# **Supporting Information**

| 2  | MANUSCRIPT TITLE: | Occurrence of Halogenated Flame Retardants in Sediment off     |
|----|-------------------|----------------------------------------------------------------|
| 3  |                   | an Urbanized Coastal Zone: Association with Urbanization and   |
| 4  |                   | Industrialization                                              |
| 5  | AUTHORS:          | Hui-Hui Liu, Yuan-Jie Hu, Pei Luo, Lian-Jun Bao, Jian-Wen      |
| 6  |                   | Qiu, Kenneth M.Y. Leung, and Eddy Y. Zeng                      |
| 7  | ADDRESS:          | State Key Laboratory of Organic Geochemistry, Guangzhou        |
| 8  |                   | Institute of Geochemistry, Chinese Academy of Sciences,        |
| 9  |                   | Guangzhou 510640, China; Department of Biology, Hong           |
| 10 |                   | Kong Baptist University, Hong Kong SAR, China; the Swire       |
| 11 |                   | Institute of Marine Science and School of Biological Sciences, |
| 12 |                   | The University of Hong Kong, Pokfulam, Hong Kong SAR,          |
| 13 |                   | China; School of Environment, Jinan University, Guangzhou      |
| 14 |                   | 510632, China and University of Chinese Academy of             |
| 15 |                   | Sciences, Beijing 100049, China                                |
| 16 | NO. OF TABLES:    | 6                                                              |
| 17 | NO. OF FIGURES:   | 14                                                             |
| 18 | NO. OF PAGES:     | 28                                                             |

| 19  | SI Table S1. Nomenclat | ture and Ion Fragment for | the Target Analytes Us | ed in this Study |
|-----|------------------------|---------------------------|------------------------|------------------|
| 20  |                        |                           |                        |                  |
| 0.1 |                        | <b>1</b> /                | <b>T T</b> <i>A</i>    | T C              |

| 21 | Analyte | IUPAC nomenclature                           | Log K <sub>ow</sub> "                  | Ion fragments     |
|----|---------|----------------------------------------------|----------------------------------------|-------------------|
| 22 | TBB     | 2-ethylhexyl 2,3,4,5-tetrabromobenzoate      | 8.75 <sup>1</sup>                      | 356.7/358.7/469   |
| 23 | TBPH    | bis-(2-ethylhexyl)-tetrabromophthalate       | 11.95, <sup>1</sup> 10.08 <sup>2</sup> | 463.7/514.7/512.7 |
| 24 | BTBPE   | 1,2-bis(trbromophenoxy)-ethane               | 7.88, <sup>2</sup> 9.15 <sup>3</sup>   | 250.8/252.8/330.6 |
| 25 | DBDPE   | 1,2-bis(2,3,4,5,6-pentabromophenyl)ethane    | 13.24, <sup>1</sup> 11.10 <sup>2</sup> | 81/79/810.3       |
| 26 | DP      | bis(hexachlorocyclopentadieno)cyclooctane    | 11.27 <sup>1</sup>                     | 617.8/653.8       |
| 27 | TBBPA   | tetrabromobisphenol A                        | 4.5 <sup>4</sup>                       | 542.6/554.7/550.7 |
| 28 | HBCD    | hexabromocyclododecane                       | 7.74, <sup>1</sup> 6.16 <sup>5</sup>   | 640.6/652.7       |
| 29 | TDBPP   | tris(2,3-dibromopropyl) phosphate            | 4.29 <sup>3</sup>                      | 496.6/498.6       |
| 30 | PBCCH   | pentabromochlorocyclohexane                  | 4.72 <sup>3</sup>                      | 115.8/79/81       |
| 31 | HCDBCO  | hexachlorocyclopentadienyldibromocyclooctane | 7.91 <sup>1</sup>                      | 539.7/541.6       |
| 32 |         |                                              |                                        |                   |

33 <sup>*a*</sup> The superscripts are the reference numbers for  $\log K_{ow}$ 

### 35 SI Table S2. Quality Assurance and Quality Control Results

| 37 | Analyte                 | Matrix spiking blank        | Procedural blank | Solvent spiking blank | Sample         |
|----|-------------------------|-----------------------------|------------------|-----------------------|----------------|
| 38 | ΣBDE                    | $66 \pm 3.2\% 78 \pm 8.7\%$ |                  | $77\pm6\%89\pm4\%$    |                |
| 39 | BDE-209                 | $85 \pm 15\%$               |                  | $96 \pm 10\%$         |                |
| 40 | TBB                     | $55 \pm 18\%$               |                  | $61 \pm 16\%$         |                |
| 41 | TBPH                    | $58 \pm 20\%$               |                  | $59 \pm 18\%$         |                |
| 42 | BTBPE                   | $82 \pm 6.2\%$              |                  | $86 \pm 4.3\%$        |                |
| 43 | DBDPE                   | $87 \pm 10\%$               |                  | 91 ± 12%              |                |
| 44 | DP                      | $71 \pm 9.6\%$              |                  | $80 \pm 6.3\%$        |                |
| 45 | TBBPA                   | $62 \pm 15\%$               |                  | $76 \pm 11\%$         |                |
| 46 | HBCD                    | $76 \pm 9.5\%$              |                  | $78 \pm 8.8\%$        |                |
| 47 | TDBPP                   | $65 \pm 14\%$               |                  | $66 \pm 12\%$         |                |
| 48 | РВССН                   | $75 \pm 11\%$               |                  | $80 \pm 8.4\%$        |                |
| 49 | HCDBCO                  | $79 \pm 14\%$               |                  | $76 \pm 9.8\%$        |                |
| 50 | BDE-51                  | $86 \pm 18\%$               | $104 \pm 9.7\%$  | $92 \pm 10\%$         | $90 \pm 15\%$  |
| 51 | BDE-115                 | $77 \pm 12\%$               | $88 \pm 6.2\%$   | $80 \pm 8.4\%$        | $86 \pm 14\%$  |
| 52 | <sup>13</sup> C-BDE-138 | $71 \pm 16\%$               | $81 \pm 6.2\%$   | $80 \pm 12\%$         | $82 \pm 9.0\%$ |
| 53 | <sup>13</sup> C-BDE-209 | $85 \pm 17\%$               | $110 \pm 8.3\%$  | $93 \pm 7.2\%$        | $89 \pm 17\%$  |
| 54 | HBCD- $d_{18}$          | $67 \pm 19\%$               | $80 \pm 13\%$    | $87 \pm 16\%$         | $81 \pm 14\%$  |

