# **Supporting Information**

# A New Cobalt-Salen Catalyst for Asymmetric Cyclopropanation. Synthesis of the Serotonin-Norepinephrine Reuptake Inhibitor (+)-Synosutine

James D. White\* and Subrata Shaw

Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003

# **Table of Contents:**

| General Experimental                                        | S2  |
|-------------------------------------------------------------|-----|
| Experimental Information and Characterization Data          | S3  |
| References                                                  | S20 |
| HPLC Traces, <sup>1</sup> H and <sup>13</sup> C NMR Spectra | S21 |

# **Experimental Section**

## General

Starting materials and reagents were obtained from commercial sources and were used without further purification. Solvents were dried by distillation from the appropriate drying reagents immediately prior to use. All solvents used for routine isolation of products and chromatography were reagent grade. Moisture- and air-sensitive reactions were carried out under an atmosphere of argon. Reaction flasks were flame dried under a stream of argon gas, and glass syringes were oven dried at 120 °C prior to use.

Unless otherwise stated, concentration under reduced pressure refers to a rotary evaporator at water aspirator pressure. Residual solvent was removed by vacuum pump at a pressure less than 0.25 mm of mercury.

Analytical thin-layer chromatography (TLC) was conducted using precoated TLC plates (0.2 mm layer thickness of silica gel 60 F-254). Compounds were visualized by ultraviolet light and/or by heating the plate after dipping in a 3-5% solution of phosphomolybdic acid in ethanol, 10% ammonium molybdate in water, a 1% solution of vanillin in 0.1 M sulfuric acid in methanol or 2.5% *p*-anisaldehyde in 88% ethanol, 5% water, 3.5% concentrated sulfuric acid and 1% acetic acid. Flash chromatography was performed with the indicated eluents on 230 - 400 mesh silica gel.

Optical rotations were measured with a polarimeter at ambient temperature using a 0.9998 dm cell with 1 mL capacity. Infrared (IR) spectra were recorded on a FT-IR spectrometer. Proton and carbon nuclear magnetic resonance (NMR) spectra were obtained using either a 400, 500 or 700 MHz spectrometer. All chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane using the  $\delta$  scale. <sup>1</sup>H NMR spectral data are reported in the

order: chemical shift, multiplicity (s = singlet, d = doublet, m = multiplet, and b = broad), coupling constant (J, in Hertz), and number of protons.

Low (MS) and high (HRMS) resolution mass spectra are reported with ion mass/charge (m/z) ratios as values in atomic mass units.  $\alpha$ -Methylstyrenes were prepared following literature method.<sup>1</sup>

#### 3-(tert-Butyl)-2-hydroxy-5-methoxybenzaldehyde (10)



To a solution of 2-(*tert*-butyl)-4-methoxyphenol (**9**, 721 mg, 4 mmol) in CH<sub>3</sub>CN (20 mL) at room temperature were added Et<sub>3</sub>N (2.8 mL, 20 mmol) and MgCl<sub>2</sub> (456 mg, 4.8 mmol) and the mixture was stirred for 15 min. Paraformaldehyde (600 mg, 20 mmol) was added and the solution was refluxed for 10 h. The solution was cooled to room temperature, poured into 1M aqueous HCl (100 mL) and stirred for 30 min at room temperature. The reaction mixture was extracted with ether (4 x 100 mL) and the organic layer was washed with brine (20 mL), dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (5% ether/hexanes) to obtain **10** (609 mg, 73%) as a yellow oil: IR (neat) 3534, 3301, 3062, 2925, 2854, 1622, 1598, 1508, 1472, 1422, 1378, 1206, 1149, 1967, 1030, 854, 836, 814, 749, 693 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  1.42 (s, 9H), 3.04 (s, 3H), 7.40 (s, 1H), 7.62 (s, 1H), 9.91 (s, 1H), 11.68 (s, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  29.7, 32.9, 54.7, 113.4, 119.3, 129.8, 140.3, 150.5, 152.1, 207.4.

# (+)-2,2'-[(1*R*,2*R*,4*R*,5*R*)-Bicyclo[2.2.2]octane-2,5-diylbis(nitrilomethylidine)]bis-2-*tert*butyl-4-methoxylphenol [(+)-11]



To a solution of (-)-**1** (86 mg, 0.61 mmol) in EtOH (15 mL) was added anhydrous MgSO<sub>4</sub> (367 mg, 3.05 mmol) followed by a solution of **10** (256 mg 1.23 mmol) in EtOH (5 mL). The suspension was refluxed for 4 h at which time a yellow precipitate had formed. The mixture was cooled to room temperature and the precipitate was filtered off. The crude solid was purified by flash chromatography on silica gel (5% EtOAc/hexanes) to give (+)-**11** (293 mg, 92%) as an amorphous yellow solid: mp 162 - 163 °C;  $[\alpha]^{25}_{\text{D}}$  + 96.6 (*c* 0.5 , CH<sub>2</sub>Cl<sub>2</sub>); IR (neat) 3358 (b), 1744, 1467, 1375, 1286, 1169, 1137, 1030, 891 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  1.38 (s, 9H), 1.73 (s, 3H), 1.91 - 2.01 (m, 1H), 2.12 - 2.24 (m, 1H) , 3.53 - 3.57 (m, 1H), 3.92 (s, 3H), 7.12 (d, *J* = 2.4 Hz, 1H), 7.38 (d, *J* = 2.4 Hz, 1H), 8.43 (s, 1H), 13.86 (s, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  23.9, 31.3, 31.6, 33.9, 34.2, 57.7, 67.5, 118.4, 128.6, 128.8, 137.1, 139.7, 159.0, 165.6; HRMS (EI) calcd for C<sub>32</sub>H<sub>44</sub>N<sub>2</sub>O<sub>4</sub> *m*/z 520.7131, found 520.7128.

## (+)-(1R,2R,4R,5R)-N,N'-Bis-(3-tert-butyl-5-methoxylsalicylidene)-2,5-

diaminobicyclo[2.2.2]octane Cobalt(II) [(+)-12]



To a solution of (+)-**11** (290 mg, 0.56 mmol) in EtOH (15 mL) was added a solution of  $Co(OAc)_2$  (99 mg, 0.56 mmol) in EtOH (2 mL) and the mixture was heated at reflux for 6 h, at which time an orange precipitate had formed. The mixture was cooled to room temperature and concentrated under reduced pressure. The crude residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and filtered. Concentration of the filtrate under vacuum provided (+)-**12** (324 mg, 94%) as an orange solid: mp > 260 °C;  $[\alpha]_{D}^{25}$  + 86.0 (*c* 0.26 CHCl<sub>3</sub>); IR (neat) 2949, 2859, 1606, 1594, 1548, 1528, 1458, 1411, 1361, 1314, 1252, 1178, 1108, 1084, 1011, 960, 867, 839 cm<sup>-1</sup>; HRMS (EI) calcd for C<sub>32</sub>H<sub>42</sub>CoN<sub>2</sub>O<sub>4</sub> *m/z* 577.4733, found 577.4716.

# **Representative Procedure for the Asymmetric Cyclopropanation of 1,1-Disubstituted ethylenes Catalyzed by Co-salen Complex** (+)-12:

To a solution of (+)-**12** (15  $\mu$ mol) in CH<sub>2</sub>Cl<sub>2</sub> (1.5 mL) was added KSAc (2 mg, 15  $\mu$ mol) and the mixture was stirred at room temperature for 1 h. Ethyl diazoacetate (32  $\mu$ L, 0.3 mmol) and 1,1-disubstituted ethylenes (0.45 mmol) were added to the reaction mixture and stirring was continued for the length of time specified in Tables 1-3.. The reaction mixture was passed through a short column of Celite which was eluted with CH<sub>2</sub>Cl<sub>2</sub>. The effluent was evaporated and the crude residue was purified by flash chromatography (SiO<sub>2</sub>, hexanes) to give the product. The enantiomeric excess of the pure product was determined by HPLC on a Daicel Chiralcel OD, AD, OJ, OD-H or AS-H column.

A procedure at 5 mmol scale was carried out with  $\alpha$ -methylstyrene (967 µL, 7.5 mmol) and ethyl diazoacetate (533 µL, 5 mmol) using (+)-12 (150 mg, 0.25 mmol, 5 mol%) and KSAc (33.3 mg, 0.25 mmol, 5 mol%) in anhydrous CH<sub>2</sub>Cl<sub>2</sub> (25 mL). The cyclopropane (*E*)-7 was obtained in 92% yield and 93% ee.

