Supporting Information

A New Cobalt-Salen Catalyst for Asymmetric Cyclopropanation. Synthesis of the Serotonin-Norepinephrine Reuptake Inhibitor (+)Synosutine

James D. White* and Subrata Shaw

Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003

Table of Contents:

General Experimental S2
Experimental Information and Characterization Data S3
References S20
HPLC Traces, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S21

Experimental Section

General

Starting materials and reagents were obtained from commercial sources and were used without further purification. Solvents were dried by distillation from the appropriate drying reagents immediately prior to use. All solvents used for routine isolation of products and chromatography were reagent grade. Moisture- and air-sensitive reactions were carried out under an atmosphere of argon. Reaction flasks were flame dried under a stream of argon gas, and glass syringes were oven dried at $120^{\circ} \mathrm{C}$ prior to use.

Unless otherwise stated, concentration under reduced pressure refers to a rotary evaporator at water aspirator pressure. Residual solvent was removed by vacuum pump at a pressure less than 0.25 mm of mercury.

Analytical thin-layer chromatography (TLC) was conducted using precoated TLC plates (0.2 mm layer thickness of silica gel $60 \mathrm{~F}-254$). Compounds were visualized by ultraviolet light and/or by heating the plate after dipping in a 3-5\% solution of phosphomolybdic acid in ethanol, 10% ammonium molybdate in water, a 1% solution of vanillin in 0.1 M sulfuric acid in methanol or $2.5 \% p$-anisaldehyde in 88% ethanol, 5% water, 3.5% concentrated sulfuric acid and 1% acetic acid. Flash chromatography was performed with the indicated eluents on 230-400 mesh silica gel.

Optical rotations were measured with a polarimeter at ambient temperature using a 0.9998 dm cell with 1 mL capacity. Infrared (IR) spectra were recorded on a FT-IR spectrometer. Proton and carbon nuclear magnetic resonance (NMR) spectra were obtained using either a 400, 500 or 700 MHz spectrometer. All chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane using the δ scale. ${ }^{1} \mathrm{H}$ NMR spectral data are reported in the
order: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{m}=$ multiplet, and $\mathrm{b}=$ broad), coupling constant (J, in Hertz), and number of protons.

Low (MS) and high (HRMS) resolution mass spectra are reported with ion mass/charge (m / z) ratios as values in atomic mass units. α-Methylstyrenes were prepared following literature method. ${ }^{1}$

3-(tert-Butyl)-2-hydroxy-5-methoxybenzaldehyde (10)

To a solution of 2-(tert-butyl)-4-methoxyphenol $(\mathbf{9}, 721 \mathrm{mg}, 4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ at room temperature were added $\mathrm{Et}_{3} \mathrm{~N}(2.8 \mathrm{~mL}, 20 \mathrm{mmol})$ and $\mathrm{MgCl}_{2}(456 \mathrm{mg}, 4.8 \mathrm{mmol})$ and the mixture was stirred for 15 min . Paraformaldehyde ($600 \mathrm{mg}, 20 \mathrm{mmol}$) was added and the solution was refluxed for 10 h . The solution was cooled to room temperature, poured into 1 M aqueous $\mathrm{HCl}(100 \mathrm{~mL})$ and stirred for 30 min at room temperature. The reaction mixture was extracted with ether ($4 \times 100 \mathrm{~mL}$) and the organic layer was washed with brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (5\% ether/hexanes) to obtain 10 ($609 \mathrm{mg}, 73 \%$) as a yellow oil: IR (neat) $3534,3301,3062,2925,2854,1622,1598,1508,1472,1422,1378,1206,1149,1967$, 1030, 854, 836, 814, 749, $693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42(\mathrm{~s}, 9 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H})$, $7.40(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 9.91(\mathrm{~s}, 1 \mathrm{H}), 11.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 29.7, 32.9, 54.7, 113.4, 119.3, 129.8, 140.3, 150.5, 152.1, 207.4.
(+)-2,2'-[(1R,2R,4R,5R)-Bicyclo[2.2.2]octane-2,5-diylbis(nitrilomethylidine)]bis-2-tert-butyl-4-methoxylphenol [(+)-11]

To a solution of (-)-1 (86 mg, 0.61 mmol$)$ in $\mathrm{EtOH}(15 \mathrm{~mL})$ was added anhydrous $\mathrm{MgSO}_{4}(367$ $\mathrm{mg}, 3.05 \mathrm{mmol}$) followed by a solution of $\mathbf{1 0}$ (256 mg 1.23 mmol) in EtOH (5 mL). The suspension was refluxed for 4 h at which time a yellow precipitate had formed. The mixture was cooled to room temperature and the precipitate was filtered off. The crude solid was purified by flash chromatography on silica gel (5\% EtOAc/hexanes) to give (+)-11 (293 mg, 92\%) as an amorphous yellow solid: mp $162-163{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+96.6\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) 3358 (b), 1744, 1467, 1375, 1286, 1169, 1137, 1030, $891 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.38(\mathrm{~s}$, $9 H), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.91-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.24(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, $7.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 13.86(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.9,31.3,31.6,33.9,34.2,57.7,67.5,118.4,128.6,128.8,137.1,139.7,159.0$, 165.6; HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z} 520.7131$, found 520.7128 .
(+)-(1R,2R,4R,5R)-N, N^{\prime}-Bis-(3-tert-butyl-5-methoxylsalicylidene)-2,5-
diaminobicyclo[2.2.2]octane Cobalt(II) [(+)-12]

