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1 Materials and Methods

NMR spectroscopy. GB3 was expressed and purified as described in reference.1 The NMR sam-

ples contained 350 µl / 500 µl of 4 mM / 2 mM 13C,15N- / 2H,13C,15N-labeled protein solu-

tion in 97%:3% / 95%:5% H2O:D2O, 50 mM potassium phosphate buffer, pH 6.5 / 7.0, and 0.5
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mg/mL sodium azide. All experiments were performed on a BRUKER DRX600 MHz spectrome-

ter, equipped with a z-axis gradient cryogenic probe, respectively, at 298 K. RHNiNi/HNi+1Ni+1 were

obtained from the triple labeled sample and 3D ct-13C’-HN(CA)CON / ct-13Cα-HNCA(CO)N

versions of a previously proposed 2D experiment2 recorded with 36(N, t1) x 40(C’, t2) / 20(Cα ,

t2) x 512(HN , t3) complex points, t1max = 18.0ms, t2max = 26.4{6.6}ms, t3max = 51.2ms, an in-

terscan delay of 1s, τMQ = 43ms, and typically 32 / 96 scans per increment resulting in a mea-

surement time of 2 / 6 days. Because the ’trans’ spectra are considerably less sensitive they were

typically recorded twice and added. RHAiCAi/HAi−1CAi−1 were obtained from the 2D HNCA(CA)

experiment put forward in reference3 and a 3D 13Cα-HNCA(CO)CA experiment recorded with

64(N, t1) x 512(HN , t2) and 36(N, t1) x 24(Cα ,t2) x 512(HN , t3) complex points, t1max = 32.0ms,

t2max = 51.2ms and t1max = 18.0ms, t2max = 7.92ms, t3max = 51.2ms, an interscan delay of 1s,

τMQ = 28ms, and typically 512 and 64 scans per increment resulting in measurement times of

1 and 4 days, respectively. Because the ’trans’ spectra are considerably less sensitive than the

’reference’ spectra they were typically recorded twice and added. RHNiNi/HAiCAi were obtained

from three experiments. Two experiments used previously were repeated.4 In addition, a 3D ct-

HNCA MMQ experiment adapted from reference5 was used. The spectrum was recorded with

τMQ = 31.0ms or τMQ = 33.5ms, 50(MQ[N,Cα], t1) or 55(MQ[N,Cα], t1) x 36(N, t2) x 512(HN ,

t3) complex points, t1max = 25.0ms or t1max = 27.5ms, t2max = 18.0ms, t3max = 63.28ms, inter-

scan delays of 1s or 0.92s and 32 or 48 scans per increment resulting in measurement times of 3

or 4 days. RHNiNi/HAi−1CAi−1 were obtained by repetition of three previously used experiments.4

All time domain data were multiplied with a square cosine function in the direct dimension and

cosine functions in the indirect dimensions and zero-filled to standard numbers. All spectra were

processed and analyzed using the software package NMRPipe.6 Corrections to the apparent CCR

rates were calculated with a full matrix analysis as outlined in reference.7

Profasi forcefield The Profasi forcefield consists of four terms8

Eprof(x) = Eloc(x)+Eev(x)+Ehb(x)+Esc(x)
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Eloc(x) describes local interactions, that is, interactions between atoms separated by only a few

covalent bonds. The remaining three terms account for non-local interactions, such as excluded-

volume effects (Eev(x)) and hydrogen-bonds (Ehb(x)). Finally, charge-charge and hydrophobic

interactions between side chains are contained in the term Esc(x). There are no explicit terms for

bond-lengths and bond-angles. Here, we overcome this by using ideal bond-lengths and using a

narrow distribution of bond-angles centered at the idealized values.9

Replica averaged molecular dynamics simulations Similar to what was previously described,10

a replica averaged potential (ERDC = κ(Dexp−Dcalc)2) was implemented into the molecular dy-

namics framework Almost.11 Dcalc constitutes average residual dipolar couplings back-calculated

from N replicas. Briefly, in each step, an average Saupe tensor was calculated using averaged bond

vector projections to solve a linear system of equations by singular value decomposition.12 One

tensor was used for each alignment condition. Dexp constitutes the experimental RDC data and κ

an empirical force constant. The implementation is available for download as part of the Almost

2.2 branch on Sourceforge.