#### (1*R*,2*R*)-Ethyl 2-Methyl-2-phenylcyclopropanecarboxylate [(*E*)-7]



Pale yellow oil; *E*:*Z* ratio 31:1; 93% ee [Chiralcel OD-H, hexane:*i*-propanol 95:5, 0.5 mL/min, 215 nm, t<sub>R</sub> [(1*R*,2*R*), major] 14.4 min, t<sub>R</sub> [(1*S*,2*S*), minor] 16.9 min];  $[\alpha]_D^{22}$  - 291.1 (*c* 0.5, CH<sub>2</sub>Cl<sub>2</sub>), [lit<sup>2</sup>for (1*S*,2*S*) isomer  $[\alpha]_D^{20}$  + 286.0 (*c* 0.3, CHCl<sub>3</sub>); IR (neat) 2977, 2935, 1724, 1615, 1252, 1178, 1086, 1034, 848, 816, 790 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  1.26 (t, *J* = 7.4 Hz, 3H), 1.38 - 1.41 (m, 2H), 1.52 (s, 3H), 1.97 (dd, *J* = 8.2, 6.0 Hz, 1H), 4.10 - 4.19 (m, 2H), 7.16 -7.24 (m, 2H), 7.27 - 7.41 (m, 3H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  15.3, 19.8, 21.3, 27.8, 30.6, 60.6, 127.3, 128.6, 128.9, 146.2, 173.1.

#### (1*R*,2*R*)-Ethyl 2-ethyl-2-phenylcyclopropanecarboxylate (14)



Yellow oil; *E*:*Z* ratio 26:1; 92% ee [Chiralcel OD-H, hexane:*i*-propanol 93:7, 0.5 mL/min, 215 nm, t<sub>R</sub> [(1*R*,2*R*), major] 12.9 min, t<sub>R</sub> [(1*S*,2*S*), minor] 15.7 min];  $[\alpha]_D^{16}$  - 168.6 (*c* 0.25, CHCl<sub>3</sub>); IR (neat) 2985, 1732, 1370, 1332, 1268, 1188, 1152, 1035, 936 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  0.86 - 0.92 (m, 3H), 1.27 (t, *J* = 7.4 Hz, 3H), 1.53 - 1.56 (m, 2H), 1.84 - 1.93 (m, 1H), 1.97 - 2.03 (m, 1H), 2.74 - 2.82 (m, 1H), 3.87 - 3.95 (m, 2H), 7.42 - 7.48 (m, 2H), 7.53 - 7.61 (m,

1H), 7.96 - 8.01(m, 2H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  8.7, 14.2, 27.3, 31.9, 35.2, 63.9, 128.5, 129.2, 134.0, 136.6, 173.9; HRMS (EI) calcd for C<sub>14</sub>H<sub>19</sub>O<sub>2</sub> (M+H) *m/z* 219.0786, found 219.0778.

#### (1R,2R)-Ethyl 2-butyl-2-phenylcyclopropanecarboxylate (15)



Yellow oil; *E:Z* ratio 23:1; 90% ee [Chiralcel AS-H, hexane:*i*-propanol 98:2, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 8.5 min,  $t_R$  [(1*S*,2*S*), minor] 9.8 min]; [ $\alpha$ ]<sub>D</sub><sup>16</sup> - 139.0 (*c* 0.4, CHCl<sub>3</sub>); IR (neat) 2970, 2908, 1738, 1466, 1447, 1393, 1370, 1331, 1270, 1190, 1149, 1097, 1035, 948, 901, 889, 847 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  0.87 - 0.92 (m, 3H), 1.22 - 1.31 (m, 7H), 1.36 - 1.42 (m, 2H), 1.63 - 1.71 (m, 1H), 1.90 - 1.95 (m, 1H), 2.91 - 2.97 (m, 1H), 4.22 - 4.28 (m, 2H), 7.38 - 7.45 (m, 2H), 7.48 - 7.55 (m, 1H), 7.91 - 7.96 (m, 2H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  14.5, 15.6, 22.2, 23.1, 24.4, 25.9, 27.1, 38.6, 61.8, 127.7, 128.4, 129.4, 137.7, 176.8; HRMS (EI) calcd for C<sub>16</sub>H<sub>23</sub>O<sub>2</sub> (M+H) *m/z* 247.1698, found 247.1706.

#### (1R,2R)-Ethyl 2-(2-methoxyphenyl)-2-methylcyclopropanecarboxylate (16)



Colorless oil; *E*:*Z* ratio 30:1; 96% ee [Chiralcel AD, hexane:*i*-propanol 96.6:3.4, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 14.4 min,  $t_R$  [(1*S*,2*S*), minor] 17.2 min];  $[\alpha]_D^{16}$  - 264.2 (*c* 0.15, CHCl<sub>3</sub>); IR (neat) 2976, 2943, 1732, 1466, 1447, 1414, 1393, 1370, 1331, 1270, 1190, 1150, 1097, 1035 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  0.80 - 0.93 (m, 3H), 1.83 - 1.89 (m, 1H), 1.96 -

2.05 (m, 1H), 2.52 (s, 3H), 2.72 - 2.74 (m, 1H), 3.79 - 3.85 (m, 2H), 4.16 (s, 3H), 7.43 - 7.49 (m, 1H), 7.65 - 7.72 (m, 1H), 7.92 - 7.99 (m, 1H), 8.03 - 8.09 (m, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  12.2, 23.2, 23.9, 28.7, 30.5, 56.1, 62.3, 113.2, 120.8, 129.7, 130.6, 138.0, 158.7, 174.3; HRMS (EI) calcd for C<sub>14</sub>H<sub>19</sub>O<sub>3</sub> (M+H) *m/z* 235.1334, found 235.1327.

(1R,2R)-Ethyl 2-(furan-2-yl)-2-methylcyclopropanecarboxylate (17)



Colorless oil; *E:Z* ratio 23:1; 92% ee [Chiralcel OD-H, hexane:*i*-propanol 98:2, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 19.3 min,  $t_R$  [(1*S*,2*S*), minor] 22.5 min]; [ $\alpha$ ]<sub>D</sub><sup>16</sup> - 156.6 (*c* 0.12, CHCl<sub>3</sub>); IR (neat) 2985, 1735, 1466, 1447, 1414, 1370, 1332, 1270, 1190, 1150, 1035, 956, 866, 845 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  0.84 - 0.93 (m, 3H), 1.44 (s, 3H), 1.79 - 1.83 (m, 1H), 1.87 - 1.94 (m, 1H), 2.49 - 2.58 (m, 1H), 4.03 - 4.09 (m, 2H), 6.82 - 6.88 (m, 1H), 7.49 - 7.56 (m, 1H), 7.68 -7.73 (m, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  14.1, 23.4, 23.9, 28.6, 29.5, 61.8, 121.6, 123.6, 124.2, 146.7, 173.9; HRMS (EI) calcd for C<sub>11</sub>H<sub>15</sub>O<sub>3</sub> (M+H) *m/z* 195.1021, found 195.1020.

#### (1R,2R)-Ethyl 2-(2-ethoxy-2-oxoethyl)-2-phenylcyclopropanecarboxylate (18)



Yellow oil; *E:Z* ratio 25:1; 91% ee [Chiralcel OD-H, hexane:*i*-propanol 92:8, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 10.3 min,  $t_R$  [(1*S*,2*S*), minor] 11.9 min]; [ $\alpha$ ]<sub>D</sub><sup>16</sup> - 136.2 (*c* 0.22, CHCl<sub>3</sub>); IR (neat) 2970, 1741, 1466, 1447, 1414, 1370, 1332, 1268, 1189, 1152, 1035, 845 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  0.92 - 1.03 (m, 6H), 1.40 - 1.48 (m, 1H), 1.74 - 1.82 (m, 1H), 2.63 - 2.71 (m, 1H), 2.96 - 3.03 (m, 2H), 3.88 - 3.96 (m, 4H), 7.42 - 7.49 (m, 1H), 7.54 - 7.59 (m, 1H), 7.98 - 8.03 (m, 2H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  14.3, 14.6, 25.0, 28.2, 28.5, 58.4, 58.8, 126.3, 127.2, 129.6, 148.1, 170.9, 174.3; HRMS (EI) calcd for C<sub>16</sub>H<sub>20</sub>O<sub>4</sub>Na (M+Na) *m/z* 299.1259, found 299.1263.