To a solution of (+)-11 ($290 \mathrm{mg}, 0.56 \mathrm{mmol}$) in $\mathrm{EtOH}(15 \mathrm{~mL})$ was added a solution of $\mathrm{Co}(\mathrm{OAc})_{2}(99 \mathrm{mg}, 0.56 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ and the mixture was heated at reflux for 6 h , at which time an orange precipitate had formed. The mixture was cooled to room temperature and concentrated under reduced pressure. The crude residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. Concentration of the filtrate under vacuum provided (+)-12 (324 mg, 94\%) as an orange solid: $\mathrm{mp}>260{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+86.0\left(c 0.26 \mathrm{CHCl}_{3}\right) ;$ IR (neat) $2949,2859,1606,1594,1548,1528,1458$, 1411, 1361, 1314, 1252, 1178, 1108, 1084, 1011, 960, 867, $839 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{CoN}_{2} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z}$ 577.4733, found 577.4716.

Representative Procedure for the Asymmetric Cyclopropanation of 1,1-Disubstituted ethylenes Catalyzed by Co-salen Complex (+)-12:

To a solution of $(+)-\mathbf{1 2}(15 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added $\mathrm{KSAc}(2 \mathrm{mg}, 15 \mu \mathrm{~mol})$ and the mixture was stirred at room temperature for 1 h . Ethyl diazoacetate ($32 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and $1,1-$ disubstituted ethylenes (0.45 mmol) were added to the reaction mixture and stirring was continued for the length of time specified in Tables 1-3.. The reaction mixture was passed through a short column of Celite which was eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The effluent was evaporated and the crude residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes) to give the product. The enantiomeric excess of the pure product was determined by HPLC on a Daicel Chiralcel OD, AD, OJ, OD-H or AS-H column.

A procedure at 5 mmol scale was carried out with α-methylstyrene ($967 \mu \mathrm{~L}, 7.5 \mathrm{mmol}$) and ethyl diazoacetate ($533 \mu \mathrm{~L}, 5 \mathrm{mmol})$ using (+)-12 ($150 \mathrm{mg}, 0.25 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and KSAc (33.3 mg , $0.25 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The cyclopropane $(\boldsymbol{E})-7$ was obtained in 92\% yield and 93\% ee.

(1R,2R)-Ethyl 2-Methyl-2-phenylcyclopropanecarboxylate [(E)-7]

Pale yellow oil; $E: Z$ ratio $31: 1 ; 93 \%$ ee [Chiralcel OD-H, hexane:i-propanol $95: 5,0.5 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 14.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 16.9 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{22}-291.1$ (c 0.5, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right),\left[\operatorname{lit}{ }^{2}\right.$ for $(1 S, 2 S)$ isomer $[\alpha]_{\mathrm{D}}{ }^{20}+286.0\left(c 0.3, \mathrm{CHCl}_{3}\right)$; IR (neat) 2977, 2935, 1724, 1615, $1252,1178,1086,1034,848,816,790 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.38-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{dd}, J=8.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.19(\mathrm{~m}, 2 \mathrm{H}), 7.16-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.41(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 15.3,19.8,21.3,27.8,30.6$, $60.6,127.3,128.6,128.9,146.2,173.1$.

(1R,2R)-Ethyl 2-ethyl-2-phenylcyclopropanecarboxylate (14)

Yellow oil; $E: Z$ ratio 26:1; 92% ee [Chiralcel OD-H, hexane:i-propanol 93:7, $0.5 \mathrm{~mL} / \mathrm{min}, 215$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 12.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 15.7 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-168.6\left(c 0.25, \mathrm{CHCl}_{3}\right)$; IR (neat) 2985, 1732, 1370, 1332, 1268, 1188, 1152, 1035, $936 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.86-0.92(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.97-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.82(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.95(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.61(\mathrm{~m}$,
$1 \mathrm{H}), 7.96-8.01(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.7,14.2,27.3,31.9,35.2,63.9,128.5$, 129.2, 134.0, 136.6, 173.9; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z}$ 219.0786, found 219.0778.
(1R,2R)-Ethyl 2-butyl-2-phenylcyclopropanecarboxylate (15)

Yellow oil; $E: Z$ ratio 23:1; 90% ee [Chiralcel AS-H, hexane:i-propanol 98:2, $0.5 \mathrm{~mL} / \mathrm{min}, 215$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 8.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 9.8 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-139.0\left(c 0.4, \mathrm{CHCl}_{3}\right)$; IR (neat) 2970, 2908, 1738, 1466, 1447, 1393, 1370, 1331, 1270, 1190, 1149, 1097, 1035, 948, 901, 889, $847 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87-0.92(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.31(\mathrm{~m}, 7 \mathrm{H}), 1.36-$ $1.42(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.97(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.28(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.96(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $14.5,15.6,22.2,23.1,24.4,25.9,27.1,38.6,61.8,127.7,128.4,129.4,137.7,176.8$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z} 247.1698$, found 247.1706.