We simulated GB3 in the Amber 03 forcefield13 restrained by the potential described above

yielding the effective potential,

E = EAmber03 +ERDC, (1)

for each replica. We initialized the simulation from the native structure (pdb: 2OED) after being

subject to 1000 steps of steepest descent energy minimization in the Amber03 forcefield.13 The

number of replicas N and the force constant κ were optimized empirically by running a number

of short trajectories with N = {2,4,8} κ = {N · 5 · 10−2,N · 10−2,5 ·N · 10−3,N · 10−3}. Opti-

mality was assessed as a tradeoff between computational demands, stability and fit of RDC data,

also considering previous studies. A production simulation was subsequently carried out with the

optimal parameter set N = 4,κ = 4 · 10−2. Using the optimal parameter set we performed 4 in-

dependent simulations of 1.1ns each, corresponding to 17.6ns in total. This corresponds to the

computational resources spent by the restraining method presented here. Average statistics from
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these simulations were used in the analysis. 1 fs time-steps were used, and the average temperature

was kept at 300K using a Berendsens thermostat.14 Bonds involving protons were constrained us-

ing the SHAKE algorithm.15 The simulations were conducted using a Generalized-Born implicit

solvent model.16

Cross-correlated relaxation rates For flexible macromolecules, assuming separation of angular

and radial dynamics and anisotropic overall tumbling,17 the dipolar cross-correlated relaxation rate

may be approximated by,18,19

RX−Y,U−V =
2
5

γX γY

〈r3
X−Y 〉

γU γV

〈r3
U−V 〉

(
h̄µ0

4π
)2

2

∑
k=−2
〈Ck〉τk (2)

where γX is the gyromagnetic ratio of nuclei X , h̄ is Plancks constant divided by 2π , µ0 is the

permeability of free space and rX−Y is the inter-atomic bond length between nuclei X and Y . τk,

which describe the anisotropic overall diffusion are given by,

1/τ−2 = 6D+
√

D2 +D′2

1/τ−1 = Dx +Dy +4Dz

1/τ0 = 6D+
√

D2−D′2

1/τ1 = 4Dx +Dy +Dz

1/τ2 = Dx +4Dy +Dz
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with, D′ =
√

DxDy+DxDz+DyDz
3 and D =

Dx+Dy+Dz
3 . Ck, which describe the dependency on the

orientation of bonds are given by,

C2 =
3w2

4N2 sin2(θA)sin2(θB)cos(2φA)cos(2φB)+
√

3µw
4N2 [sin2(θA)cos(2φA)(3cos2(θB)−1)

+sin2(θB)cos(2φB)(3cos2(θA)−1)]+ µ2

4N2 (3cos2(θA)−1)(3cos2(θB)−1)

C−2 =
3
4 sin2(θA)sin2(θB)sin(2φA)sin(2φB)

C0 =
3µ2

4N2 sin2(θA)sin2(θB)cos(2φA)cos(2φB)−
√

3µw
4N2 [sin2(θA)cos(2φA)(3cos2(θB)−1)

+sin2(θB)cos(2φB)(3cos2(θA)−1)]+ w2

4N2 (3cos2(θA)−1)(3cos2(θB)−1)

C1 =
3
4 sin(2θA)sin(2θB)sin(φA)sin(φB)

C−1 =
3
4 sin(2θA)sin(2θB)cos(φA)cos(φB)

with µ =
√

3(Dx−Dy), w = 2Dz−Dx−Dy + 2∆, ∆ = 3
√

D2 +D′2 and N = 2
√

∆w. 〈·〉 denotes

ensemble averaging. We used the previously reported anisotropic diffusion tensor.17

Hydrogen bond scalar couplings The through hydrogen bond scalar couplings, h3JNC′ , between