#### Methyl 2-((1R,2R)-2-(ethoxycarbonyl)-1-methylcyclopropyl)benzoate (19)



Pale yellow oil; *E:Z* ratio 30:1; 95% ee [Chiralcel OD-H, hexane:*i*-propanol 99:1, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 25.2 min,  $t_R$  [(1*S*,2*S*), minor] 31.4 min]; [ $\alpha$ ]<sub>D</sub><sup>16</sup> - 92.7 (*c* 0.39, CHCl<sub>3</sub>); IR (neat) 3012, 2976, 1735, 1466, 1448, 1370, 1332, 1269, 1190, 1150, 1097, 1036, 894, 836 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  1.03 - 1.11 (m, 3H), 1.62 - 1.67 (m, 1H), 1.89 - 1.97 (m, 1H), 2.16 (s, 3H), 2.80 - 2.89 (m, 1H), 3.92 - 4.01 (m, 5H), 7.38 - 7.47 (m, 1H), 7.57 - 7.66 (m, 2H), 7.83 - 7.91 (m, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  13.0, 23.3, 24.0, 26.8, 27.4, 56.9, 61.2, 125.3, 126.7, 129.0, 133.4, 139.2, 156.8, 170.5, 173.4; HRMS (EI) calcd for C<sub>15</sub>H<sub>18</sub>O<sub>4</sub>*m/z* 262.3002, found 262.2997.

(1R,2R)-Ethyl 2-(3,4-dimethoxyphenyl)-2-methylcyclopropanecarboxylate (20)



Colorless oil; *E*:*Z* ratio 32:1; 94% ee [Chiralcel OD-H, hexane:*i*-propanol 97.5:2.5, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 14.6 min,  $t_R$  [(1*S*,2*S*), minor] 17.2 min]; [ $\alpha$ ]<sub>D</sub><sup>16</sup> - 226.1 (*c* 0.15, CHCl<sub>3</sub>); IR (neat) 2985, 2942, 2908, 1735, 1466, 1447, 1414, 1393, 1370, 1332, 1268, 1189, 1152, 1096, 1035, 955, 845, 786, 675 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  0.82 - 0.99 (m, 3H), 1.45 (s, 3H), 1.81 - 1.90 (m, 1H), 1.97 - 2.09 (m, 1H), 2.88 - 2.97 (m, 1H), 3.94 - 4.18 (m, 8H), 6.88 - 6.98 (m, 1H), 7.53 - 7.75 (m, 2H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  13.9, 25.6, 28.0, 29.7, 32.1, 56.4, 63.3, 111.9, 113.9, 117.5, 143.2, 147.3, 149.9, 173.2; HRMS (EI) calcd for C<sub>15</sub>H<sub>20</sub>O<sub>4</sub>Na (M+Na) *m/z* 287.1259, found 287.1262.

(1*R*,2*R*)-Ethyl 2-methyl-2-(thiophen-2-yl)cyclopropanecarboxylate (21)



Colorless oil; *E*:*Z* ratio 25:1; 90% ee [Chiralcel OD-H, hexane:*i*-propanol 96.5:3.5, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 15.1 min,  $t_R$  [(1*S*,2*S*), minor] 18.9 min];  $[\alpha]_D^{16}$  - 201.5 (*c* 0.12, CHCl<sub>3</sub>); IR (neat) 2985, 1740, 1370, 1332, 1269, 1190, 1150, 1036, 952, 837, 780 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  0.92 - 1.06 (m, 3H), 1.46 (s, 3H), 1.72 - 1.81 (m, 1H), 1.96 - 2.06 (m, 1H), 2.70 - 2.79 (m, 1H), 3.96 - 4.09 (m, 2H), 7.13 - 7.22 (m, 1H), 7.64 - 7.69 (m, 1H), 7.70 - 7.81 (m,

1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  13.5, 24.0, 25.9, 27.3, 29.3, 62.4, 128.6, 133.4, 134.7, 145.2, 191.9; HRMS (EI) calcd for C<sub>11</sub>H<sub>14</sub>O<sub>2</sub>S *m/z* 210.2853, found 210.2856.

(1*R*,2*R*)-Ethyl 2-methyl-2-(naphthalen-1-yl)cyclopropanecarboxylate (22)



Colorless oil; *E*:*Z* ratio 33:1; 96% ee [Chiralcel OD-H, hexane:*i*-propanol 99.5:0.5, 0.5 mL/min, 215 nm, t<sub>R</sub> [(1*R*,2*R*), major] 40.7 min, t<sub>R</sub> [(1*S*,2*S*), minor] 45.8 min];  $[\alpha]_D^{16}$  - 121.0 (*c* 0.25, CHCl<sub>3</sub>); IR (neat) 2979, 1751, 1463, 1441, 1370, 1332, 1264, 1185, 1099, 1034, 900, 845, 794 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  0.88 - 0.97 (m, 3H), 1.55 (s, 3H), 1.74 - 1.83 (m, 1H), 1.88 - 1.94 (m, 1H), 2.50 - 2.57 (m, 1H), 4.16 - 4.22 (m, 2H), 6.92 (d, *J* = 8.2 Hz, 1H), 7.36 - 7.43 (m, 1H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.58 - 7.63 (m, 2H), 7.93 (d, *J* = 7.8 Hz, 1H), 8.17 (d, *J* = 7.8 Hz, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  13.7, 25.2, 27.2, 28.1, 28.9, 62.7, 121.8, 125.4, 126.0, 126.4, 127.0, 127.9, 135.4, 148.8, 171.7; HRMS (EI) calcd for C<sub>17</sub>H<sub>18</sub>O<sub>2</sub>Na (M+Na) *m*/*z* 277.1204, found 277.1196.

### (1*R*,2*R*)-Ethyl 2-(3-methoxy-3-oxopropyl)-2-(p-tolyl)cyclopropanecarboxylate (23)



Pale yellow oil; *E:Z* ratio 27:1; 94% ee [Chiralcel OD-H, hexane:*i*-propanol 94:6, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 13.2 min,  $t_R$  [(1*S*,2*S*), minor] 15.1 min]; [ $\alpha$ ]<sub>D</sub><sup>16</sup> - 128.6 (*c* 0.4, CHCl<sub>3</sub>); IR (neat) 2986, 1735, 1466, 1447, 1414, 1370, 1332, 1268, 1186, 1152, 1096, 1035, 845 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  1.60 - 1.76 (m, 5H), 1.83 - 1.91 (m, 2H), 2.08 - 2.11 (m, 1H), 2.17 - 2.23 (m, 1H), 2.42 (s, 3H), 2.82 - 2.88 (m, 1H), 3.83 (s, 3H), 3.97 - 4.04 (2H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.93 (d, *J* = 7.9 Hz, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  22.1, 24.2, 27.8, 30.9, 31.6, 33.0, 58.6, 64.2, 129.2, 130.3, 135.0, 145.7, 174.6, 178.1; HRMS (EI) calcd for C<sub>17</sub>H<sub>22</sub>O<sub>4</sub> *m/z* 290.1692, found 290.1698.

Ethyl 2-((1*R*,2*R*)-2-(ethoxycarbonyl)-1-methylcyclopropyl)-5-phenylfuran-3-carboxylate (24)



Yellow oil; *E:Z* ratio 26:1; 97% ee [Chiralcel OD-H, hexane:*i*-propanol 90:10, 0.5 mL/min, 215 nm, t<sub>R</sub> [(1*R*,2*R*), major] 9.6 min, t<sub>R</sub> [(1*S*,2*S*), minor] 10.4 min];  $[\alpha]_D^{16}$  - 176.2 (*c* 0.61, CHCl<sub>3</sub>); IR (neat) 2976, 2908, 1732, 1466, 1447, 1414, 1393, 1370, 1331, 1270, 1190, 1150, 1097, 1035, 934, 867, 821, 781 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  1.31 - 1.47 (m, 6H), 1.80 - 1.87 (m, 1H), 2.02 - 2.09 (m, 1H), 2.68 (s, 3H), 2.89 - 2.99 (m, 1H), 4.27 - 4.46 (m, 4H), 6.58 (s, 1H), 7.29 - 7.36 (m, 1H), 7.39 - 7.48 (m, 2H), 7.62 - 7.73 (m, 2H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  13.9, 14.2, 24.9, 26.0, 26.7, 27.0, 57.8, 61.2, 106.8, 108.1, 124.0, 127.4, 128.1, 130.3, 158.5, 165.2, 170.3, 173.4; HRMS (EI) calcd for C<sub>20</sub>H<sub>22</sub>O<sub>5</sub>Na (M+Na) *m/z* 365.1385, found 375.1383.