(1R,2R)-Ethyl 2-(2-methoxyphenyl)-2-methylcyclopropanecarboxylate (16)

Colorless oil; $E: Z$ ratio $30: 1$; 96% ee [Chiralcel AD , hexane: i-propanol $96.6: 3.4,0.5 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 14.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 17.2 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-264.2(c 0.15$, CHCl_{3}) IR (neat) 2976, 2943, 1732, 1466, 1447, 1414, 1393, 1370, 1331, 1270, 1190, 1150, 1097, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.80-0.93(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.96-$
$2.05(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.74(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.85(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 7.43-7.49(\mathrm{~m}$, $1 \mathrm{H}), 7.65-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.99(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.09(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.2,23.2,23.9,28.7,30.5,56.1,62.3,113.2,120.8,129.7,130.6,138.0,158.7,174.3 ;$ HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z}$ 235.1334, found 235.1327.
(1R,2R)-Ethyl 2-(furan-2-yl)-2-methylcyclopropanecarboxylate (17)

Colorless oil; $E: Z$ ratio 23:1; 92% ee [Chiralcel OD-H, hexane:i-propanol 98:2, $0.5 \mathrm{~mL} / \mathrm{min}, 215$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 19.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 22.5 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-156.6\left(c 0.12, \mathrm{CHCl}_{3}\right)$; IR (neat) 2985, 1735, 1466, 1447, 1414, 1370, 1332, 1270, 1190, 1150, 1035, 956, 866, $845 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84-0.93(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.87-$ $1.94(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.58(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.09(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.88(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.56(\mathrm{~m}, 1 \mathrm{H})$, 7.68-7.73(m, 1H); ${ }^{13} \mathrm{C}$ NMR (175 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.1,23.4,23.9,28.6,29.5,61.8,121.6$, 123.6, 124.2, 146.7, 173.9; HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z}$ 195.1021, found 195.1020.
(1R,2R)-Ethyl 2-(2-ethoxy-2-oxoethyl)-2-phenylcyclopropanecarboxylate (18)

Yellow oil; $E: Z$ ratio 25:1; 91% ee [Chiralcel OD-H, hexane:i-propanol 92:8, $0.5 \mathrm{~mL} / \mathrm{min}, 215$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 10.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 11.9 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-136.2\left(c 0.22, \mathrm{CHCl}_{3}\right)$; IR (neat) 2970, 1741, 1466, 1447, 1414, 1370, 1332, 1268, 1189, 1152, 1035, $845 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 0.92-1.03(\mathrm{~m}, 6 \mathrm{H}), 1.40-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.82(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.71$ $(\mathrm{m}, 1 \mathrm{H}), 2.96-3.03(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.96(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.98-$ $8.03(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.3,14.6,25.0,28.2,28.5,58.4,58.8,126.3$, 127.2, 129.6, 148.1, 170.9, 174.3; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) \mathrm{m} / \mathrm{z}$ 299.1259, found 299.1263.

Methyl 2-((1R,2R)-2-(ethoxycarbonyl)-1-methylcyclopropyl)benzoate (19)

Pale yellow oil; $E: Z$ ratio 30:1; 95\% ee [Chiralcel OD-H, hexane:i-propanol 99:1, $0.5 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 25.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 31.4 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-92.7$ (c 0.39 , CHCl_{3}); IR (neat) $3012,2976,1735,1466,1448,1370,1332,1269,1190,1150,1097,1036$, 894, $836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.89-$ $1.97(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.89(\mathrm{~m}, 1 \mathrm{H}), 3.92-4.01(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.57-$ $7.66(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.91(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.0,23.3,24.0,26.8,27.4$, $56.9,61.2,125.3,126.7,129.0,133.4,139.2,156.8,170.5,173.4$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z} 262.3002$, found 262.2997.

(1R,2R)-Ethyl 2-(3,4-dimethoxyphenyl)-2-methylcyclopropanecarboxylate (20)

Colorless oil; $E: Z$ ratio 32:1; 94\% ee [Chiralcel OD-H, hexane:i-propanol 97.5:2.5, $0.5 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 14.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 17.2 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-226.1(c 0.15$, CHCl_{3}); IR (neat) 2985, 2942, 2908, 1735, 1466, 1447, 1414, 1393, 1370, 1332, 1268, 1189, 1152, 1096, 1035, 955, 845, 786, $675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.82-0.99(\mathrm{~m}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.97(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.18(\mathrm{~m}, 8 \mathrm{H})$, 6.88-6.98(m, 1H), 7.53-7.75 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (175 MHz, CDCl_{3}) $\delta 13.9,25.6,28.0,29.7$, $32.1,56.4,63.3,111.9,113.9,117.5,143.2,147.3,149.9,173.2$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) \mathrm{m} / \mathrm{z}$ 287.1259, found 287.1262.
(1R,2R)-Ethyl 2-methyl-2-(thiophen-2-yl)cyclopropanecarboxylate (21)

