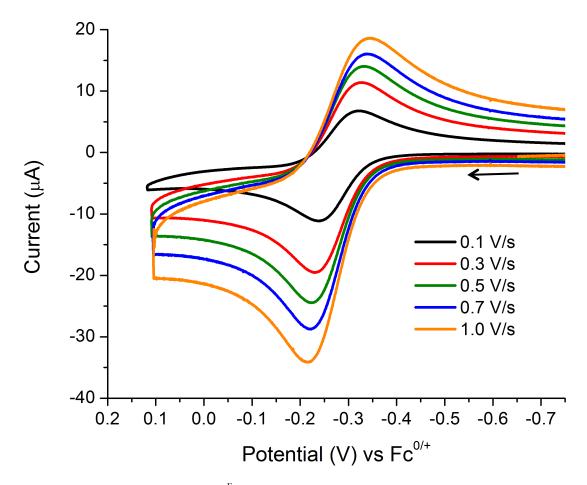


Figure S21. Oxidation of $(Et_4N)_2[1(BAr^F_3)_2]$ in CH_2Cl_2 by Cyclic Voltamogramm.

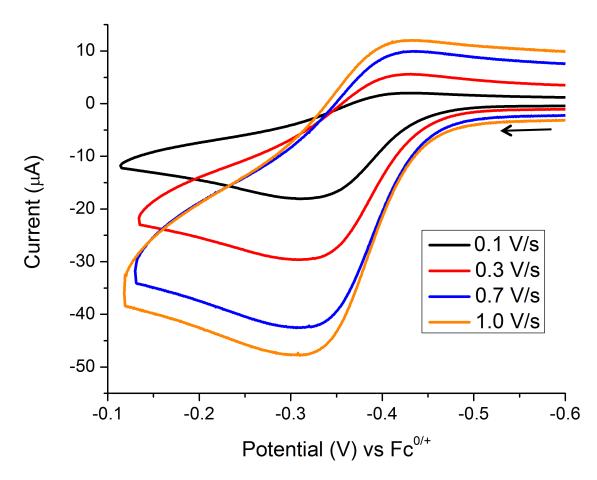


Figure S22. Oxidation of $(Et_4N)_2[1(BPh_3)_2]$ in CH_2Cl_2 by Cyclic Voltamogramm.

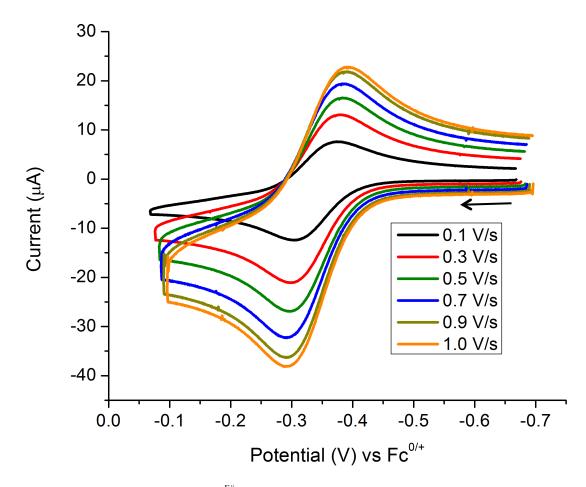


Figure S23. Oxidation of $(Et_4N)_2[1(BAr^{F\#}_3)_2]$ in CH_2Cl_2 by Cyclic Voltamogramm.

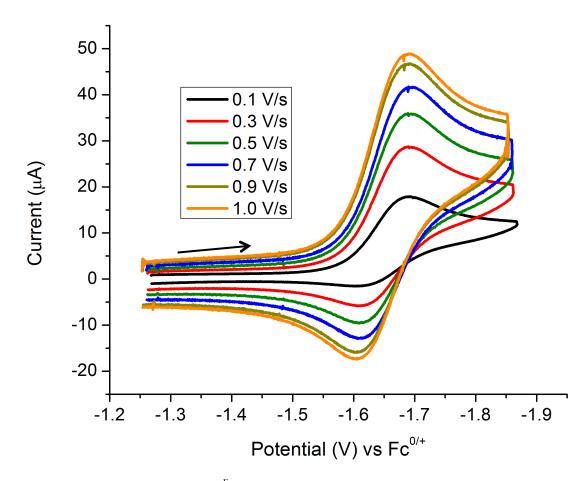


Figure S24. Reduction of Et₄N[H1(BAr^F₃)₂] in CH₂Cl₂ by Cyclic Voltamogramm.