(1*R*,2*R*)-Ethyl 2-propyl-2-(4-(trifluoromethyl)phenyl)cyclopropanecarboxylate (25)



Pale yellow oil; *E:Z* ratio 21:1; 92% ee [Chiralcel OD-H, hexane:*i*-propanol 95:5, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 19.4 min,  $t_R$  [(1*S*,2*S*), minor] 24.0 min]; [ $\alpha$ ]<sub>D</sub><sup>16</sup> - 79.3 (*c* 0.41, CHCl<sub>3</sub>); IR (neat) 2985, 1735, 1414, 1392, 1330, 1372, 1266, 1193, 1151, 1030, 920, 855 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  0.89 - 0.97 (m, 5H), 1.24 - 1.31 (m, 3H), 1.54 - 1.64 (m, 2H), 1.88 - 1.97 (m, 1H), 2.07 - 2.14 (m, 1H), 2.75 - 2.86 (m, 1H), 4.18 - 4.26 (m, 2H), 7.56 (d, *J* = 8.0 Hz, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  13.3, 13.9, 19.7, 21.1, 16.0, 32.4, 43.5, 62.2, 120.8, 122.2, 127.1, 128.0, 153.9, 171.7; HRMS (EI) calcd for C<sub>16</sub>H<sub>19</sub>F<sub>3</sub>O<sub>2</sub>Na (M+Na) *m/z* 323.1223, found 323.1225.

(1*R*,2*R*)-Ethyl 6'-methoxy-3',4'-dihydro-2'H-spiro[cyclopropane-1,1'-naphthalene]-2carboxylate (26)



Colorless oil; single diastereomer; 98% ee [Chiralcel OD-H, hexane:*i*-propanol 95:5, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 23.8 min,  $t_R$  [(1*S*,2*S*), minor] 30.2 min];  $[\alpha]_D^{16}$  - 128.6 (*c* 0.4, CHCl<sub>3</sub>); IR (neat) 2985, 2942, 2908, 1732, 1466, 1447, 1414, 1393, 1370, 1332, 1270, 1190,

1150, 1035, 955, 866, 845 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  1.12 - 1.20 (m, 3H), 1.22 - 1.36 (m, 6H), 1.63 - 1.71 (m, 1H), 1.85 - 1.90 (m, 1H), 2.73 - 2.79 (m, 1H), 3.77 (s, 3H), 4.17 - 4.26 (m, 2H), 6.87 (s, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  13.3, 19.1, 23.5, 26.5, 30.1, 30.4, 34.8, 56.0, 61.2, 113.4, 113.8, 127.0, 136.9, 142.1, 158.7, 173.2; HRMS (EI) calcd for C<sub>16</sub>H<sub>21</sub>O<sub>3</sub> (M+H) *m/z* 261.1509, found 261.1508.

### (1*R*,2*R*)-Ethyl 2-methyl-2-(naphthalen-1-ylmethyl)cyclopropanecarboxylate (27)



Yellow oil; *E:Z* ratio 18:1; 83% ee [Chiralcel OD-H, hexane:*i*-propanol 97:3, 0.5 mL/min, 215 nm, t<sub>R</sub> [(1*R*,2*R*), major] 18.8 min, t<sub>R</sub> [(1*S*,2*S*), minor] 23.7 min];  $[\alpha]_D^{16}$  - 46.8 (*c* 0.15, CHCl<sub>3</sub>); IR (neat) 3261, 2985, 2907, 1716, 1580, 1504, 1447, 1370, 1331, 1096, 1033, 847, 817, 763, 699 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  1.05 - 1.17 (m, 3H), 1.69 - 1.76 (m, 1H), 1.86 - 1.92 (m, 1H), 2.12 (s, 3H), 2.40 (s, 2H), 2.74 - 2.80 (m, 1H), 4.13 - 4.21 (m, 2H), 7.41 - 7.60 (m, 4H), 7.82 - 7.87 (m, 1H), 7.92 (d, *J* = 8.1 Hz, 1H), 8.03 (d, *J* = 8.1 Hz, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  17.0, 25.7, 26.2, 27.3, 31.9, 48.3, 62.9, 120.3, 125.0, 125.9, 126.3, 127.6, 128.4, 129.7, 132.8, 133.3, 134.0, 171.8; HRMS (EI) calcd for C<sub>18</sub>H<sub>20</sub>O<sub>2</sub>Na (M+Na) *m/z* 291.1381, found 291.1387.

### (1S,2R)-Ethyl 2-(phenylthio)-2-propylcyclopropanecarboxylate (28)



Pale yellow oil; *E*:*Z* ratio 16:1; 88% ee [Chiralcel OD-H, hexane:*i*-propanol 98:2, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 20.6 min,  $t_R$  [(1*S*,2*S*), minor] 27.3 min]; [ $\alpha$ ]<sub>D</sub><sup>16</sup> - 69.3 (*c* 0.4, CHCl<sub>3</sub>); IR (neat) 2985, 1751, 1467, 1447, 1392, 1370, 1332, 1265, 1185, 1096, 1034, 901, 858 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  0.92 - 0.96 (m, 3H), 0.97 - 1.02 (m, 3H), 1.39 - 1.58 (m, 2H), 1.62 - 1.72 (m, 2H), 1.81 - 1.87 (m, 1H), 1.93 - 2.02 (m, 1H), 2.89 - 2.97 (m, 1H), 4.22 - 4.27 (m, 2H), 7.37 - 7.46 (m, 2H), 7.49 - 7.56 (m, 1H), 7.91 - 7.97 (m, 2H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  16.5, 20.9, 28.3, 28.9, 32.2, 41.1, 64.5, 136.7, 141.9, 144.2, 146.9, 174.7; HRMS (EI) calcd for C<sub>15</sub>H<sub>20</sub>O<sub>2</sub>SNa (M+Na) *m/z* 287.1082, found 287.1089.

1-Naphthyl Thiophen-2-carboxylate (32)



To a solution of 2-thiophenecarbonyl chloride (**31**, 1.25 g, 8.53 mmol) in THF (30 mL) at 0°C was added a solution of 1-naphthol (**30**, 2.76 g, 19.15 mmol) in THF (20 mL) dropwise. After addition was complete, the solution was stirred at room temperature for 10 min and Et<sub>3</sub>N (2.8 mL, 20 mmol) was added. A colorless solid was precipitated immediately and the suspension was stirred for 14 h. The reaction mixture was quenched with 5M aquoues HCl (20 mL) and was extracted with  $CH_2Cl_2$  (4 x 120 mL). The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated in

vacuo, and the crude residue was purified by flash chromatography (SiO<sub>2</sub>-hexanes) to afford **32** (2.16 g, 100%) as an amorphous colorless solid; mp 73 - 74 °C, [lit<sup>3</sup> 70 - 75 °C]; IR (neat) 3295, 2980, 2934, 1738, 1698, 1650, 1580, 1560, 1463, 1428, 1408, 1367, 1244, 1195, 1151, 1084, 1022, 990, 941, 808, 760, 736 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  7.29 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.43 - 7.58 (m, 1H), 7.52 - 7.58 (m, 3H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.80 - 7.84 (m, 1H), 7.92 (d, *J* = 8 Hz, 1H), 7.97 - 8.05 (m, 1H), 8.12 - 8.16 (m, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  118.3, 121.6, 125.2, 126.0, 126.4, 126.7, 128.0, 128.2, 132.7, 133.5, 134.7, 134.9, 146.5, 161.0.

#### 2-(1-(Naphthalen-1-yloxy)vinyl)thiophene (33)



A solution of **32** (1.27 g, 5.0 mmol) in THF (10 mL) was syringed into a flask containing Tebbe reagent,<sup>4</sup> prepared from titanocene dichloride (1.91 g, 7.70 mmol) and trimethylaluminum (7.70 mL of 2M solution in toluene, 112 mmol), at room temperature. The slurry was stirred for 24 h at room temperature and was diluted with ether (15 mL). The reaction mixture was extracted with ether (2 x 10 mL), washed with 1M aqueous NaOH (2 x 10 mL), dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated. The crude residue was passed through a short path of neutral silica, eluting with ether (120 mL) containing 5% Et<sub>3</sub>N. The effluent was concentrated in vacuo and the crude residue was purified by flash chromatography on silica gel (95% hexanes, 5% Et<sub>3</sub>N) to give **33** (986 mg, 78%) as a brown oil; IR (neat) 2929, 2858, 1652, 1457, 1258, 1073, 750 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  4.29 (d, *J* = 3.1 Hz, 1H), 4.99 (d, *J* = 3.1 Hz, 1H), 7.05 - 7.10 (m, 1H), 7.26 - 7.29 (m, 1H), 7.30

- 7.34 (m, 1H), 7.42 -7.50 (m, 2H), 7.51 - 7.59 (m, 2H), 7.68 - 7.74 (m, 1H), 7.89 - 7.96 (m, 1H), 8.18 - 8.23 (m, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>) δ 90.7, 114.8, 116.9, 122.3, 124.7, 124.9, 125.8, 125.9, 126.3, 127.0, 127.6, 128.0, 135.3, 139.5, 151.7, 155.8.