SI Table S3. Coordinates of Sampling Sites, Concentrations of Target Analytes (ng g<sup>-1</sup>) and Contents of Total Organic Carbon (%) with the 55 56 Surface Sediments from Daya Bay and Hong Kong

57

| 58       | Site | Latitude    | Longitude    | <b>SBDE</b> <sup><i>a</i></sup> | BDE-209 | ) TBB | TBPH  | BTBPE  | DBDPE | DP <sup>b</sup> | TBBPA | HBCD <sup>c</sup> | TDBPP | PBCCH <sup>d</sup> | HCDBCO | TOC  |
|----------|------|-------------|--------------|---------------------------------|---------|-------|-------|--------|-------|-----------------|-------|-------------------|-------|--------------------|--------|------|
| 59       |      |             |              |                                 |         |       | Da    | ya Bay |       |                 |       |                   |       |                    |        |      |
| 60       | D1   | 22° 43.264′ | 114° 34.132′ | 2.6                             | 47      | 0.54  | 0.57  | 2.1    | 35    | 1.8             | 6.1   | 14                | 0.051 | 1.4                | 0.21   | 0.62 |
| 61       | D2   | 22° 43.894′ | 114° 35.249′ | 1.1                             | 33      | 0.36  | 0.27  | 1.1    | 22.   | 0.90            | 3.4   | 9.0               | 0.028 | 0.77               | 0.14   | 0.82 |
| 62       | D3   | 22° 42.672′ | 114° 34.373′ | 2.3                             | 44      | 0.50  | 0.68  | 1.6    | 28    | 1.8             | 4.7   | 17                | 0.066 | 2.0                | 0.18   | 1.1  |
| 63       | D4   | 22° 42.188′ | 114° 34.617′ | 1.4                             | 50      | 0.18  | 0.16  | 1.1    | 24    | 1.1             | 3.6   | 11                | 0.034 | 0.88               | 0.065  | 1.2  |
| 64       | D5   | 22° 41.935′ | 114° 32.975′ | 1.9                             | 24      | 0.18  | 0.14  | 1.4    | 16    | 0.56            | 4.1   | 7.6               | e     | 0.97               | 0.087  | 1.0  |
| 65       | D6   | 22° 42.492′ | 114° 32.257′ | 1.3                             | 15      | 0.31  | 0.36  | 1.6    | 11    | 2.5             | 3.1   | 11                |       | 0.63               | 0.16   | 1.1  |
| 66       | D7   | 22° 39.510′ | 114° 33.065′ | 0.57                            | 19      | 0.09  | 0.17  | 0.94   | 9.3   | 0.34            | 2.1   | 6.7               |       | 0.38               | 0.13   | 1.5  |
| 67       | D8   | 22° 45.950′ | 114° 41.867′ | 0.39                            | 11      | 0.054 | 0.14  | 0.51   | 3.6   | 2.2             | 0.91  | 1.6               |       | 0.24               | 0.093  | 1.0  |
| 68       | D9   | 22° 45.550′ | 114° 43.633′ | 0.25                            | 8.4     | 0.16  | 0.056 | 0.61   | 6.0   | 0.15            | 1.1   | 3.2               | 0.040 | 0.15               | 0.088  | 1.3  |
| 69       | D10  | 22° 45.517′ | 114° 39.667′ | 0.066                           | 2.6     | 0.15  | 0.047 | 0.88   | 6.6   | 1.1             | 0.49  | 4.2               | 0.039 | 0.16               | 0.061  | 1.0  |
| 70       | D11  | 22° 43.470′ | 114° 37.519′ | 0.21                            | 4.0     | 0.081 | 0.084 | 0.63   | 2.6   | 0.24            | 0.50  | 6.8               |       | 0.28               | 0.056  | 0.9  |
| 71       | D12  | 22° 41.252′ | 114° 35.505′ | 0.57                            | 15.     | 0.15  | 0.19  | 1.26   | 9.1   | 0.90            | 1.4   | 4.1               | 0.026 | 0.37               | 0.084  | 1.1  |
| 72       | D13  | 22° 38.050′ | 114° 36.950′ | 0.091                           | 6.1     | 0.096 | 0.15  | 0.73   | 5.3   | 0.48            | 0.92  | 5.8               | 0.024 | 0.32               | 0.038  | 0.93 |
| 73       | D14  | 22° 36.450′ | 114° 41.633′ | 0.40                            | 13      | 0.065 | 0.15  | 0.68   | 1.6   | 0.33            | 0.23  | 5.7               |       | 0.26               | 0.053  | 0.56 |
| 74       | D15  | 22° 39.400′ | 114° 41.850′ | 0.12                            | 1.9     | 0.062 | 0.085 | 0.96   | 4.0   | 0.56            | 0.70  | 4.6               | 0.007 | 0.13               | —      | 0.81 |
| 75       | D16  | 22° 43.217′ | 114° 42.267′ | 0.33                            | 9.5     | 0.050 | 0.10  | 0.48   | 1.9   | 0.32            | 0.53  | 3.8               | _     | 0.15               | 0.018  | 1.1  |
| 76       | D17  | 22° 34.200′ | 114° 37.433′ | 0.14                            | 6.8     | 0.12  | 0.096 | 0.21   | 3.8   | 0.96            | 0.32  | 3.7               | 0.036 | 0.23               | —      | 0.90 |
| 77<br>70 | D18  | 22° 34.717′ | 114° 37.633′ | 0.25                            | 5.2     | 0.044 | 0.052 | 0.11   | 2.4   | 0.33            | 0.29  | 6.3               |       | 0.13               | —      | 0.78 |
| /8<br>79 |      |             |              |                                 |         |       |       |        |       |                 |       |                   |       |                    |        |      |
| 80       |      |             |              |                                 |         |       | Hon   | g Kong |       |                 |       |                   |       |                    |        |      |
| 81       | H1   | 22° 29.930′ | 113° 59.265′ | 1.2                             | 34      | 0.24  | 0.21  | 0.64   | 33    | 1.4             | 2.4   | 7.3               | 0.033 |                    | 0.020  | 0.54 |