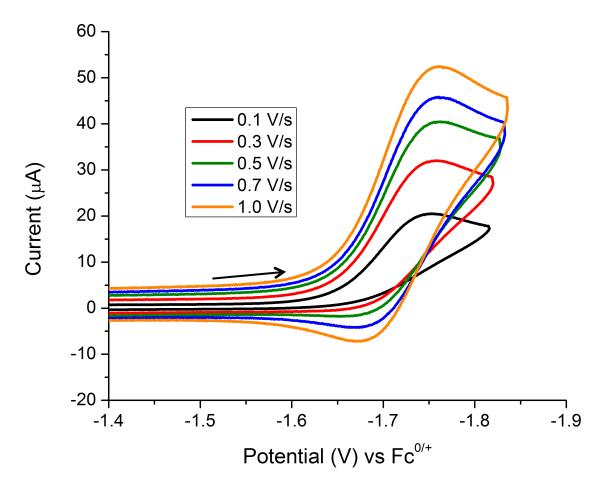


Figure S25. Reduction of Et₄N[H1(BPh₃)₂] in CH₂Cl₂ by Cyclic Voltamogramm.

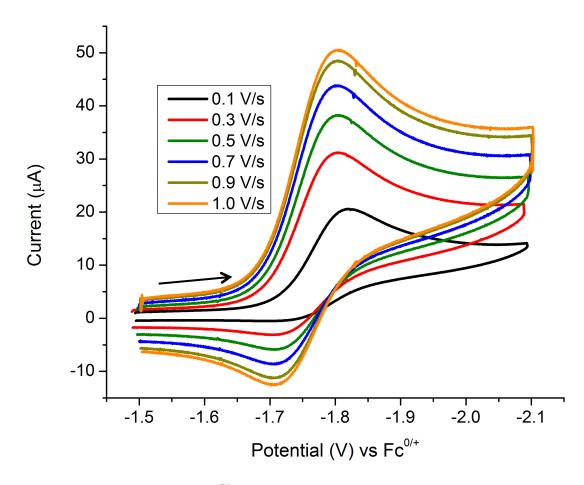


Figure S26. Reduction of $Et_4N[H1(BAr^{F\#}_3)_2]$ in CH_2Cl_2 by Cyclic Voltamogramm.

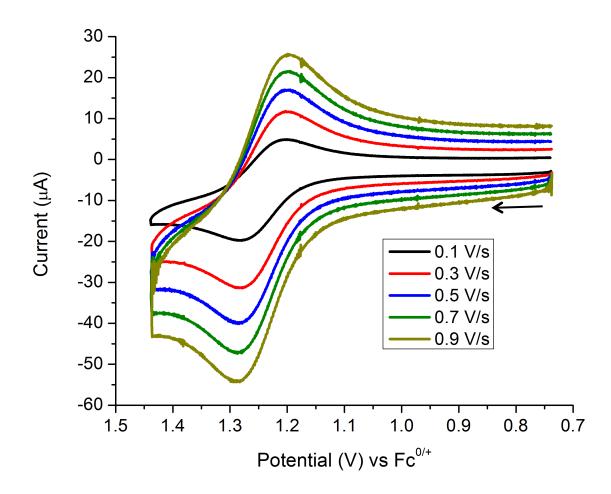


Figure S27. Oxidation of $Et_4N[H1(BAr^F_3)_2]$ in CH_2Cl_2 by Cyclic Voltamogramm.

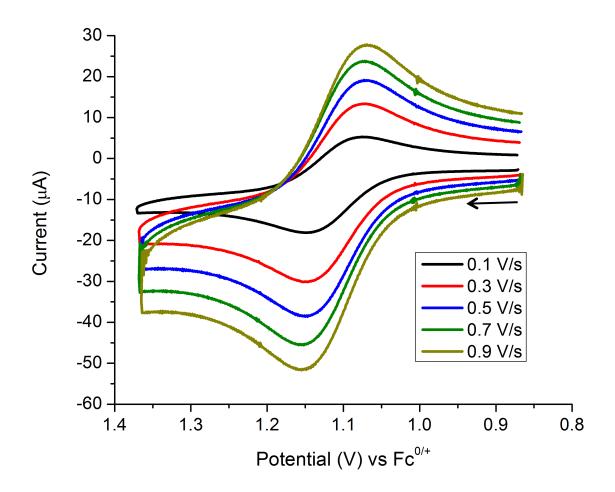


Figure S28. Oxidation of $Et_4N[H1(BAr^{F\#}_3)_2]$ in CH_2Cl_2 by Cyclic Voltamogramm.

References

(1) Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. J. Amer. Chem. Soc. 1999, 121, 9736.