Colorless oil; $E: Z$ ratio $25: 1 ; 90 \%$ ee [Chiralcel OD-H, hexane: i-propanol $96.5: 3.5,0.5 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 15.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 18.9 \mathrm{~min}\right]$; $[\alpha]_{\mathrm{D}}{ }^{16}-201.5$ (c 0.12 , CHCl_{3}); IR (neat) 2985, 1740, 1370, 1332, 1269, 1190, 1150, 1036, 952, 837, $780 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92-1.06(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.06(\mathrm{~m}, 1 \mathrm{H})$, 2.70-2.79(m, 1H), 3.96-4.09(m, 2H), 7.13-7.22(m, 1H), 7.64-7.69(m, 1H), 7.70-7.81(m,

1H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.5,24.0,25.9,27.3,29.3,62.4,128.6,133.4,134.7$, 145.2, 191.9; HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z}$ 210.2853, found 210.2856.
(1R,2R)-Ethyl 2-methyl-2-(naphthalen-1-yl)cyclopropanecarboxylate (22)

Colorless oil; $E: Z$ ratio 33:1; 96\% ee [Chiralcel OD-H, hexane:i-propanol 99.5:0.5, $0.5 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 40.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 45.8 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-121.0(c 0.25$, CHCl_{3}); IR (neat) 2979, 1751, 1463, 1441, 1370, 1332, 1264, 1185, 1099, 1034, 900, 845, 794 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88-0.97(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.88-$ $1.94(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.57(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.22(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.43(\mathrm{~m}$, $1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,25.2,27.2,28.1,28.9,62.7,121.8,125.4,126.0$, 126.4, 127.0, 127.9, 135.4, 148.8, 171.7; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) \mathrm{m} / \mathrm{z}$ 277.1204, found 277.1196.
(1R,2R)-Ethyl 2-(3-methoxy-3-oxopropyl)-2-(p-tolyl)cyclopropanecarboxylate (23)

Pale yellow oil; $E: Z$ ratio 27:1; 94% ee [Chiralcel OD-H, hexane:i-propanol 94:6, $0.5 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 13.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 15.1 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-128.6$ (c 0.4, CHCl_{3}); IR (neat) 2986, 1735, 1466, 1447, 1414, 1370, 1332, 1268, 1186, 1152, 1096, 1035, 845 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.83-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.11(\mathrm{~m}$, $1 \mathrm{H}), 2.17-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.97-4.04(2 \mathrm{H}), 7.31$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 22.1,24.2,27.8$, 30.9, 31.6, 33.0, 58.6, 64.2, 129.2, 130.3, 135.0, 145.7, 174.6, 178.1; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z} 290.1692$, found 290.1698.

Ethyl 2-((1R,2R)-2-(ethoxycarbonyl)-1-methylcyclopropyl)-5-phenylfuran-3-carboxylate

 (24)

Yellow oil; $E: Z$ ratio 26:1; 97% ee [Chiralcel OD-H, hexane:i-propanol 90:10, $0.5 \mathrm{~mL} / \mathrm{min}, 215$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 9.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 10.4 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-176.2\left(c 0.61, \mathrm{CHCl}_{3}\right)$; IR (neat) 2976, 2908, 1732, 1466, 1447, 1414, 1393, 1370, 1331, 1270, 1190, 1150, 1097, 1035, 934, 867, 821, $781 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.31-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H})$, 2.02-2.09(m, 1H), 2.68(s, 3H), 2.89-2.99(m, 1H), 4.27-4.46(m, 4H), $6.58(\mathrm{~s}, 1 \mathrm{H}), 7.29-$ $7.36(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.73(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9$, $14.2,24.9,26.0,26.7,27.0,57.8,61.2,106.8,108.1,124.0,127.4,128.1,130.3,158.5,165.2$, 170.3, 173.4; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) \mathrm{m} / \mathrm{z} 365.1385$, found 375.1383.

(1R,2R)-Ethyl 2-propyl-2-(4-(trifluoromethyl)phenyl)cyclopropanecarboxylate (25)

Pale yellow oil; $E: Z$ ratio 21:1; 92% ee [Chiralcel OD-H, hexane:i-propanol $95: 5,0.5 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 19.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 24.0 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-79.3$ (c 0.41, CHCl_{3}); IR (neat) 2985, 1735, 1414, 1392, 1330, 1372, 1266, 1193, 1151, 1030, 920, $855 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89-0.97(\mathrm{~m}, 5 \mathrm{H}), 1.24-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.88$ - $1.97(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.86(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.26(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.3,13.9,19.7,21.1,16.0,32.4$, $43.5,62.2,120.8,122.2,127.1,128.0,153.9,171.7$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na}) \mathrm{m} / \mathrm{z} 323.1223$, found 323.1225.