| 82  | H2  | 22° 28.399′ | 113° 57.798′ | 0.91  | 29  | 0.17  | 0.14  | 0.64 | 37  | 0.86 | 3.4  | 7.7 |        |      | 0.088 | 0.98 |
|-----|-----|-------------|--------------|-------|-----|-------|-------|------|-----|------|------|-----|--------|------|-------|------|
| 83  | H3  | 22° 26.800′ | 113° 55.600′ | 0.49  | 28  | 0.41  | 0.13  | 1.5  | 28  | 1.2  | 2.7  | 13  | 0.0081 | _    | 0.039 | 1.0  |
| 84  | H4  | 22°25.298′  | 113° 53.497′ | 0.32  | 14  | 0.37  | 0.20  | 1.2  | 39  | 0.71 | 2.0  | 5.7 | —      | 0.45 | 0.11  | 0.61 |
| 85  | H5  | 22°23.801′  | 113° 53.500′ | 1.1   | 44  | 0.38  | 0.31  | 5.6  | 26  | 2.1  | 1.3  | 11  | 0.030  | 0.85 | 0.021 | 1.0  |
| 86  | H6  | 22°21.402′  | 113° 54.801′ | 0.33  | 36  | 0.077 | 0.22  | 3.4  | 12  | 1.5  | 2.2  | 5.9 | _      | _    | 0.094 | 0.66 |
| 87  | H7  | 22°21.401′  | 113° 57.304′ | 0.34  | 14  | 0.15  | 0.13  | 1.5  | 26  | 0.94 | 1.8  | 10  | —      | 0.55 | 0.056 | 0.90 |
| 88  | H8  | 22°20.803′  | 114° 02.290′ | 0.59  | 7.9 | 0.34  | 0.56  | 3.9  | 14  | 2.4  | 3.6  | 4.3 | 0.11   | —    | 0.18  | 1.2  |
| 89  | H9  | 22°17.302′  | 113° 52.597′ | 0.080 | 11  | 0.30  | 0.46  | 0.88 | 9.9 | 0.56 | 1.6  | 3.0 | 0.040  | 0.40 | 0.041 | 1.0  |
| 90  | H10 | 22°09.200'  | 113° 56.204′ | 0.11  | 2.8 | 0.14  | 0.35  | 0.90 | 12  | 0.28 | 0.83 | 1.7 |        |      | 0.082 | 0.70 |
| 91  | H11 | 22°09.201′  | 114° 02.694′ | 0.29  | 4.7 | 0.27  | 0.21  | 2.2  | 14  | 0.93 | 1.4  | 4.3 | 0.15   | 0.57 | 0.10  | 0.82 |
| 92  | H12 | 22°12.203'  | 114° 04.296' | 0.065 | 7.7 | 0.26  | 0.55  | 2.9  | 25  | 2.0  | 2.1  | 8.1 | _      | 0.84 | 0.060 | 1.2  |
| 93  | H13 | 22°15.203'  | 114° 07.398′ | 0.80  | 22  | 0.56  | 0.43  | 4.2  | 45  | 2.9  | 5.7  | 15  | 0.12   | 1.3  | 0.25  | 0.84 |
| 94  | H14 | 22°16.493′  | 114° 03.498′ | 0.80  | 35  | 0.80  | 0.49  | 3.2  | 37  | 2.2  | 4.9  | 19  | 0.058  | 0.95 | 0.42  | 1.0  |
| 95  | H15 | 22°18.604′  | 114° 06.301′ | 1.9   | 43  | 0.58  | 0.59  | 6.2  | 62  | 3.3  | 7.6  | 26  | 0.14   | 2.4  | 0.34  | 0.67 |
| 96  | H16 | 22°17.500′  | 114° 09.500′ | 1.1   | 44  | 0.53  | 0.37  | 5.1  | 56  | 4.2  | 9.0  | 30  | 0.082  | 1.9  | 0.25  |      |
| 97  | H17 | 22°18.102′  | 114° 11.898′ | 1.3   | 53  | 0.64  | 0.74  | 5.3  | 76  | 3.7  | 8.5  | 27  | 0.20   | 2.3  | 0.49  | 0.93 |
| 98  | H18 | 22°09.196'  | 114° 07.394′ | 0.12  | 5.5 | 0.16  | 0.10  | 1.4  | 26  | 0.78 | 2.4  | 9.8 | 0.11   | —    | 0.049 | 0.69 |
| 99  | H19 | 22°09.202′  | 114° 14.399′ | 0.29  | 5.3 | 0.28  | 0.15  | 0.55 | 7.5 | 0.65 | 0.90 | 7.9 | —      | 0.57 | 0.11  | 0.70 |
| 100 | H20 | 22°09.200'  | 114° 23.401′ | 0.28  | 7.3 | 0.12  | 0.11  | 0.27 | 3.8 | 0.41 | 1.2  | 6.0 | —      | 0.42 | 0.029 | 0.64 |
| 101 | H21 | 22°13.799′  | 114° 15.903′ | 0.13  | 1.5 | 0.047 | 0.11  | 1.3  | 2.3 | 1.7  | 4.4  | 7.2 | 0.024  | 1.1  | 0.020 | 1.2  |
| 102 | H22 | 22°13.795′  | 114° 23.400′ | 0.29  | 3.8 | 0.094 | 0.24  | 0.88 | 9.4 | 0.53 | 1.4  | 6.6 | —      | —    | 0.086 | 0.78 |
| 103 | H23 | 22°17.500′  | 114° 15.596′ | 1.3   | 23  | 0.48  | 0.38  | 3.1  | 24  | 2.4  | 3.5  | 17  | 0.076  | 2.1  | 0.22  | 1.1  |
| 104 | H24 | 22°17.501′  | 114° 20.900′ | 0.12  | 2.8 | 0.082 | 0.13  | 1.0  | 15  | 0.67 | 2.4  | 8.1 |        | 0.55 | 0.13  | 0.51 |
| 105 | H25 | 22°20.902′  | 114° 17.099′ | 0.30  | 3.1 | 0.080 | 0.15  | 0.50 | 18  | 0.98 | 0.54 | 12  | 0.063  | 0.17 | 0.052 | 1.7  |
| 106 | H26 | 22°23.700′  | 114° 25.900′ | 0.22  | 6.6 | 0.23  | 0.12  | 0.53 | 2.8 | 0.35 | 1.5  | 3.4 |        | —    | 0.11  | 0.52 |
| 107 | H27 | 22°28.295′  | 114° 25.507′ | 0.15  | 5.1 | 0.047 | 0.062 | 1.3  | 9.3 | 0.42 | 1.2  | 3.2 | —      | —    | 0.051 | 0.36 |
| 108 | H28 | 22°26.299′  | 114° 13.001′ | 1.2   | 17  | 0.084 | 0.19  | 2.2  | 12  | 2.1  | 3.5  | 10  | —      | 0.13 | _     | 0.76 |
| 109 | H29 | 22°26.800′  | 114° 15.600′ | 0.30  | 3.1 | 0.13  | 0.067 | 3.9  | 8.6 | 1.1  | 2.8  | 8.0 | 0.014  | —    | 0.041 | 1.8  |
| 110 | H30 | 22°28.299′  | 114° 18.000′ | 0.53  | 8.4 | 0.12  | 0.12  | 3.3  | 15  | 1.4  | 1.4  | 5.4 | 0.004  | —    | 0.039 | 2.2  |
| 111 | H31 | 22°29.300′  | 114° 19.502′ | 0.16  | 4.5 | 0.29  | 0.10  | 0.74 | 12  | 0.93 | 1.2  | 5.4 | —      | —    | 0.039 | 1.9  |
|     |     |             |              |       |     |       |       |      |     |      |      |     |        |      |       |      |