(1R,2S)-Ethyl 2-(Naphthalen-1-yloxy)-2-(thiophen-2-yl)cyclopropanecarboxylate [(+)-34]



Yellow oil; *Z:E* ratio 17:1; 94% ee [Chiralcel OJ, hexane:*i*-propanol 94.5:5.5, 0.5 mL/min, 215 nm,  $t_R$  [(1*R*,2*R*), major] 21.8 min,  $t_R$  [(1*S*,2*S*), minor] 28.4 min];  $[\alpha]_D^{22}$  + 36.3 (*c* 0.5, CHCl<sub>3</sub>); IR (neat) 3473, 3029, 2931, 1735, 1496, 1454, 1380, 1260, 1174, 1037, 734, 697 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  1.21 (t, *J* = 6.9 Hz, 3H), 1.88 - 1.97 (m, 1H), 2.37 (s, 3H), 1.97 (dd, *J* = 8.2, 6.0 Hz, 1H), 2.38 (t, *J* = 6.7 Hz, 1H), 2.79 (dd, *J* = 9.9, 7.5 Hz, 1H), 4.01 (q, *J* = 6.9 Hz, 2H), 6.81 - 6.91 (m, 1H), 7.02 - 7.05 (m, 1H), 7.05 - 7.15 (m, 1H), 7.16 - 7.21 (m, 1H), 7.22 - 7.27 (m, 1H), 7.28 - 7.30 (m, 1H), 7.32 - 7.40 (m, 2H), 7.41 - 7.47 (m, 1H), 7.67 - 7.72 (m, 1H), 8.12 - 8.22 (m, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  15.5, 24.2, 32.9, 61.8, 63.4, 108.4, 121.6, 122.0, 124.8, 125.2, 125.9, 126.2, 126.9, 127.7, 127.9, 128.1, 134.5, 135.6, 151.8, 169.3; HRMS (EI) calcd for C<sub>20</sub>H<sub>19</sub>O<sub>3</sub>S (M+H) *m/z* 339.1055, found 339.1055.

(1R,2S)-2-(Naphthalen-1-yloxy)-2-(thiophen-2-yl)cyclopropanecarboxylic Acid [(+)-35]



To a solution of (+)-**34** (113 mg, 0.33 mmol) in THF (8 mL) was added LiOH.H<sub>2</sub>O (48 mg, 2 mmol) followed by H<sub>2</sub>O (2 mL). The mixture was stirred at room temperature for 24 h and was acidified with 1M HCl to pH 6. The reaction mixture was extracted with ether (2 x 50 mL), dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated to obtain (+)-**35** (99 mg, 96%) as a white solid; mp 169 - 170 °C, [lit<sup>3</sup> for racemate 167 - 168 °C];  $[\alpha]_D^{20}$  + 54.2 (*c* 0.4, MeOH), [lit<sup>3</sup> for (1*S*,2*R*) isomer  $[\alpha]_D^{25}$  - 51.4 (*c* 0.07, CHCl<sub>3</sub>)]; IR (neat) 3537, 2983, 2938, 1739, 1465, 1445, 1407, 1368, 1282, 1176, 1114, 1027 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  1.99 (dd, *J* = 9.1, 6.2 Hz, 1H), 2.12 (t, *J* = 7.3 Hz, 1H), 2.83 (dd, *J* = 9.1, 8.3 Hz, 1H), 6.94 (dd, *J* = 5.2, 4.7 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 7.20 - 7.29 (m, 3H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 3.1 Hz, 1H), 7.62 (d, *J* = 3.1 Hz, 1H), 7.72 - 7.76 (m, 1H), 8.18 - 8.22 (m, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  20.9, 33.7, 64.2, 110.2, 120.4, 120.8, 121.3, 121.7, 122.0, 123.4, 125.6, 128.6, 129.8, 129.7, 138.7, 144.3, 158.7, 173.5.

(1*R*,2*S*)-N-Methyl-2-(naphthalen-1-yloxy)-2-(thiophen-2-yl)cyclopropanecarboxamide [(-)-36]



To a solution of (+)-**35** (95 mg, 0.306 mmol) in THF (6 mL) was added Hunig's base (160  $\mu$ L, 0.918 mmol) followed by 4-dimethylaminopyridine (4 mg, 0.31 mmol), methylamine hydrochloride (62 mg, 0.918 mmol), 1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide methiodide (182 mg, 0.612 mg) and the reaction mixture was stirred at room temperature for 13 h. The solvent of the reaction mixture was removed under reduced pressure and the crude residue was purified by flash chromatography on silica gel (0 - 10% ethyl acetate in hexanes) to give (-)-**36** (98 mg, 99%) as a pale yellow oil;  $[\alpha]_D^{16}$  - 59.9 (*c* 0.22, CHCl<sub>3</sub>), [lit<sup>3</sup> for (1*S*,2*R*) isomer  $[\alpha]_D^{25}$  + 59.4 (*c* 0.36, CHCl<sub>3</sub>)]; IR (neat) 3210, 1769, 1701, 1427, 1320, 1294, 1244, 1320, 1294, 1244, 1179, 917, 852, 815 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  2.11 - 2.24 (m, 2H), 2.33 - 2.41 (m, 1H), 2.92 (d, *J* = 4.2 Hz, 3H), 5.93 (br. S, 1H), 6.95 - 7.09 (m, 3H), 7.18 - 7.32 (m, 2H), 7.41 - 7.50 (m, 2H), 7.82 (dd, *J* = 6.2, 3.1 Hz, 1H), 8.23 (dd, *J* = 6.1, 3.1 Hz, 1H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  21.7, 15.9, 34.8, 62.6, 108.7, 121.8, 123.4, 123.9, 124.3, 124.5, 125.9, 126.7, 127.8, 128.4, 129.1, 134.5, 144.8, 153.4, 168.0.

*N*-Methyl-1-((1*S*,2*S*)-2-(naphthalen-1-yloxy)-2-(thiophen-2-yl)cyclopropyl)methanamine hydrochloride [(+)-29]



To a solution of (-)-**36** (96 mg, 0.296 mmol) in THF (5 mL) was added lithium aluminium hydride (45 mg, 1.187 mmol) and the mixture was refluxed for 4 h. The reaction mixture was cooled to 0  $^{\circ}$ C and was quenched by aqueous ammonium chloride. The reaction mixture was

extracted in ethyl acetate (2x25 mL), evaporated and treated with 1(M) HCl in ether (1 mL). A white precipitate formed which was filtered, washed with ether and dried to obtain (+)-**29** (89 mg, 87%) as a colorless solid; mp 251 - 252 °C [lit.<sup>3</sup> 252 °C ];  $[\alpha]_D^{16}$  + 51.2 (*c* 0.22, CHCl<sub>3</sub>), [lit<sup>3</sup>  $[\alpha]_D^{20}$  + 51.4 (*c* 0.07, CHCl<sub>3</sub>)]; IR (neat) 3529, 3346, 3052, 2661, 1630, 1596, 1577, 1514, 1494, 1457, 1276, 1241, 1206, 1148, 1083, 1043, 1015, 961, 878, 794, 770, 699 cm<sup>-1</sup>; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  1.49 - 1.57 (m, 1H), 1.97 - 2.10 (m, 2H), 2.81 - 2.94 (m, 3H), 3.36 - 3.45 (m, 2H), 6.90 - 6.94 (m, 1H), 6.95 - 7.02 (m, 1H), 7.04 - 7.24 (m, 3H), 7.42 (d, *J* = 8.1 Hz, 1H), 7.45 - 7.53 (m, 2H), 7.80 (d, *J* = 8.1 Hz, 1H), 8.22 - 8.28 (m, 1H), 9.81 (br, s, 2H); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  21.8, 26.3, 48.1, 61.4, 83.6, 108.8, 121.3, 121.9, 122.4, 122.8, 125.4, 125.5, 126.0, 126.9, 127.3, 128.0, 134.5, 143.7, 151.9.

