Reduced UV-induced Reverse Current and Higher V_{OC} in ZnO-based Solar Cells by a Chemically Modified Blocking Layer

Eran Edri¹, Nir Kedem¹, Hagai Cohen², Piers Barnes³ and Gary Hodes¹

Supporting Information.

Different compact layers.

Current-Voltage curves of ZnO\CdS\CuSCN solar cells with different compact layers, namely spin-coated ZnO (thin blue lines), natively grown ZnO (std-ZnO; red lines) and Sb incorporated compact layer (dl-ZnO; thick green lines). The increase in voltage in dl-ZnO cells is clearly seen, while the current does not change significantly.

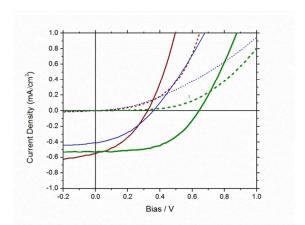


Figure S1. J-V curve of ZnO\CdS\CuSCN cells with spin coated ZnO compact layer (thin; blue lines), natively grown ZnO dense layer (std-ZnO; medium thickness; red lines), Sb incorporated ZnO compact layer (thick; green lines).

¹Dept. of Materials and Interfaces. Weizmann Institute of Science, Rehovot 76100, Israel.

²Dept. of Chemical Research Support. Weizmann Institute of Science, Rehovot 76100, Israel.

³Department of Chemistry, Imperial College London, London SW7 2AZ, UK