| 112 | H32              | 22°30.496′            | 114° 22.802′                 | 0.32               | 9.1                  | 0.14         | 0.078      | 1.1        | 6.2          | 0.42       | 2.5                  | 1.9       | —            | _                      | 0.019       | 1.2              |
|-----|------------------|-----------------------|------------------------------|--------------------|----------------------|--------------|------------|------------|--------------|------------|----------------------|-----------|--------------|------------------------|-------------|------------------|
| 113 | H33              | 22°31.501′            | 114° 17.999′                 | 0.24               | 2.2                  | 0.22         | 0.071      | 0.38       | 4.3          | 0.42       | 0.82                 | 2.9       | 0.010        | 0.13                   | 0.042       | 1.9              |
| 114 | H34              | 22°33.600′            | 114° 19.499′                 | 0.50               | 6.0                  | 0.19         | 0.12       | 0.50       | 23           | 0.96       | 1.4                  | 6.7       | 0.073        | 1.0                    | 0.11        | 1.2              |
| 115 | H35              | 22°33.200′            | 114° 21.699′                 | 0.19               | 5.4                  | 0.078        | 0.051      | 1.1        | 6.3          | 0.61       | 0.53                 | 5.2       | 0.016        | 0.52                   | 0.044       | 1.1              |
| 116 |                  |                       |                              |                    |                      |              |            |            |              |            |                      |           |              |                        |             |                  |
| 117 | <sup>a</sup> Sum | of BDE-15, -17        | , -47, -71, -85, -9 <u>9</u> | 9, -100, -1        | 26, -153, -          | 154, -181, - | 183, -190, | -196, -203 | 3, -204, -20 | 6, -207 an | d -208. <sup>b</sup> | Sum of an | ti-DP and sy | /n-DP. <sup>c</sup> Su | m of β-HBCΓ | ) and $\gamma$ - |
| 118 | HBCD             | ), and $\alpha$ -HBCD | was not detected.            | <sup>d</sup> PBCCH | -D. <sup>e</sup> Not | detected.    |            |            |              |            |                      |           |              |                        |             |                  |

## 119 SI Table S4. Comparison of Global Sediment Concentrations (ng g<sup>-1</sup>) of Halogenated

120 Flame Retardants

| 121 | Analyte                         | Concentration | Sampling site                    | Reference     |
|-----|---------------------------------|---------------|----------------------------------|---------------|
| 122 | <b>SBDE</b> <sup><i>a</i></sup> | 0.12-5.5      | Qingdao coast, China             | 6             |
| 123 |                                 | 0-0.55        | Yangtze River Delta, China       | 7             |
| 124 |                                 | 0.04-6.3      | The Great Lakes, North America   | 8             |
| 125 |                                 | 0.04-95       | Pearl River Delta, China         | 9             |
| 126 |                                 | 0.09-2.6      | Daya Bay, China                  | present study |
| 127 |                                 | 0.06-1.9      | Hong Kong, China                 | present study |
| 128 | BDE209                          | 0.16-95       | Yangtze River Delta, China       | 7             |
| 129 |                                 | 21-240        | The Great Lakes, North America   | 8             |
| 130 |                                 | 0-7300        | Pearl River Delta, China         | 9             |
| 131 |                                 | 240-1700      | Scheldt estuary, The Netherlands | 10            |
| 132 |                                 | 1.9-50        | Daya Bay, China                  | present study |
| 133 |                                 | 1.5-53        | Hong Kong, China                 | present study |
| 134 | DBDPE                           | 39-360        | Zhujiang estuary, China          | 11            |
| 135 |                                 | 23-430        | Dongjiang river, China           | 12            |
| 136 |                                 | 0-24          | Western Scheldt, The Netherlands | 3,13          |
| 137 |                                 | 0.11-2.8      | The Great Lakes, North America   | 14            |
| 138 |                                 | 1.6-34.8      | Daya Bay, China                  | present study |
| 139 |                                 | 2.3-76        | Hong Kong, China                 | present study |
| 140 | $\operatorname{HBCD}^{b}$       | 0.2-6.9       | North Sea, The Netherlands       | 15            |
| 141 |                                 | 0.04-3.1      | The Great Lakes, North America   | 14            |
| 142 |                                 | 0.43-3.9      | Lake Ellasjøen, Norway           | 16            |
| 143 |                                 | 0.06-2.3      | Tokyo Bay, Japan                 | 17            |
| 144 |                                 | 1.6-17        | Daya Bay, China                  | present study |
| 145 |                                 | 1.7-30        | Hong Kong, China                 | present study |
| 146 | TBBPA                           | 3.8-230       | Dongjiang River, China           | 12            |
| 147 |                                 | 330-3800      | English Lakes, England           | 18            |
| 148 |                                 | 0.3-1.3       | Western Scheldt, The Netherlands | 19            |
| 149 |                                 | 0.8-4.0       | Dutch rivers, The Netherlands    | 19            |
| 150 |                                 | 0.23-6.1      | Daya Bay, China                  | present study |
| 151 |                                 | 0.53-9.0      | Hong Kong, China                 | present study |
| 152 | BTBPE                           | 0.05-2.07     | Pearl River Delta, China         | 11            |
| 153 |                                 | 0.27-21.9     | Pearl River Delta, China         | 11            |
| 154 |                                 | 0.13-8.3      | The Great Lakes, North America   | 14            |
| 155 |                                 | 0-0.3         | Western Scheldt, The Netherlands | 3             |
| 156 |                                 | 0.10-2.1      | Daya Bay, China                  | present study |
| 157 |                                 | 0.27-6.2      | Hong Kong, China                 | present study |