### **References:**

- 1. Li, S.; Huang, K.; Cao, B.; Zhang, J.; Wu, W.; Zhang, X. Angew. Chem. Int. Ed. 2012, 34, 8701.
- 2. Berkessel, A.; Kaiser, P.; Lex, J. Chem Eur. J. 2003, 9, 4746.
- 3. White, J. D.; Juniku, R.; Huang, K.; Yang., J.; Wong, D. T. J. Med. Chem. 2009, 52, 5872.
- 4. Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611.













| Peak | RetTime | Type | Width  | A    | rea    | Heig | ht     | Area     |
|------|---------|------|--------|------|--------|------|--------|----------|
| #    | [min]   |      | [min]  | mAU  | *s     | [mAU | ]      | %        |
|      |         |      |        |      | ·      |      |        | <b> </b> |
| 1    | 14.422  | BB   | 0.6139 | 5009 | .19349 | 154  | .47652 | 96.1410  |
| 2    | 16.980  | VB   | 0.5782 | 201  | .06383 | 2    | .21761 | 3.8590   |

|                                   | er                                                                                                                           | HZ<br>HZ<br>Sec<br>Sec<br>K<br>K<br>Sec                                         | MH:<br>USE                                                 | MH5<br>HZ                                                    |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|
| ta Parameters<br>SS-6-137<br>2    | sition Paramet<br>20130316<br>18.26<br>298c4<br>2920<br>2030<br>2030<br>2535<br>6555<br>6555<br>6555<br>6555<br>6553<br>6553 | 8012.820<br>0.122266<br>4.0894365<br>62.400<br>62.400<br>6.50<br>0.50<br>000000 | HANNEL f1 ====<br>500.1330008<br>1H<br>7.80<br>12.00000000 | ssing paramete<br>65536<br>500.1300000<br>EM<br>0.30<br>1.00 |
| t Da                              | E G K Cqui                                                                                                                   |                                                                                 | 0                                                          | roce<br>0                                                    |
| Curren<br>NAME<br>EXPNO<br>PROCNO | F2 - A<br>Date_<br>Time<br>INSTRU<br>PROBHD<br>PULPRO<br>TD<br>SOLVEN<br>NS                                                  | SWH<br>FIDRES<br>AQ<br>DW<br>DE<br>TE<br>TD<br>DE<br>TD<br>TD                   | SF01<br>SF01<br>NUC1<br>PLW1<br>PLW1                       | F2 - F<br>SI<br>SF<br>SF<br>WDW<br>SSB<br>LB<br>CG<br>PC     |





| SS-06-137<br>1<br>20130323<br>19.26<br>spect<br>spect<br>spect<br>19.26<br>5 mm CPDCH 13C<br>S5536<br>65536<br>65536<br>65536<br>65536<br>13.203<br>0.7864820<br>sec<br>12.203<br>0.03000000<br>sec<br>0.03000000<br>sec<br>0.03000000<br>sec                                                                   | CHANNEL fl ========<br>13C use(<br>9.00 use(<br>38.14553833 W<br>176.0697436 MHz | CHANNEL f2 ========<br>1H<br>65.00 usek<br>65.20 dB<br>13.60 dB<br>13.60 dB<br>12.00 dB |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME<br>EXPNO<br>PROCNO<br>DACNO<br>DACNO<br>PULFROG<br>FULFROG<br>FULFROG<br>SOLVENT<br>NS<br>SOLVENT<br>NS<br>SOLVENT<br>NS<br>SOLVENT<br>NS<br>SOLVENT<br>TD<br>DE<br>TD<br>DE<br>DE<br>TD<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI<br>DI | ======================================                                           | ======<br>CCPDPRG2<br>NUC2<br>PLC2<br>PL12<br>PL13<br>PL13<br>PL13<br>PL13<br>PL13<br>PL13<br>PL13<br>PL13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



Ph...., H Me CO<sub>2</sub>Et



| Peak | RetTime | Type | Width  | 1   | Area    | Heiį | ght             | Area       |
|------|---------|------|--------|-----|---------|------|-----------------|------------|
| #    | [min]   |      | [min]  | mAU | *s      | [mAU | ]               | %          |
|      |         |      |        |     |         |      |                 | <b>-  </b> |
| 1    | 12.947  | BB   | 0.7656 | 1.2 | 2744e4  | 244  | .95091          | 96.1410    |
| 2    | 15.748  | VB   | 0.7599 | 492 | 2.68168 | 5    | .74 <b>8</b> 25 | 3.8590     |

| HHZ<br>Sec<br>sec<br>sec<br>sec<br>sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | use<br>dB<br>MHz<br>MHz<br>Hz                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| SS-05-120<br>1<br>2 0131009<br>2 0.144<br>2 0.131009<br>2 0.144<br>2 0.125003<br>2 0.125003<br>3 3 9 9 9 623<br>1 11904.762<br>1 125003<br>3 3 9 9 9 9 623<br>4 2 .000<br>6 5 0<br>6 5 0<br>2 6 .50<br>2 7 7 7<br>2 7 7 7<br>7 7<br>7 7 7<br>7 7<br>7 7 7<br>7 7 7<br>7 7<br>7 | CHANNEL f1 ====<br>1H<br>240<br>9.40<br>9.3.59817505<br>700.1516910<br>131072<br>700.1471400<br>0.0<br>0.30<br>0.30       |
| NAME<br>EXPNO<br>EXPNO<br>Date<br>Time<br>INSTRUM<br>PULPROG<br>SOLVENT<br>NS<br>SULVENT<br>NS<br>SWH<br>SSWH<br>AQ<br>SSUVENT<br>DD<br>C<br>TD<br>DE<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =======<br>NUC1<br>Pt1<br>Pt1<br>Pt1<br>SF01<br>SF01<br>SF<br>SSB<br>SSB<br>SSB<br>SSB<br>SSB<br>SSB<br>SSB<br>SSB<br>SSB |



Phin H CO2Et







|   | A CO CA MARO | ~) <b>r</b> ~ |        | -    |        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <b>7</b> • • • | 1 22 0 00 |
|---|--------------|---------------|--------|------|--------|-----------------------------------------|----------------|-----------|
| # | [min]        |               | [min]  | mAU  | *s     | [mAU                                    | ]              | %         |
|   |              |               |        |      |        |                                         |                |           |
| 1 | 8.639        | VB            | 0.4655 | 4.7  | 9542e4 | 1636                                    | .32328         | 48.6788   |
| 2 | 10.016       | VB            | 0.5284 | 5.04 | 4875e4 | 1477                                    | .97354         | 51.3212   |



| Peak | RetTime | Type | Width  | A    | Area    | Heig | ht    | Area     |
|------|---------|------|--------|------|---------|------|-------|----------|
| #    | [min]   |      | [min]  | mAU  | *s      | [mAU | ]     | %        |
|      |         |      |        |      |         |      |       | <b> </b> |
| 1    | 8.533   | VB   | 0.3335 | 2999 | 9.53722 | 162. | 79829 | 95.0048  |
| 2    | 9.830   | BB   | 0.3877 | 157  | 7.71085 | 4.   | 62816 | 4.9952   |





7.0

8.5

7.5 2.03 -2.03 -7.5

8.00 <u>2.00</u> 2.00









| Peak | RetTime | Type | Width      | A   | Area   | Heig | ght    | Area     |
|------|---------|------|------------|-----|--------|------|--------|----------|
| #    | [min]   |      | [min]      | mAU | *s     | [mAU | ]      | %        |
|      |         |      | <b>-  </b> |     |        |      |        | <b> </b> |
| 1    | 14.431  | BV   | 0.8233     | 1.2 | 8534e4 | 224  | .65383 | 48.2447  |
| 2    | 17.104  | VB   | 1.0356     | 1.3 | 7853e4 | 180  | .28644 | 51.7553  |



| Peak | RetTime | Type | Width  | A    | Irea    | Heią | ght    | Area    |
|------|---------|------|--------|------|---------|------|--------|---------|
| #    | [min]   |      | [min]  | mAU  | *s      | [mAU | ]      | %       |
| I    |         |      |        |      |         |      |        |         |
| 1    | 14.452  | VB   | 0.6122 | 8645 | 5.42608 | 155. | .16352 | 98.0968 |
| 2    | 17.202  | VB   | 0.5777 | 167  | .73202  | 2.   | .67524 | 1.9032  |

| SS-05-122<br>1<br>20131009<br>20.35<br>spect<br>5 mm CPDCH 13C<br>95236<br>95236<br>05236<br>05233 | 11904.762 Hz<br>0.125003 Hz<br>3.999501 sec<br>7.12 sec<br>42.000 user<br>26.50 user<br>28.2 K<br>2.0000000 sec<br>1 | CHANNEL fl ========<br>1H<br>9.40 use<br>-3.20 dB<br>700.1516910 MHz<br>700.11471400 MHz<br>FM<br>0.00 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME<br>EXPNO<br>PROCNO<br>Date_<br>Time<br>FULPROG<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DD        | SWH<br>FIDRES<br>AQ<br>DW<br>DE<br>DE<br>DI<br>TE<br>D1<br>TD0                                                       | Second Se |









