SUPPORTING INFORMATION

CO₂ Capture Efficiency, Corrosion Properties and Ecotoxicity Evaluation of Amine Solutions Involving Newly Synthesized Ionic Liquids

Xenophon L. Papatryfon^{1,2}, Nikolaos S. Heliopoulos², Igor S. Molchan³, Lawien F. Zubeir⁴, Nathan D. Bezemer⁴, Michalis K. Arfanis², Athanassios G. Kontos², Vlassis. Likodimos^{2,5}, Boyan. Iliev⁶, George Em. Romanos², Polycarpos. Falaras², Konstantinos. Stamatakis⁷, Konstantinos G. Beltsios¹, Maaike C. Kroon⁴, George E. Thompson³, Jessica. Klöckner⁶, Thomas J. S. Schubert⁶.

¹Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece.

²Department of Physical Chemistry, Institute for Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems (IAMPPNM), NCSR "Demokritos", 153 10 Aghia Paraskevi Attikis, Athens, Greece.

³School of Materials, The University of Manchester, Manchester, M13 9PL, UK.

⁴Separation Technology Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, Netherlands.

⁵ Solid State Physics Department, Faculty of Physics, University of Athens,

Panepistimioupoli, 157 84 Athens, Greece

⁶IOLITEC, Ionic Liquids Technologies GmbH, Salzstraße 184, D-74076 Heilbronn,

Germany.

⁷Institute of Biosciences and Applications NCSR "Demokritos", 153 10

AghiaParaskeviAttikis, Athens, Greece.

Corresponding author: groman@chem.demokritos.gr

1. Assumptions made for the derivation of the solution of the transient absorption equation.

(1) Gas dissolves through a one-dimensional (vertical) diffusion process, in which there is no convective flow in the liquid.

(2) A thin boundary layer between the gas and liquid phases exists, where the thermodynamic equilibrium is instantly established with the saturation concentration and where the concentration is constant all the time at a given temperature and pressure.

(3) Temperature and pressure are kept constant.

(4) The uptake occurs over a small change in the absorbed phase concentration and thereby constant diffusivity is assumed.

(5) The uptake within the absorbent sample is very small compared to the capacity of the system, which is implicitly valid in the Henry's law regime, i.e. for a very dilute absorbed phase.

Table S1: The chemical structures of the ILs examined in this work.

Ionic Liquid	Assay	Water	Anion	Cation	Halides	
	NMK	content	(IC*)	(IC)	(IC)	
		(%)				
1-ethyl-3-methyl-imidazolium tricyanomethanide	>98%	0.093	99.9%	99.7 %	<0.5%	
1-butyl-3-methyl-imidazolium tricyanomethanide	>98%	0.072	99.8%	98.9%	<0.5%	
1-hexyl-3-methyl-imidazolium tricyanomethanide	>98%	0.039	99.9%	99.8%	<0.5%	
1-octyl-3-methyl-imidazolium tricyanomethanide	>98%	0.012	99.9%	99.5%	<0.5%	
1-ethyl-3-methyl-imidazolium acetate	>95%	0.385	99.6 %	99.7 %	<0.1%	
Pyrrolidium-2-one trifluoroacetate	>98%	0.082	>98%	>98%	<0.1%	
1-ethyl-3-methyl-imidazolium lysinate	>98%	1.355	-	-	-	
1-ethyl-3-methyl-imidazolium serinate	>98%	1.084	-	-	-	
Pyrrolidium-2-one bis(trifluoromethylsulfonyl)imide	>98%	0.080	>98%	>98%	<0.5%	
*I C1 1						

Table S1: Ion purity, water content and halides content in the IL samples examined.

*Ion Chromatography

Figure S1: (a) Ion Chromatogram (anion) of [EMIM][TCM] showing chlorine content of 0.01%. (b) Ion chromatogram (anion) of [HMIM][TCM]. (c) Ion chromatogram (cation) of [HMIM][TCM].

Peak number	Retention time	Area	Height	Concentration	Area ratio	Component name
	min	(mV) x min	mV	mg/L	%	
1	17,555	19,1284	20,025	invalid	100,000	

Sample data

Ident	
Measured by IOLITEC	
Determination start	
Info	
Info bb-k12	
Saule	

Peak number	Retention time	Area	Height	Concentration	Area ratio	Component name
	min	(mV) x min	mV	mg/L	%	
1	1,823	0,0123	0,071	invalid	0,087	
2	2,038	0,0084	0,051	invalid	0,059	
3	3,680	14,1517	37,497	invalid	99,854	

(c)

Figure S2: Dynamic TGA analysis of the ILs examined in this work and the respective derivatives. The analysis was carried out in a nitrogen environment and the temperature was raised by 5 °C/min. The thermographs show that the [TCM] anion based ILs exhibit the highest thermal stability (above 300°C) whereas the aminoacid anion based ILs ([EMIM][LYS] and [EMIM][SER]) start to decompose at around 200°C. The [BHC][BTA] presented two degradation stages with the first one occurring at 157°C. The thermal degradation of [EMIM][OAc] started at 203°C whereas the [BHC][TFA] had lost significant amount of mass from 100°C which is attributed to evaporation.

Figure S3: Isothermal TGA analysis of the aminoacid anion based ILs examined in this work. In thermographs (a, b) the analysis is carried out in a nitrogen environment and the temperature was raised by 5 °C/min. Both thermographs included an isothermal step at 100°C for 12 hours where the two ionic liquids had lost 3% of their weight when the water content is 1.4 wt% and 1.7 wt% for [EMM][SER] and [EMIM][LYS] respectively. At 150°C isotherm they showed a clear decomposition (the thermograph is not included). Because of the high water content of the [EMIM][LYS] and in order to accurately define the onset of its decomposition we performed a more detailed and longer thermal analysis and the results are presented in thermograph (c). The analysis was carried out under high vacuum (10^{-4} mbar) and the temperature was raised by 10° C every 10-15 hours. It can be seen that the rate of mass loss becomes significant above 70°C. From the thermograph it can be deduced that the onset of [EMIM][LYS] decomposition is somewhere between 80 and 90°C in good accordance with the continuous degradation of the CO₂ capture performance of the solvent composed of [EMIM][LYS], [EMIM][SER] and water which was regenerated at 96°C.

Figure S4: Macroscopic view of the MS specimens after treatment in (a) MIX B, (b) DEA 7%, MDEA 6.9%, (c) [EMIM][OAc] 20%.