| 158 | DP <sup>c</sup>                 | 5-590                                        | The Great Lakes, North America              | 20-23           |
|-----|---------------------------------|----------------------------------------------|---------------------------------------------|-----------------|
| 159 |                                 | 0.04-0.11                                    | Songhua River, China                        | 24              |
| 160 |                                 | 0.25-0.70                                    | Yellow Sea, China                           | 25              |
| 161 |                                 | 0-4.9                                        | Jing-Hang Grand Canal, China                | 26              |
| 162 |                                 | 0.15-2.5                                     | Daya Bay, China                             | present study   |
| 63  |                                 | 0.28-4.2                                     | Hong Kong, China                            | present study   |
| 64  | $PBCCH^{d}$                     | 0.03-0.72                                    | Western Scheldt, The Netherlands            | 3               |
| 65  |                                 | 0.13-2.0                                     | Daya Bay, China                             | present study   |
| 66  |                                 | 0-2.4                                        | Hong Kong, China                            | present study   |
| 67  | HCDBCO                          | 0.21-2.3                                     | The Great Lakes, North America              | 14              |
| 68  |                                 | 0-0.21                                       | Daya Bay, China                             | present study   |
| 69  |                                 | 0-0.49                                       | Hong Kong, China                            | present study   |
| 70  | TDBPP                           | 7.8-89                                       | Baltic Sea (Vistula river)                  | 27              |
| 71  |                                 | 0-0.066                                      | Daya Bay, China                             | present study   |
| 72  |                                 | 0-0.20                                       | Hong Kong, China                            | present study   |
| 73  | TBB                             | 0.044-0.55                                   | Daya Bay, China                             | present study   |
| 74  |                                 | 0.047-0.80                                   | Hong Kong, China                            | present study   |
| 75  | ТВРН                            | 0.047-0.68                                   | Daya Bay, China                             | present study   |
| 76  |                                 | 0.051-0.74                                   | Hong Kong, China                            | present study   |
| 77  |                                 |                                              |                                             |                 |
| 78  | <sup><i>a</i></sup> Sum of BDE- | 15, -17, -47, -71, -85, -                    | -99, -100, -126, -153, -154, -181, -183, -1 | 90, -196, -203, |
| 79  | -204, -206, -20                 | 7 and -208. <sup><i>b</i></sup> Sum of $\mu$ | β-HBCD and γ-HBCD, and no $\alpha$ -HBCD v  | was detected in |
| 80  | our samples. <sup>c</sup>       | Sum of anti-DP and sy                        | m-DP. <sup>d</sup> the isomer PBCCH-D.      |                 |
| 81  |                                 |                                              |                                             |                 |

182 SI Table S5. Assignment of Sampling Sites to the Council Districts of Hong Kong, the
 183 Corresponding Average Concentrations of all-HFRs (ng g<sup>-1</sup>), Concentration Deviation
 184 and Population Density (person km<sup>-2</sup>)

| 1 | 8      | 5 |
|---|--------|---|
| • | $\sim$ | ~ |

| 186 | Council district  | Sampling site             | Concentration <sup><i>a</i></sup> | Deviation               | <b>Population</b> <sup><i>b</i></sup> |
|-----|-------------------|---------------------------|-----------------------------------|-------------------------|---------------------------------------|
| 187 |                   |                           |                                   |                         |                                       |
| 188 | South             | H21                       | 20                                | 4.0 <sup>c</sup>        | 6160                                  |
| 189 | North             | H33, 34                   | 26                                | $20^{d}$                | 1946                                  |
| 190 | Tai Po            | H27, 28, 29, 30, 31, 32   | 29                                | $10^{d}$                | 1807                                  |
| 191 | Sai Kung          | H20, 22, 23, 24, 25, 26   | 34                                | 23 <sup>d</sup>         | 2813                                  |
| 192 | Tsuen Wan         | H8                        | 38                                | 7.5 <sup>c</sup>        | 4330                                  |
| 193 | Islands           | H9, 10, 11, 12, 13, 14, 1 | 8, 19 53                          | 35 <sup>d</sup>         | 693                                   |
| 194 | Tuen Mun          | H4, 5, 6, 7               | 69                                | $17^{d}$                | 5096                                  |
| 195 | Yuen Long         | H1, 2, 3                  | 78                                | 2.5 <sup><i>d</i></sup> | 3652                                  |
| 196 | Central & Western | H13                       | 98                                | 29 <sup>c</sup>         | 17950                                 |
| 197 | Yau Tsim Mong     | H16                       | 152                               | 30 <sup>c</sup>         | 39593                                 |
| 198 | Kwai Tsing        | H15                       | 154                               | 31 <sup>c</sup>         | 20158                                 |
| 199 | Kowloon City      | H17                       | 180                               | 36 <sup>c</sup>         | 33278                                 |
|     |                   |                           |                                   |                         |                                       |

<sup>*a*</sup> Average concentration of HFRs for all sampling sites in each council district, and the HFRs in each site include PBDEs and alternative HFRs. <sup>*b*</sup> The data were calculated with values of district area <sup>28</sup> and population size.<sup>29</sup> <sup>*c*</sup> Estimated using an instrumental analysis uncertainty of 20% i.e., deviation =  $C_{\text{HFR}} \times 20\%$ . <sup>*d*</sup> Estimated as the standard deviations of HFR concentrations at all sampling sites within the same district (i.e., deviation =

206  $\sqrt{\frac{\sum_{i=1}^{n} (C_{\text{HFR},i} - \overline{C}_{\text{HFR}})^{2}}{n-1}}$ ; where *i* represents the *i*th sampling site, *n* is the number of sampling sites 207 within the same council district, and  $\overline{C}_{\text{HFR}}$  is the average HFR concentration for all sampling 208 sites within the same district.

