SUPPORTING INFORMATION ## Simple Preparation of Polyelectrolyte Complex Beads for the Long-Term Release of Small Molecules Udaka K. de Silva, Bernard E. Weik, and Yakov Lapitsky 1,2 ## A. Comparison of Bead Volumes to Parent Droplet Volumes The volumes of PAH/PSS solution droplets were estimated based on their weights and densities (where the densities were measured by weighing known volumes of the PAH/PSS solutions). The volumes of the PEC beads were consistently greater than those of the parent solution droplets, indicating that water was taken up by the droplets during PEC formation. **Table S1.** Average volumes of droplets and PEC beads (± standard deviation) at each polyelectrolyte solution composition. | Polyelectrolyte
Concentration | Droplet Volume (ml) | Bead Volume (ml) | |----------------------------------|---------------------|-------------------| | 1.2 M PSS/
0.4 M PAH | 0.025 ± 0.002 | 0.034 ± 0.001 | | 1.5 M PSS/
0.5 M PAH | 0.023 ± 0.001 | 0.030 ± 0.000 | | 1.8 M PSS/
0.6 M PAH | 0.025 ± 0.001 | 0.029 ± 0.002 | ¹ Department of Chemical and Environmental Engineering, University of Toledo, Toledo, Ohio 43606 ² School of Green Chemistry and Engineering, University of Toledo, Toledo, Ohio 43606 ## **B. PSS Leaching into Acid during PEC Formation** The PSS leached during PEC formation was measured after the 3-h incubation period in the acid using UV-Vis spectroscopy at $\lambda = 255$ nm ($\epsilon = 364.5$ M⁻¹cm⁻¹; see Figure S1 and Table S2). Table S3 compares the water loss upon drying to the theoretical initial water content of the beads (estimated based on the initial PAH/PSS concentration, and the measured water uptake/PSS leaching during PEC formation). The mass loss upon drying is a few percent lower than the theoretical initial water content because: (1) trace amounts of water still likely remain within the dried PEC beads; and (2) the simplified model analysis ignores the simple electrolytes (e.g., HCl and NaCl), which may remain entrapped within the beads. **Figure S1.** UV-Vis absorbance spectra for the release of PSS into 3 M acid solution (diluted 50 times) during the PEC formation process at the 1.5 M PSS/0.5 M PAH parent solution composition. **Table S2.** Percentage of the PSS leached into the acid solution during PEC formation. | Polyelectrolyte
Concentration | % of PSS
Released | |----------------------------------|----------------------| | 1.2 M PSS/
0.4 M PAH | 32.9 ± 0.01 | | 1.5 M PSS/
0.5 M PAH | 34.1 ± 0.02 | | 1.8 M PSS/
0.6 M PAH | 37.8 ± 0.01 | **Table S3.** Comparison of the average weight loss during drying to the theoretical water content (± standard deviations) present in the PEC beads after their formation. | Polyelectrolyte
Concentration | % Weight Loss
Upon Drying | Theoretical Water Content in PEC Beads (wt. %) | |----------------------------------|------------------------------|--| | 1.2 M PSS/
0.4 M PAH | 80.4 ± 0.0% | 86.4 ± 0.2 | | 1.5 M PSS/
0.5 M PAH | $78.0 \pm 0.5 \%$ | 83.0 ± 0.0 | | 1.8 M PSS/
0.6 M PAH | $75.9 \pm 0.1 \%$ | 79.2 ± 0.6 |