Understanding the Role of Few-layer Graphene Nanosheets In Enhancing the Hydrogen Sorption Kinetics of Magnesium Hydride

Guang Liu^b, Yijing Wang^{a,*}, Lifang Jiao^a, Huatang Yuan^a

^a Institute of New Energy Material Chemistry, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin Key Lab on Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, P. R. China

Research Institute of Special Chemicals, Taiyuan University of Technology,
 Taiyuan 030024, Shanxi, P. R. China

*Corresponding Author: wangyj@nankai.edu.cn (Y.J. Wang)

Table S1. Different reaction models consistent with Avrami exponent $n\approx 1^{1-2}$.

Model equation	Description
α=kt	Surface controlled (chemisorption)
$1-(2\alpha/3)-(1-\alpha)^{2/3}=kt$	Contracting volume, 3-d growth diffusion controlled with decreasing interface velocity
$1-(1-\alpha)^{1/2}=kt$	Contracting volume, 2-d growth with constant interface velocity
$1-(1-\alpha)^{1/3}=kt$	Contracting volume, 3-d growth with constant interface velocity
$-\ln(1-\alpha)=kt$	Mampel equation (random nucleation approach)

Table S2. Grain size of MgH₂-5GNS and MgH₂ samples before and after cycling.

Sample	Crystallite size (nm)	
	Before cycling	After cycling
MgH ₂ -5GNS	7.3	19.5
MgH_2	10.8	32

Notes on calibration and conversion of TPD intensity to weight of hydrogen:

Before the TPD intensity calibrating, the calibration factor is necessary. Generally, the calibration was performed by using a 35.1 mL min⁻¹ high-purity hydrogen (99.999%) flow rate and 5 □/min heating rate. The calibration factor can be obtained from the equation as follow:

$$C_{f} = \frac{A(t)}{I(t)} \times F_{H_{2}} \tag{1}$$

Where C_f is the calibration factor, A(t) is the peak area at time t, I(t) is the peak intensity at time t and F_{H2} is the hydrogen flow rate.

Then the TPD performance of composites were measured by the same flow rate (H₂ was replaced by Ar) and heating rate as the process of calibration. Because there was only H₂ released during the decomposition process, the weight of hydrogen can be calculated from TPD curve by the follow equation:

$$wt\% = \left[\frac{A_{peak}}{C_f} \times \frac{M_{H_2}PV}{RT}\right]/m$$
 (2)

Here, wt% is the hydrogen weight, A_{peak} is the peak area of desorption, M_{H2} is molecular of H_2 , P is pressure, V is the volume of six-way valve, R is the gas constant, T is the temperature and m is the weight of the composites.

References:

- 1. Jeon, K.-J.; Moon, H. R.; Ruminski, A. M.; Jiang, B.; Kisielowski, C.; Bardhan, R.; Urban, J. J., Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. *Nat. Mater.* **2011**, *10*, 286-290.
- 2. Mao, J. F.; Guo, Z. P.; Yu, X. B.; Liu, H. K.; Wu, Z.; Ni, J., Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH2. *Int. J. Hydrogen Energy* **2010**, *35*, 4569-4575.