### 210 SI Table S6. Doubling Time (t<sub>2</sub>) for PBDEs <sup>a</sup> and Alternative HFRs in Two Sediment

211 Cores and Three Socioeconomic Indices (Production Volume, Production Value and

#### 212 Population Size) in Huizhou, Fitted with a First-Order Kinetic Model

213

| 214 | Analyte                        | <i>t</i> <sub>2</sub> (yr) | $r^2$ | р        |
|-----|--------------------------------|----------------------------|-------|----------|
| 215 |                                | sediment core l            | D13   |          |
| 216 | Penta-BDE                      | $87 \pm 7.9$               | 0.80  | < 0.0001 |
| 217 | Octa-BDE                       | $82 \pm 8.7$               | 0.75  | < 0.0001 |
| 218 | Deca-BDE                       | $23 \pm 2.3$               | 0.75  | < 0.0001 |
| 219 | TBB+TBPH                       | $23 \pm 2.3$               | 0.85  | < 0.0001 |
| 220 | BTBPE                          | $27 \pm 2.9$               | 0.81  | < 0.0001 |
| 221 | DBDPE                          | $55 \pm 8.3$               | 0.65  | < 0.0001 |
| 222 | DP                             | $43 \pm 4.1$               | 0.79  | < 0.0001 |
| 223 | HBCD                           | $27 \pm 3.3$               | 0.71  | < 0.0001 |
| 224 |                                | sediment core l            | D16   |          |
| 225 | Penta-BDE                      | $89 \pm 9.6$               | 0.69  | < 0.0001 |
| 226 | Octa-BDE                       | $107 \pm 11$               | 0.47  | < 0.0001 |
| 227 | Deca-BDE                       | $32 \pm 2.8$               | 0.81  | < 0.0001 |
| 228 | TBB+TBPH                       | $18 \pm 1.4$               | 0.91  | < 0.0001 |
| 229 | BTBPE                          | $21 \pm 5.5$               | 0.72  | < 0.0001 |
| 230 | DBDPE                          | $59 \pm 7.3$               | 0.70  | < 0.0001 |
| 231 | DP                             | $29 \pm 2.8$               | 0.79  | < 0.0001 |
| 232 | HBCD                           | $59 \pm 10$                | 0.47  | < 0.0001 |
| 233 |                                | socioeconomic              | index |          |
| 234 | Production volume <sup>b</sup> | $5.2 \pm 0.49$             | 0.90  | < 0.0001 |
| 235 | Production value <sup>c</sup>  | $4.2 \pm 0.12$             | 0.99  | < 0.0001 |
| 236 | Population Size                | $24 \pm 0.93$              | 0.97  | < 0.0001 |
| 237 |                                |                            |       |          |

<sup>*a*</sup> Considering the complex compositions of technical products with different predominant 238 constituents,<sup>30</sup> BDE-71, -47, -100, -99, -85, -126, -154 and -153 were classified as the 239 240 constituents of Penta-BDE product, BDE-183, -181, -190, -203, -204 and -196 of Octa-BDE product, and BDE-209 of Deca-BDE product. In addition, the detectable rates of BDE-15 241 and -17 are extremely low in these PBDE-technical products,<sup>30</sup> thus the two components were 242 243 not included in any tech product. BDE-206, -207 and -208 were also not classified, because they may be derived from Octa-BDE tech product, as well as from the degradation of BDE-244 209 in the environment. <sup>b</sup> Production volume of electronic devices in Huizhou. <sup>c</sup> Production 245 246 value of electronic industries in Huizhou, with the historical data being obtained from the 247 Statistics Bureau of Guangdong Province, Huizhou Statistics Information Network.<sup>31</sup> 248



Figure S1. Chromatograms of (A) a standard mixture of halogenated flame retardants, (B) a sediment sample, and (C) a solvent blank. The retention time of each analyte is presented on the right.





Figure S3. Box plots (10th, 25th, 50th, 75th, 90th and mean) of the concentrations of
PBDEs and alternative halogenated flame retardants in surface sediment
collected from (a) Daya Bay (DYB) and (b) Hong Kong (HK) waters.



Figure S4. Spatial distribution of ΣBDE and BDE-209 in surface sediment collected from
Daya Bay (DYB) and Hong Kong (HK) waters.





Figure S5. Spatial distribution of individual alternative halogenated flame retardants in
surface sediment collected from Daya Bay (DYB) waters.



Figure S6. Spatial distribution of individual alternative halogenated flame retardants in
surface sediment collected from Hong Kong (HK) waters.



Figure S7. Relative abundances of individual BDE in surface sediment collected from Daya
Bay (DYB) and Hong Kong (HK) waters.



Figure S8. Correlation of the concentrations of BDE-47 and BDE-99, and the
concentrations of ΣBDE and BDE-209.