(1R,2R)-Ethyl 6'-methoxy-3',4'-dihydro-2'H-spiro[cyclopropane-1,1'-naphthalene]-2-

 carboxylate (26)

Colorless oil; single diastereomer; 98\% ee [Chiralcel OD-H, hexane:i-propanol 95:5, 0.5 $\mathrm{mL} / \mathrm{min}, 215 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 23.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 30.2 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-128.6(c$ $0.4, \mathrm{CHCl}_{3}$); IR (neat) 2985, 2942, 2908, 1732, 1466, 1447, 1414, 1393, 1370, 1332, 1270, 1190,
$1150,1035,955,866,845 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.12-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.36$ $(\mathrm{m}, 6 \mathrm{H}), 1.63-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.17-4.26$ $(\mathrm{m}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.3,19.1,23.5,26.5,30.1,30.4,34.8,56.0,61.2,113.4,113.8,127.0,136.9,142.1$, 158.7, 173.2; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z} 261.1509$, found 261.1508.
(1R,2R)-Ethyl 2-methyl-2-(naphthalen-1-ylmethyl)cyclopropanecarboxylate (27)

Yellow oil; $E: Z$ ratio 18:1; 83% ee [Chiralcel OD-H, hexane:i-propanol 97:3, $0.5 \mathrm{~mL} / \mathrm{min}, 215$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 18.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 23.7 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-46.8\left(c 0.15, \mathrm{CHCl}_{3}\right)$; IR (neat) $3261,2985,2907,1716,1580,1504,1447,1370,1331,1096,1033,847,817,763,699$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05-1.17(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.92(\mathrm{~m}$, $1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 2 \mathrm{H}), 2.74-2.80(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.21(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.60(\mathrm{~m}, 4 \mathrm{H})$, $7.82-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.0,25.7,26.2,27.3,31.9,48.3,62.9,120.3,125.0,125.9,126.3,127.6,128.4,129.7$, 132.8, 133.3, 134.0, 171.8; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) \mathrm{m} / z$ 291.1381, found 291.1387.
(1S,2R)-Ethyl 2-(phenylthio)-2-propylcyclopropanecarboxylate (28)

Pale yellow oil; $E: Z$ ratio 16:1; 88% ee [Chiralcel OD-H, hexane:i-propanol $98: 2,0.5 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 20.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 27.3 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}-69.3\left(c 0.4, \mathrm{CHCl}_{3}\right)$; IR (neat) 2985, 1751, 1467, 1447, 1392, 1370, 1332, 1265, 1185, 1096, 1034, 901, $858 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl_{3}) $\delta 0.92-0.96(\mathrm{~m}, 3 \mathrm{H}), 0.97-1.02(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.62-$ $1.72(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.97(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.27(\mathrm{~m}, 2 \mathrm{H})$, $7.37-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.97(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $16.5,20.9,28.3,28.9,32.2,41.1,64.5,136.7,141.9,144.2,146.9,174.7$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{SNa}(\mathrm{M}+\mathrm{Na}) \mathrm{m} / z$ 287.1082, found 287.1089.

1-Naphthyl Thiophen-2-carboxylate (32)

To a solution of 2-thiophenecarbonyl chloride (31, $1.25 \mathrm{~g}, 8.53 \mathrm{mmol}$) in THF (30 mL) at $0^{\circ} \mathrm{C}$ was added a solution of 1-naphthol ($\mathbf{3 0}, 2.76 \mathrm{~g}, 19.15 \mathrm{mmol}$) in THF (20 mL) dropwise. After addition was complete, the solution was stirred at room temperature for 10 min and $\mathrm{Et}_{3} \mathrm{~N}(2.8$ $\mathrm{mL}, 20 \mathrm{mmol}$) was added. A colorless solid was precipitated immediately and the suspension was stirred for 14 h . The reaction mixture was quenched with 5 M aquoues $\mathrm{HCl}(20 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 120 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in
vacuo, and the crude residue was purified by flash chromatography (SiO_{2}-hexanes) to afford $\mathbf{3 2}$ (2.16 g, 100\%) as an amorphous colorless solid; mp $73-74{ }^{\circ} \mathrm{C},\left[1 \mathrm{lit}^{3} 70-75^{\circ} \mathrm{C}\right]$; IR (neat) 3295 , 2980, 2934, 1738, 1698, 1650, 1580, 1560, 1463, 1428, 1408, 1367, 1244, 1195, 1151, 1084, 1022, 990, $941,808,760,736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.92$ $(\mathrm{d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-8.05(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.16(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $118.3,121.6,125.2,126.0,126.4,126.7,128.0,128.2,132.7,133.5,134.7,134.9,146.5,161.0$.

2-(1-(Naphthalen-1-yloxy)vinyl)thiophene (33)