Me CO<sub>2</sub>Et




| Peak | RetTime | Туре | Width  | Area      | Height   | Area    |
|------|---------|------|--------|-----------|----------|---------|
| #    | [min]   |      | [min]  | mAU *s    | [mAU ]   | %       |
|      |         |      |        |           | -        |         |
| 1    | 19.529  | BB   | 0.7988 | 1067.3685 | 48.10531 | 55.5083 |
| 2    | 22.642  | VB   | 0.7633 | 855.5207  | 42.60073 | 44.4917 |



| SS-05-123 | -11    | 20131009 | 20.49 | spect   | 5 mm CPDCH 13C | zg30<br>95236 | CDC13   | 13 | 2  | 11904.762 Hz | 0.125003 Hz | 3.9999621 sec | 12.7 | 42 000 usec | 6.50 usec | 298.2 K | 2.0000000 sec | 1   | CHANNEL f1 ======= | 1H   | 9.40 usec | -3.20 dB | 33.59817505 W | 700.1516910 MHz | 131072 | 700.1471400 MHz | EM  | 0   | 0.30 Hz | 0  | 100 |
|-----------|--------|----------|-------|---------|----------------|---------------|---------|----|----|--------------|-------------|---------------|------|-------------|-----------|---------|---------------|-----|--------------------|------|-----------|----------|---------------|-----------------|--------|-----------------|-----|-----|---------|----|-----|
| NAME      | FROCNO | Date     | Time  | INSTRUM | PROBHD         | PULPROG       | SOLVENT | NS | DS | HMS          | FIDRES      | AQ            | RG   | DW          | DE        | TE      | D1            | TDO |                    | NUCL | P1        | PL1      | PL1W          | SF01            | SI     | SF              | MDM | SSB | LB      | GB |     |





S38



Me Co<sub>2</sub>Et





| Peak | RetTime | Type | Width  | Α    | rea    | Height   | Area    |
|------|---------|------|--------|------|--------|----------|---------|
| #    | [min]   |      | [min]  | mAU  | *s     | [mAU ]   | %       |
|      |         |      |        |      |        |          |         |
| 1    | 10.295  | VB   | 0.6421 | 1171 | .60377 | 71.34489 | 95.4481 |
| 2    | 11.887  | BB   | 0.0942 | 55.  | 87354  | 0.36073  | 4.5519  |



ЧЩ...









| Peak | RetTime | Type | Width  | A    | Area    | Height    | Area    |
|------|---------|------|--------|------|---------|-----------|---------|
| #    | [min]   |      | [min]  | mAU  | *s      | [mAU ]    | %       |
|      |         |      |        |      |         |           |         |
| 1    | 25.139  | VB   | 0.9678 | 4689 | 9.28931 | 136.97383 | 50.8633 |
| 2    | 31.322  | BB   | 0.3753 | 4530 | ).10192 | 143.18244 | 49.1367 |



| Peak | RetTime | Туре | Width  | A   | rea    | Heig | ht    | Area    |
|------|---------|------|--------|-----|--------|------|-------|---------|
| #    | [min]   |      | [min]  | mAU | *s     | [mAU | ]     | %       |
|      |         |      |        |     |        |      |       |         |
| 1    | 25.176  | BB   | 1.1236 | 659 | .83539 | 2.   | 54536 | 97.6133 |
| 2    | 31.355  | VB   | 0.3925 | 16  | .12112 | 0.   | 13628 | 2.3867  |









| Peak | RetTime | Type | Width  | A    | Area    | Height   | Area    |
|------|---------|------|--------|------|---------|----------|---------|
| #    | [min]   |      | [min]  | mAU  | *s      | [mAU ]   | %       |
| I    |         |      |        |      |         |          |         |
| 1    | 14.479  | BB   | 0.7619 | 1953 | 3.03871 | 11.53826 | 54.2109 |
| 2    | 17.378  | VB   | 0.4011 | 1649 | 9.62861 | 11.19861 | 45.7891 |



| Peak | RetTime | Type | Width  | А    | rea    | Height  | Area       |
|------|---------|------|--------|------|--------|---------|------------|
| #    | [min]   |      | [min]  | mAU  | *s     | [mAU ]  | %          |
|      |         |      |        |      |        |         |            |
| 1    | 14.567  | BB   | 0.6882 | 8674 | .72143 | 238.973 | 46 96.8427 |
| 2    | 17.229  | VB   | 0.6509 | 282  | .81634 | 9.942:  | 55 3.1573  |









| Peak | RetTime | Type | Width  | Α    | rea    | Heig  | ght   | Area     |
|------|---------|------|--------|------|--------|-------|-------|----------|
| #    | [min]   |      | [min]  | mAU  | *s     | [mAU  | ]     | %        |
| I    |         |      |        |      |        |       |       | <b> </b> |
| 1    | 15.749  | VV   | 0.6481 | 1.40 | )223e5 | 3269. | 96245 | 49.5932  |
| 2    | 19.699  | VB   | 0.8073 | 1.42 | 523e5  | 2568. | 60079 | 50.4068  |



| Peak | RetTime | Type | Width  | A    | Area    | Heig | ht    | Area    |
|------|---------|------|--------|------|---------|------|-------|---------|
| #    | [min]   |      | [min]  | mAU  | *s      | [mAU | ]     | %       |
|      |         |      |        |      |         |      |       |         |
| 1    | 15.121  | BB   | 2.6793 | 1291 | .94814  | 11.4 | 42963 | 95.0792 |
| 2    | 18.989  | VB   | 0.0166 | 66   | 5.86445 | 0.   | 10436 | 4.9208  |











| Peak | RetTime | Type | Width  | Area     | Height      | Area    |
|------|---------|------|--------|----------|-------------|---------|
| #    | [min]   |      | [min]  | mAU *s   | [mAU ]      | %       |
|      |         |      |        |          | -           |         |
| 1    | 40.653  | BB   | 0.7408 | 3.34754e | 4 648.95361 | 44.0168 |
| 2    | 46.016  | VB   | 1.2012 | 3.65632e | 4 514.84083 | 55.9832 |



| Peak | RetTime | Type | Width  | ŀ    | Area    | Heig | ght   | Area    |
|------|---------|------|--------|------|---------|------|-------|---------|
| #    | [min]   |      | [min]  | mAU  | *s      | [mAU | ]     | %       |
|      |         |      |        |      |         |      |       |         |
| 1    | 40.694  | BV   | 0.4296 | 7964 | 4.43606 | 13.  | 15377 | 97.8066 |
| 2    | 45.822  | VB   | 0.0846 | 178  | 3.60956 | 0.   | 10983 | 2.1934  |









22 CO<sub>2</sub>F



| Peak | RetTime | Type | Width  | A   | Area            | Height     | Area    |
|------|---------|------|--------|-----|-----------------|------------|---------|
| #    | [min]   |      | [min]  | mAU | *s              | [mAU ]     | %       |
|      |         |      |        |     |                 |            |         |
| 1    | 13.248  | BB   | 0.4536 | 1.2 | 23 <b>8</b> 1e5 | 3633.09243 | 48.1463 |
| 2    | 15.199  | VB   | 0.5702 | 1.3 | 1805e5          | 3502.98901 | 51.8537 |



| Peak | RetTime | Туре | Width  | A      | rea   | Height  | Area       |
|------|---------|------|--------|--------|-------|---------|------------|
| #    | [min]   |      | [min]  | mAU    | *s    | [mAU ]  | %          |
|      |         |      |        |        |       |         |            |
| 1    | 13.249  | VB   | 0.4183 | 13497. | 85965 | 271.079 | 08 97.1794 |
| 2    | 15.067  | BB   | 0.0810 | 391.   | 77092 | 8.9250  | 2.8206     |