**Figure S9.** Correlation of the concentrations of TBB and TBPH.





Figure S10. Correlations of the concentrations of Penta-BDE and the sum concentration of
 TBB and TBPH (TBB+TBPH), the concentrations of Octa-BDE and BTBPE,

| 290 | and the concentrations of BDE-209 and DBDPE. The red point in the first          |
|-----|----------------------------------------------------------------------------------|
| 291 | figure was deleted when fitting the linearity. Herein, BDE-71, -47, -100, -99, - |
| 292 | 85, -126, -154 and -153 were classified into Penta-BDE product, BDE-183, -       |
| 293 | 181, -190, -203, -204 and -196 were classified into Octa-BDE product, and        |
| 294 | BDE-209 was classified into Deca-BDE product. BDE-15 and -17 generally           |
| 295 | have very low detection rate in these PBDE-technical products and have high      |
| 296 | background concentrations in air, the two components were not classified into    |
| 297 | any tech product. BDE-206, -207 and -208 were also not classified, because       |
| 298 | they may come from the Octa-BDE tech product, and also may be the                |
| 299 | degradation products of BDE-209 in environment.                                  |
|     |                                                                                  |



| 302 | Figure S11. | Vertical profiles of the fractions of [TBB+TBPH] in [TBB+TBPH+Penta- |
|-----|-------------|----------------------------------------------------------------------|
| 303 |             | BDE], of BTBPE in [BTBPE+Octa-BDE] and of DBDPE in [DBDPE+Deca-      |
| 304 |             | BDE] in sediment cores collected from D13 and D16 of Daya Bay.       |
| 305 |             |                                                                      |



306

Figure S12. Vertical concentration profiles of Penta-, Octa- and Deca-BDE, the sum of TBB
and TBPH (TBB+TBPH), BTBPE and DBDPE in sediment cores collected from
D13 (above) and D16 (below) from Daya Bay. The classification of each BDE
into three tech product was the same as that in Figure S10.



Figure S13. Vertical concentration profiles of DP (sum of anti-DP and syn-DP) and
relative abundances of syn-DP in sediment cores collected from D13 and
D16 of Daya Bay.



318Figure S14Vertical concentration profiles of HBCD (sum of  $\beta$ -HBCD and  $\gamma$ -HBCD) and319relative abundances of  $\gamma$ -HBCD in sediment cores collected from D13 and320D16 of Daya Bay.

#### References 322

- 323 (1)Ruan, T.; Wang, Y.; Wang, C.; Wang, P.; Fu, J.; Yin, Y.; Qu, G.; Wang, T.; Jiang, G.
- 324 Identification and evaluation of a novel heterocyclic brominated flame retardant tris(2,3-
- 325 dibromopropyl) isocyanurate in environmental matrices near a manufacturing plant in
- 326 southern China. Environ. Sci. Technol. 2009. 43 (9), 3080-3086.
- 327 (2)Covaci, A.; Harrad, S.; Abdallah, M. A. E.; Ali, N.; Law, R. J.; Herzke, D.; de Wit, C. A.
- 328 Novel brominated flame retardants: a review of their analysis, environmental fate and
- 329 behaviour. Environ. Int. 2011, 37 (2), 532-556.
- 330 (3)López, P.; Brandsma, S. A.; Leonards, P. E. G.; de Boer, J. Optimization and development
- 331 of analytical methods for the determination of new brominated flame retardants and
- 332 polybrominated diphenyl ethers in sediments and suspended particulate matter. Anal.
- 333 Bioanal. Chem. 2011. 400 (3), 871–883.
- 334 (4)Chu, S. G.; Haffner, G. D.; Letcher, R. J. Simultaneous determination of
- 335 tetrabromobisphenol A, tetrachlorobisphenol A, bisphenol A and other halogenated
- 336 analogues in sediment and sludge by high performance liquid chromatography-electrospray
- 337 tandem mass spectrometry. J. Chromatogr. A 2005, 1097 (1-2), 25-32.
- 338 (5)Kuromochi, H.; Suzuki, S.; Kawamoto, K.; Osako, M.; Sakai, S. Measurements of water
- 339 solubility and 1-octanol/water partition coefficient of three hexabromocyclododecane
- 340 diastereoisomers. In BFR 2010 Proceedings, April 7–9, 2010, Kyoto, Japan; pp 102–105.
- 341 (6)Yang, Y. L.; Pan, J.; Li, Y.; Yin, X. C.; Shi, L. Polychlorinated naphthalenes and
- 342 polybrominated diphenylethers in near-shore sediments of Qingdao. Chin. Sci. Bull. 2003, 48 (21), 2244–2251. 343
- 344 (7)Chen, S. J.; Gao, X. J.; Mai, B. X.; Chen, Z. M.; Luo, X. J.; Sheng, G. Y.; Fu, J. M.; Zeng,
- 345 E. Y. Polybrominated diphenyl ethers in surface sediments of the Yangtze River Delta:
- 346 Levels, distribution and potential hydrodynamic influence. *Environ. Pollut.* **2006**, 144 (3),
- 347 951-957.
- 348 (8)Li, A.; Rockne, K. J.; Sturchio, N.; Song, W.; Ford, J. C.; Buckley, D. R.; Mills, W. J.
- 349 Polybrominated diphenyl ethers in the sediments of the Great Lakes. 4. influencing factors, 350 trends, and implications. Environ. Sci. Technol. 2006, 40 (24), 7528-7534.
- 351 (9)Mai, B. X.; Chen, S. J.; Luo, X. J.; Chen, L. G.; Yang, Q. S.; Sheng, G. Y.; Peng, P. A.;
- 352 Fu, J. M.; Zeng, E. Y. Distribution of polybrominated diphenyl ethers in sediments of the
- 353 Pearl River Delta and adjacent South China Sea. Environ. Sci. Technol. 2005, 39 (10), 3521-
- 354 3527.
- 355 (10)Verslycke, T. A.; Vethaak, A. D.; Arijs, K.; Janssen, C. R. Flame retardants, surfactants
- and organotins in sediment and mysid shrimp of the Scheldt estuary (The Netherlands). 356 357
- Environ. Pollut. 2005, 136 (1), 19-31.
- 358 (11)Shi, T.; Chen, S. J.; Luo, X. J.; Zhang, X. L.; Tang, C. M.; Luo, Y.; Ma, Y. J.; Wu, J. P.;
- 359 Peng, X. Z.; Mai, B. X. Occurrence of brominated flame retardants other than
- 360 polybrominated diphenyl ethers in environmental and biota samples from southern China.
- 361 Chemosphere 2009, 74 (7), 910–916.
- 362 (12)Zhang, X. L.; Luo, X. J.; Chen, S. J.; Wu, J. P.; Mai, B. X. Spatial distribution and
- 363 vertical profile of polybrominated diphenyl ethers, tetrabromobisphenol A, and
- 364 decabromodiphenylethane in river sediment from an industrialized region of South China.
- 365 Environ. Pollut. 2009, 157 (6), 1917-1923.