A solution of $\mathbf{3 2}(1.27 \mathrm{~g}, 5.0 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was syringed into a flask containing Tebbe reagent, ${ }^{4}$ prepared from titanocene dichloride $(1.91 \mathrm{~g}, 7.70 \mathrm{mmol})$ and trimethylaluminum (7.70 mL of 2 M solution in toluene, 112 mmol), at room temperature. The slurry was stirred for 24 h at room temperature and was diluted with ether $(15 \mathrm{~mL})$. The reaction mixture was extracted with ether ($2 \times 10 \mathrm{~mL}$), washed with 1 M aqueous $\mathrm{NaOH}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The crude residue was passed through a short path of neutral silica, eluting with ether (120 mL) containing $5 \% \mathrm{Et}_{3} \mathrm{~N}$. The effluent was concentrated in vacuo and the crude residue was purified by flash chromatography on silica gel (95% hexanes, $5 \% \mathrm{Et}_{3} \mathrm{~N}$) to give $\mathbf{3 3}(986 \mathrm{mg}, 78 \%)$ as a brown oil; IR (neat) 2929, 2858, 1652, 1457, 1258, 1073, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.29(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.30$
$-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.96(\mathrm{~m}, 1 \mathrm{H})$, 8.18-8.23 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (175 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 90.7,114.8,116.9,122.3,124.7,124.9$, $125.8,125.9,126.3,127.0,127.6,128.0,135.3,139.5,151.7,155.8$.
(1R,2S)-Ethyl 2-(Naphthalen-1-yloxy)-2-(thiophen-2-yl)cyclopropanecarboxylate [(+)-34]

Yellow oil; Z:E ratio 17:1; 94\% ee [Chiralcel OJ, hexane:i-propanol 94.5:5.5, $0.5 \mathrm{~mL} / \mathrm{min}, 215$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}[(1 R, 2 R)$, major $] 21.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}[(1 S, 2 S)$, minor $\left.] 28.4 \mathrm{~min}\right] ;[\alpha]_{\mathrm{D}}^{22}+36.3\left(c 0.5, \mathrm{CHCl}_{3}\right) ; \mathbb{R}$ (neat) $3473,3029,2931,1735,1496,1454,1380,1260,1174,1037,734,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.21(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.88-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{dd}, J=8.2$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=9.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 6.81-6.91(m, 1H), 7.02-7.05(m, 1H), 7.05-7.15(m, 1H), 7.16-7.21(m, 1H), 7.22-7.27(m, $1 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.72(\mathrm{~m}, 1 \mathrm{H}), 8.12-$ $8.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.5,24.2,32.9,61.8,63.4,108.4,121.6,122.0$, $124.8,125.2,125.9,126.2,126.9,127.7,127.9,128.1,134.5,135.6,151.8,169.3$; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z} 339.1055$, found 339.1055.
(1R,2S)-2-(Naphthalen-1-yloxy)-2-(thiophen-2-yl)cyclopropanecarboxylic Acid [(+)-35]

To a solution of (+)-34 (113 mg, 0.33 mmol$)$ in THF (8 mL) was added $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}(48 \mathrm{mg}, 2$ $\mathrm{mmol})$ followed by $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The mixture was stirred at room temperature for 24 h and was acidified with 1 M HCl to pH 6 . The reaction mixture was extracted with ether ($2 \times 50 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to obtain (+)-35 (99 mg, $\left.96 \%\right)$ as a white solid; mp $169-170{ }^{\circ} \mathrm{C}$, $\left[\mathrm{lit}{ }^{3}\right.$ for racemate $\left.167-168{ }^{\circ} \mathrm{C}\right] ;[\alpha]_{\mathrm{D}}{ }^{20}+54.2(c 0.4, \mathrm{MeOH}),\left[1 \mathrm{it}{ }^{3}\right.$ for $(1 S, 2 R)$ isomer $[\alpha]_{\mathrm{D}}{ }^{25}-51.4(c$ $0.07, \mathrm{CHCl}_{3}$)]; IR (neat) 3537, 2983, 2938, 1739, 1465, 1445, 1407, 1368, 1282, 1176, 1114, $1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{dd}, J=9.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83(\mathrm{dd}, J=9.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=5.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.29$ $(\mathrm{m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.76$ $(\mathrm{m}, 1 \mathrm{H}), 8.18-8.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.9,33.7,64.2,110.2,120.4$, $120.8,121.3,121.7,122.0,123.4,125.6,128.6,129.8,129.7,138.7,144.3,158 . .7,173.5$.
(1R,2S)-N-Methyl-2-(naphthalen-1-yloxy)-2-(thiophen-2-yl)cyclopropanecarboxamide [(-)36]

To a solution of (+)-35 ($95 \mathrm{mg}, 0.306 \mathrm{mmol}$) in THF (6 mL) was added Hunig's base ($160 \mu \mathrm{~L}$, 0.918 mmol) followed by 4-dimethylaminopyridine ($4 \mathrm{mg}, 0.31 \mathrm{mmol}$), methylamine hydrochloride (62 mg, 0.918 mmol$)$, 1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide methiodide ($182 \mathrm{mg}, 0.612 \mathrm{mg}$) and the reaction mixture was stirred at room temperature for 13 h. The solvent of the reaction mixture was removed under reduced pressure and the crude residue was purified by flash chromatography on silica gel (0-10\% ethyl acetate in hexanes) to give (-)$36(98 \mathrm{mg}, 99 \%)$ as a pale yellow oil; $[\alpha]_{\mathrm{D}}{ }^{16}-59.9\left(c 0.22, \mathrm{CHCl}_{3}\right),\left[\mathrm{lit}^{3}\right.$ for $(1 S, 2 R)$ isomer $[\alpha]_{\mathrm{D}}{ }^{25}$ $+59.4\left(c 0.36, \mathrm{CHCl}_{3}\right)$]; IR (neat) $3210,1769,1701,1427,1320,1294,1244,1320,1294,1244$, 1179, 917, 852, $815 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.11-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.41(\mathrm{~m}$, 1H), $2.92(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 5.93(\mathrm{br} . \mathrm{S}, 1 \mathrm{H}), 6.95-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.41-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=6.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=6.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(175 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 21.7,15.9,34.8,62.6,108.7,121.8,123.4,123.9,124.3,124.5,125.9,126.7,127.8$, 128.4, 129.1, 134.5, 144.8, 153.4, 168.0.
N-Methyl-1-((1S,2S)-2-(naphthalen-1-yloxy)-2-(thiophen-2-yl)cyclopropyl)methanamine hydrochloride [(+)-29]