Me





| Peak | RetTime | Type | Width  | A    | rea    | Heiį  | ght    | Area    |
|------|---------|------|--------|------|--------|-------|--------|---------|
| #    | [min]   |      | [min]  | mAU  | *s     | [mAU  | ]      | %       |
|      |         |      |        |      |        |       |        |         |
| 1    | 9.403   | VB   | 0.5204 | 2.35 | 5595e4 | 1442. | .39208 | 49.2681 |
| 2    | 10.235  | BB   | 0.4941 | 2.42 | 2397e4 | 1583  | .49035 | 50.7319 |



| Peak | RetTime | Type | Width  | A    | Area    | Heiį | ght     | Area     |
|------|---------|------|--------|------|---------|------|---------|----------|
| #    | [min]   |      | [min]  | mAU  | *s      | [mAU | ]       | %        |
|      |         |      |        |      |         |      |         | <b> </b> |
| 1    | 9.636   | VB   | 0.4682 | 1972 | 2.63315 | 1982 | .06928  | 98.5182  |
| 2    | 10.403  | VB   | 0.0787 | 29   | 0.67013 | 48   | 3.78802 | 1.4818   |







| Peak | RetTime | Type | Width  | Area     | Height      | Area    |
|------|---------|------|--------|----------|-------------|---------|
| #    | [min]   |      | [min]  | mAU *s   | [mAU ]      | %       |
|      |         |      |        |          | -           |         |
| 1    | 19.578  | VB   | 1.2289 | 2.10043  | 246.88022   | 57.5866 |
| 2    | 24.103  | BB   | 1.5899 | 2.042566 | 4 181.98033 | 42.4134 |



| Peak | RetTime | Type | Width  | A   | Area    | Heig | ght   | Area     |
|------|---------|------|--------|-----|---------|------|-------|----------|
| #    | [min]   |      | [min]  | mAU | *s      | [mAU | ]     | %        |
| I    |         |      |        |     |         |      |       | <b> </b> |
| 1    | 19.472  | BB   | 0.4586 | 697 | 4.3335  | 453. | 98066 | 95.8967  |
| 2    | 24.002  | VB   | 0.5507 | 298 | 3.42302 | 5.   | 75003 | 4.1033   |





| HZ<br>HZ<br>sec<br>sec<br>sec<br>sec                                                                                                                                                                                                                                                 | usec<br>discusec<br>discusec<br>discusec<br>disdisdisdisdisdisdisdisdisdisdisdisdisd                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS-05-143<br>220140105<br>18.40<br>18.40<br>18.40<br>299930<br>55535<br>55535<br>65535<br>65535<br>65535<br>65535<br>12.000<br>16.50<br>16.50<br>16.50<br>0.03000000<br>0.03000000                                                                                                   | CHANNEL f1 ====<br>13C<br>9.00<br>9.00<br>13C<br>13C<br>13C<br>0.0097436<br>176.0697436<br>0.14553833<br>176.0697436<br>1176.0521380<br>0.70196527<br>0.70196527<br>0.70196527<br>0.70196527<br>0.70196527<br>0.70196527<br>0.70196527<br>0.70196527<br>176.0521380<br>176.0521380<br>1.40<br>1.40<br>1.40 |
| NAME<br>EXPNO<br>EXPNO<br>Date<br>Time<br>TunsTrum<br>PROBRDW<br>PROBRDW<br>PROBRDW<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>SOLVENT<br>NS<br>SOLVENT<br>NS<br>SOLVENT<br>NS<br>DS<br>DS<br>DS<br>DE<br>TI<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE | ======<br>NUC1<br>PL1<br>PL1<br>SF01<br>SF01<br>SF01<br>E======<br>CCPDPRG2<br>NUC2<br>CCPDPRG2<br>NUC2<br>PL13<br>PL13<br>PL13<br>PL13<br>PL13<br>PL13<br>PL13<br>PL13                                                                                                                                    |







| Peak | RetTime | Type | Width  | Area |         | Height |        | Area       |
|------|---------|------|--------|------|---------|--------|--------|------------|
| #    | [min]   |      | [min]  | mAU  | *s      | [mAU   | ]      | %          |
|      |         |      |        |      |         |        |        | <b>-  </b> |
| 1    | 23.776  | MM   | 2.9312 | 5.2  | 22162e5 | 2967   | .07038 | 48.3427    |
| 2    | 30.063  | MM   | 3.6729 | 5.5  | 57949e5 | 2520   | .92117 | 51.6573    |



| Peak | RetTime | Type | Width  | A   | Area   | Heig | ght   | Area    |
|------|---------|------|--------|-----|--------|------|-------|---------|
| #    | [min]   |      | [min]  | mAU | *s     | [mAU | ]     | %       |
|      |         |      |        |     |        |      |       |         |
| 1    | 23.801  | MM   | 2.2207 | 1.2 | 6471e4 | 11.  | 44930 | 99.2366 |
| 2    | 30.192  | MM   | 3.6601 | 97  | .29106 | 0.   | 22981 | 0.7634  |



| SS-05-137<br>20140106<br>19.38<br>spect 13C<br>spect 13C<br>spect 13C<br>5 mm CPDCH 13C<br>5 5593<br>65536<br>65536<br>65536<br>8420<br>0.635783 Hz<br>0.635783 Hz<br>0.7864820 sec<br>12.000 usec<br>16.50 usec<br>298.2 K<br>22.0000000 sec<br>0.03000000 sec | CHANNEL f1 =======<br>13C 009<br>9.00 dB c0 018ec<br>4.50 dB 455 dB 176.0697436 MHz<br>Naltz16 0657436 MHz<br>CHANNEL f2 =======<br>waltz16 dB 13.60 dB 13.60 dB 13.60 dB 13.60 dB 13.60 dB 33.599406 MHz<br>0.700106527 W 0.70010000 W 700.149406 MHz 700.132768 MHz 176.051380 MHz 176.0521380 MHz 176.0521380 MHz 176.0521380 MHz 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME<br>EXFNO<br>PROCNO<br>Date_<br>INSTRUM<br>PROBHD<br>PULPROG<br>PULPROG<br>SOLVENT<br>NS<br>SWH<br>SS<br>SWH<br>SS<br>SWH<br>SS<br>SWH<br>DD<br>S<br>SWH<br>DD<br>E<br>DD<br>DE<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>DD<br>D                  | ======================================                                                                                                                                                                                                                                                                                                                                       |











| Peak | RetTime | Туре | Width  | A    | rea     | Heig | ht    | Area       |
|------|---------|------|--------|------|---------|------|-------|------------|
| #    | [min]   |      | [min]  | mAU  | *s      | [mAU | ]     | %          |
|      |         |      |        |      | ·       |      |       | <b>-  </b> |
| 1    | 18.845  | BB   | 1.2196 | 3098 | 8.28171 | 84.  | 34238 | 91.6493    |
| 2    | 23.671  | BB   | 0.6367 | 282  | 2.30244 | 3.   | 94012 | 8.3507     |











| Peak | RetTime | Type | Width  | A   | Irea   | Heig  | ht    | Area     |
|------|---------|------|--------|-----|--------|-------|-------|----------|
| #    | [min]   |      | [min]  | mAU | *s     | [mAU  | ]     | %        |
| I    |         |      |        |     |        |       |       | <b> </b> |
| 1    | 20.638  | MM   | 2.2827 | 2.3 | 4028e5 | 1733. | 98661 | 49.2661  |
| 2    | 27.329  | MM   | 2.5823 | 2.4 | 0823e5 | 1577. | 83504 | 50.7339  |



| Peak | RetTime | Type | Width  | A    | Area    | Heią | ght   | Area    |
|------|---------|------|--------|------|---------|------|-------|---------|
| #    | [min]   |      | [min]  | mAU  | *s      | [mAU | ]     | %       |
|      |         |      |        |      |         |      |       |         |
| 1    | 20.641  | BB   | 1.2407 | 6323 | 3.95514 | 83.  | 76202 | 94.2327 |
| 2    | 27.345  | BB   | 0.6692 | 387  | .04342  | 3.   | 72017 | 5.7673  |









28 CO<sub>2</sub>Et












| Peak | RetTime | Type | Width  | Area         |         | Height |         | Area    |
|------|---------|------|--------|--------------|---------|--------|---------|---------|
| #    | [min]   |      | [min]  | mAU          | *s      | [mAU   | ]       | %       |
|      |         |      |        |              |         |        |         |         |
| 1    | 21.833  | BB   | 1.0599 | <b>963</b> 4 | .32427  | 141    | .50624  | 49.1068 |
| 2    | 28.519  | VB   | 1.1204 | <b>998</b> 4 | 1.80032 | 136    | 5.52637 | 50.8932 |



| Peak | RetTime | Type | Width  | Area |         | Height |       | Area    |
|------|---------|------|--------|------|---------|--------|-------|---------|
| #    | [min]   |      | [min]  | mAU  | *s      | [mAU   | ]     | %       |
|      |         |      |        |      | ·       |        |       |         |
| 1    | 21.802  | BB   | 1.1293 | 1319 | 9.93324 | 7.     | 81106 | 97.1634 |
| 2    | 28.424  | VB   | 0.0192 | 38   | 3.53429 | 0.     | 17283 | 2.8366  |





















(+)-29