- 366 (13)Kierkegaard, A.; Bjorklund, J.; Friden, U. Identification of the flame retardant
- decabromodiphenyl ethane in the environment. *Environ. Sci. Technol.* 2004, 38 (12), 3247–
  3253.
- 369 (14)Yang, R.; Wei, H.; Guo, J.; Li, A. Emerging brominated flame retardants in the sediment
- 370 of the Great Lakes. *Environ. Sci. Technol.* **2012**, 46 (6), 3119–3126.
- 371 (15)Klamer, H. J. C.; Leonards, P. E. G.; Lamoree, M. H.; Villerius, L. A.; Akerman, J. E.;
- 372 Bakker, J. F. A chemical and toxicological profile of Dutch North Sea surface sediments.
- 373 *Chemosphere* **2005,** 58 (11), 1579–1587.
- 374 (16)Evenset, A.; Christensen, G. N.; Carroll, J.; Zaborska, A.; Berger, U.; Herzke, D.;
- 375 Gregor, D. Historical trends in persistent organic pollutants and metals recorded in sediment
- 376 from Lake Ellasjøen, Bjørnøya, Norwegian Arctic. *Environ. Pollut.* 2007, 146 (1), 196–205.
- 377 (17)Tlustos, C.; McHugh, B.; Pratt, I.; Tyrrell, L.; McGovern, E. Investigation into levels of
- dioxins, furans, polychlorinated biphenyls and brominated flame retardants in fishery produce
  in Ireland. *Mar. Environ. Health Ser.* 2007, 26 (1), 1–32.
- 575 In fieldid. *Mur. Environ. Treatin Ser.* 2007, 20 (1), 1–52.
- 380 (18)Harrad, S.; Abdallah, M. A.; Rose, N. L.; Turner, S. D.; Davidson, T. A. Current-use
- brominated flame retardants in water, sediment, and fish from English lakes. *Environmental Science & Technology* 2009, 43 (24), 9077–9083.
- 383 (19)Morris, S.; Allchin, C. R.; Zegers, B. N.; Haftka, J. J. H.; Boon, J. P.; Belpaire, C.;
- 384 Leonards, P. E. G.; Van Leeuwen, S. P. J.; De Boer, J. Distributon and fate of HBCD and
- TBBPA brominated flame retardants in north sea estuaries and aquatic food webs. *Environ. Sci. Technol.* 2004, 38 (21), 5497–5504.
- 387 (20)Qiu, X.; Marvin, C. H.; Hites, R. A. Dechlorane plus and other flame retardants in a
- 388 sediment core from Lake Ontario. *Environ. Sci. Technol.* **2007,** 41 (17), 6014–6019.
- (21)Hoh, E.; Zhu, L.; Hites, R. A. Dechlorane plus, a chlorinated flame retardant, in the Great
  Lakes. *Environ. Sci. Technol.* 2006, 40 (4), 1184–1189.
- 391 (22)Tomy, G. T.; Pleskach, K.; Ismail, N.; Whittle, D. M.; Helm, P. A.; Sverko, E.; Zaruk,
- D.; Marvin, C. H. Isomers of dechlorane plus in Lake Winnipeg and Lake Ontario food webs.
   *Environ. Sci. Technol.* 2007, 41 (7), 2249–2254.
- 394 (23)Sverko, E.; Tomy, G. T.; Marvin, C. H.; Zaruk, D.; Reiner, E.; Helm, P. A.; Hill, B.;
- Mccarry, B. E. Dechlorane plus levels in sediment of the lower Great Lakes. *Environ. Sci. Technol.* 2008, 42 (2), 361–366.
- 397 (24)Qi, H.; Liu, L. Y.; Jia, H. L.; Li, Y. F.; Ren, N. Q.; You, H.; Shi, X. Y.; Fan, L. L.; Ding,
- 398 Y. S. Dechlorane plus in surficial water and sediment in a northeastern Chinese river.
- 399 Environ. Sci. Technol. 2010, 44 (7), 2305–2308.
- 400 (25)Zhao, Z.; Zhong, G.; Moller, A.; Xie, Z.; Sturm, R.; Ebinghaus, R.; Tang, J.; Zhang, G.
- 401 Levels and distribution of dechlorane plus in coastal sediments of the Yellow Sea, North
  402 China. *Chemosphere* 2011, 83 (7), 984–990.
- 403 (26)Wang, D. G.; Yang, M.; Qi, H.; Sverko, E.; Ma, W. L.; Li, Y. F.; Alaee, M.; Reiner, E.
- 404 J.; Shen, L. An Asia-specific source of dechlorane plus: concentration, isomer profiles, and 405 other related compounds. *Environ. Sci. Technol.* **2010,** 44 (17), 6608–6613.
- 406 (27)Hyötyläinen, T.; Hartonen, K.; Säynädjoki, K.; Riekkola, M. L. Pressurised hot-water 407 extraction of brominated flame retardants in sediment samples. *Chromatographia* **2001**, 53
- 408 (5-6), 301-305.

- 409 (28)Area and population in each administrative district of Hong Kong.
- 410 <u>http://www.quhua.net/hongkong/238.html</u>. (accessed October 10, 2013).
- 411 (29)Census and Statistics Department, Hong Kong Special Administrative Region. The
- 412 profile of Hong Kong population analysed by district council district, 2012.
- 413 <u>http://www.statistics.gov.hk/pub/B71306FB2013XXXXB0100.pdf</u>. (accessed October 30,
- 414 2013). *Hong Kong Monthly Digest of Statistics*, June 2013.
- 415 (30)La Guardia, M. J.; Hale, R. C.; Harvey, E. Detailed polybrominated diphenyl ether
- 416 (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical
- 417 flame-retardant mixtures. *Environ. Sci. Technol.* **2006**, 40 (20), 6247–6254.
- 418 (31)Statistics Bureau of Guangdong Province. Huizhou Statistics Information Network.
- 419 <u>http://www.hzsin.gov.cn/hz09type.asp?typeID=16</u>. (accessed October 1, 2013).
- 420
- 421