To a solution of (-)-36 ($96 \mathrm{mg}, 0.296 \mathrm{mmol}$) in THF (5 mL) was added lithium aluminium hydride ($45 \mathrm{mg}, 1.187 \mathrm{mmol}$) and the mixture was refluxed for 4 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and was quenched by aqueous ammonium chloride. The reaction mixture was
extracted in ethyl acetate ($2 \times 25 \mathrm{~mL}$), evaporated and treated with $1(\mathrm{M}) \mathrm{HCl}$ in ether (1 mL). A white precipitate formed which was filtered, washed with ether and dried to obtain (+)-29 (89 $\mathrm{mg}, 87 \%)$ as a colorless solid; mp $251-252{ }^{\circ} \mathrm{C}\left[\mathrm{lit.}^{3} 252{ }^{\circ} \mathrm{C}\right] ;[\alpha]_{\mathrm{D}}{ }^{16}+51.2\left(c 0.22, \mathrm{CHCl}_{3}\right),\left[\mathrm{lit}^{3}\right.$ $\left.[\alpha]_{\mathrm{D}}{ }^{20}+51.4\left(c 0.07, \mathrm{CHCl}_{3}\right)\right]$; IR (neat) $3529,3346,3052,2661,1630,1596,1577,1514,1494$, 1457, 1276, 1241, 1206, 1148, 1083, 1043, 1015, 961, 878, 794, 770, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.49-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.94(\mathrm{~m}, 3 \mathrm{H}), 3.36-3.45(\mathrm{~m}$, $2 \mathrm{H}), 6.90-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.95-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ $-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.28(\mathrm{~m}, 1 \mathrm{H}), 9.81(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.8,26.3,48.1,61.4,83.6,108.8,121.3,121.9,122.4,122.8,125.4,125.5$, $126.0,126.9,127.3,128.0,134.5,143.7,151.9$.

References:

1. Li, S.; Huang, K.; Cao, B.; Zhang, J.; Wu, W.; Zhang, X. Angew. Chem. Int. Ed. 2012, 34, 8701.
2. Berkessel, A.; Kaiser, P.; Lex, J. Chem Eur. J. 2003, 9, 4746.
3. White, J. D.; Juniku, R.; Huang, K.; Yang., J.; Wong, D. T. J. Med. Chem. 2009, 52, 5872.
4. Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611.

(+)-11

(E)-7

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{mAU}^{\text {Area }} \stackrel{\text { *s }}{ }$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}} \end{aligned}$	Area \%
1	8.639		0.4655	4.79542 e 4	1636.32328	48.6788
2	10.016		0.5284	5.04875 e 4	1477.97354	51.3212

16

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{AU} \stackrel{\begin{array}{c} \text { Area } \\ *_{s} \end{array}}{ }$	$\begin{aligned} & \text { Height } \\ & \text { AU] } \end{aligned}$	Area \%
1	14.452		0.6122	8645.42608	155.16352	98.0968
2	17.202		0.5777	167.73202	2.67524	1.9032

17

18

19

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{mAU} \stackrel{\text { Area }}{*_{\mathrm{s}}}$	$$	Area \%
1	25.139		0.9678	4689.28931	136.97383	50.8633
2	31.322		0.3753	4530.10192	143.18244	49.1367

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{U} \stackrel{\text { Area }}{{ }^{*} \text { s }}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU} \quad]} \end{aligned}$	Area \%
1	25.176		1.1236	659.83539	2.54536	97.6133
2	31.355		0.3925	16.12112	0.13628	2.3867

20

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{AU} \stackrel{\begin{array}{c} \text { Area } \\ { }_{\mathrm{s}} \end{array}}{ }$	Height AU]	Area \%
1	14.56		0.6882	8674.72143	238.97346	96.8427
2	17.229		0.6509	282.81634	9.94255	3.1573

21

22
(SUBRATA \CYCLOP\SIG10071360.D)

Peak \#	RetTime [min]	Type	Width [min]	Area ${ }^{*}$ s	$\begin{aligned} & \text { Height } \\ & \text { AU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	40.653		0.7408	3.34754 e 4	648.95361	44.0168
2	46.016		1.2012	3.65632 e 4	514.84083	55.9832

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{AU} \stackrel{\text { Area }}{*_{s}}$	$$	Area \%
1	40.694		0.4296	7964.43606	13.15377	97.8066
2	45.822		0.0846	178.60956	0.10983	2.1934

23

Peak \#	RetTime [min]		Width [min]	$\mathrm{mAU} \stackrel{\text { Area }}{*_{\mathrm{s}}}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU} \quad]} \end{aligned}$	Area \%
1	13.248		0.4536	1.22381 e 5	3633.09243	48.1463
2	15.19		0.5702	1.31805 e 5	3502.98901	51.8537

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{mAU}^{\text {Area }}{ }_{\mathrm{*} s}$	$$	Area \%
1	13.249		0.4183	13497.85965	271.07908	97.1794
2	15.067		0.0810	391.77092	8.92509	2.8206

24

Peak \#	RetTime [min]	Type	Width [min]	$\text { mAU } \begin{array}{r} \text { Area } \\ *_{s} \end{array}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	Area \%
1	9.403		0.5204	2.35595 e 4	1442.39208	49.2681
2	10.235		0.4941	2.42397 e 4	1583.49035	50.7319

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{AU} \quad \begin{array}{r} \text { Area } \\ { }^{*} \mathrm{~s} \end{array}$	$\begin{aligned} & \text { Height } \\ & \text { aAU] } \end{aligned}$	Area \%
1	9.636		0.4682	1972.63315	1982.06928	98.5182
2	10.403		0.0787	29.67013	48.78802	1.4818

25

Peak \#	RetTime [min]		Width [min]	$\mathrm{mAU}^{\text {Area }}{ }_{\mathrm{*}_{\mathrm{s}}}$	Height AU]	Area \%
1	19.472		0.4586	6974.3335	453.98066	95.8967
2	24.002		0.5507	298.42302	5.75003	4.1033

26

Peak \#	RetTime [min]	Type	Width [min]	Area *s	Height AU]	Area \%
1	23.776		2.9312	5.22162 e 5	2967.07038	48.3427
2	30.063	MM	3.6729	5.57949 e 5	2520.92117	51.6573

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{mAU} \stackrel{\text { Area }}{*_{\mathrm{s}}}$	$$	Area \%
1	23.801		2.2207	1.26471 e 4	11.44930	99.2366
2	30.192	MM	3.6601	97.29106	0.22981	0.7634

Peak \#	RetTime [min]	Type	Width [min]		$\begin{aligned} & \text { Height } \\ & \mathrm{AU} \quad \text {] } \end{aligned}$	Area \%
1	18.845		1.2196	3098.28171	84.34238	91.6493
2	23.671		0.6367	282.30244	3.94012	8.3507

28

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{mAU} \stackrel{\text { Area }}{*_{s}}$	$\begin{aligned} & \text { Height } \\ & {\left[\mathrm{mAU}^{2}\right]} \end{aligned}$	Area \%
1	20.638	MM	2.2827	2.34028 e 5	1733.98661	49.2661
2	27.329	MM	2.5823	2.40823 e 5	1577.83504	50.7339

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{AU} \stackrel{\text { Area }}{*_{s}}$	$\begin{aligned} & \text { Height } \\ & \mathrm{AU} \quad \text {] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	20.641		1.2407	6323.95514	83.76202	94.2327
2	27.345		0.6692	387.04342	3.72017	5.7673

(+)-34

Peak \#	RetTime [min]		Width [min]	$\mathrm{mAU} \stackrel{\text { Area }}{*_{s}}$	$\begin{aligned} & \text { Height } \\ & \text { AU] } \end{aligned}$	Area \%
1	21.833		1.0599	9634.32427	141.50624	49.1068
2	28.519		1.1204	9984.80032	136.52637	50.8932

Peak \#	RetTime [min]	Type	Width [min]	$\mathrm{AU} \stackrel{\text { Area }}{\mathrm{*}_{\mathrm{s}}}$	$$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	21.802		1.1293	1319.93324	7.81106	97.1634
2	28.42		0.0192	38.53429	0.17283	2.8366

z_{H}	00．τ	วฮ
	0	¢๐
	$0 \varepsilon^{\circ}$	g＇
	0	gss
	W ${ }^{\text {a }}$	mas
z HW	00ヵtLtt．00L	as
	zLOTET	IS
zHw	0t69tst．00L	toas
M		MTİ
，${ }^{\text {sn }}$	$0 \chi^{\text {¢ }}$－	Tİ
	0ヵ．6	Td
	HT	tonn
	I	Oaw
دəs	$00000000 \cdot \mathrm{z}$	ta
	z＇862	gu
${ }^{\text {resn }}$	0S．9	ga
	000 $0^{\text {® }}$	ma
	て．0z	Фч
วəs	โZ96666．ε	ठ
zH	ع00szt 0	Şataia
$z_{\text {H }}$	29L＇も06It	HMS
	z	sa
	て£	SN
	عโวธว	यлa＾tos
	9\＆てら6	वL
	0 ¢ 5 z	ற๐ฯสTกฮ
	วยโ Hวadว unu S	¢Hgoyd
	7oads	Wก4LSNI
	sz＇6T	อurtu
	60t0かtoz	－ә7⿺𠃊
	โ	onjoya
	T	ONAXE
	0T－80－SS	बW\％n