15N-13C nuclei were calculated using the density functional theory derived equations provided by

Barfield,20

h3JNC′ = (−1.31cos2
θ2 +[0.62cos2

ρ +0.92cosρ

+0.14]sin2
θ2)exp[−3.2(rHO′− r0

HO′)]+0.01Hz
(3)

where rHO′ , θ2 and ρ are the H· · ·O hydrogen bond length, HO’C angle and the H-O’-C’-N dihe-

dral angle, respectively. The empirical constant r0
HO′ is fixed at 1.760Å. In the case of ensemble

models, the HBC was calculated for all members and the average quantity was used for comparison

with experimental data.
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J-Couplings Back-calculation of J-couplings was performed using the Karplus equation,21,22

3Jθ = A〈cos2(θ)〉+B〈cos(θ)〉+C (4)

where θ is the dihedral angle spanned by the four nuclei giving rise to the scalar-coupling, 3Jθ . The

Karplus parameters (A,B and C) were fitted using ordinary least squares to the structural models.

〈·〉 denotes an ensemble average.

Residual dipolar couplings Residual dipolar couplings were back-calculated as described pre-

viously.23 Quantitative assessment of the fit to experimental data was carried out using the Q-factor

as defined by Bax.24

Exact nuclear Overhauser enhancements Unambiguous exact nuclear Overhauser derived dis-

tances were correlated with back-calculated average distances. The averaged distances were back-

calculated using power-averaging, justified by the assumption that the conformational dynamics is

either much faster (eNOE−3) or much slower (eNOE−6) than the molecular tumbling. The power-

averaging was using the relationship,25

eNOE−n ∝ 〈r−n〉, (5)

where r is the inter-atomic distance corresponding to a particular eNOE.

Training dataset details A total of 413 previously published experimental RDCs were used to

restrain the simulations in the EM algorithm. Standard deviations were uniformly assumed to be

1Hz.
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Bk estimation details We wish to estimate the parameter Bk+1 in order to accomplish f(x) = e.

This can be done using an EM algorithm, by minimizing the following expression in the M-step,

argmin
Bk+1

∑
i

∥∥∥ei− f(x)i,Bk+1

∥∥∥2
(6)

where f(x)i,Bk+1
is the average of f(x) for a given ei and Bk+1, and i runs over the number of

samples of ei.

We may obtain f(x)i,Bk+1
by importance sampling using the N samples f(x)i,ei according to the

following expression,

f(x)i,Bk+1
=

1
N ∑

j
f(x) j

N (d | ei,σ)G (f(x) j | ei,Bk+1)

N (d | e j,σ)G (f(x) j | e j,Bk)
(7)

where Bk is the value for Bk+1 used in obtaining the samples f(x)i,ei, and the sum runs over all

samples. This corresponds to “replacing” Bk and e j by Bk+1 and ei in the posterior (Eq. 1, in the

main text), according to the principles of importance sampling.

We can approximate and simplify Eq. 6 by assuming that e does not vary much – in the limit

of no experimental uncertainty (Maximum entropy restraining), this is exactly the case. In that

case, instead of summing over all samples ei, in Eq. 6 we can just use the average of the samples

ē = 1
N ∑i ei. This causes the N (d | ·,σ) factors in Eq. 7 cancel, as ei = e j = ē.

As we can’t calculate the exact normalization factors Z for G (·), we can’t use the expression

(7) directly. Instead, we simply calculate (unnormalized) importance weights as follows, as this

does not require the normalization factors,

wi, j,Bk+1 ∝
exp(f(x)T

j Bk+1ei)

exp(f(x)T
j Bke j)

. (8)
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We subsequently approximate the normalization constant with the expression

Ẑ =
N

∑
j

exp(f(x)T
j (Bk+1−Bk)ei), (9)

and finally evaluate the expectation

f(x)i,Bk+1
= Ẑ ∑

j
f(x) jwi, j,Bk+1.
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Table 1: Reproduction of experimental data and other ensemble properties as a function Expec-
tation Maximization step. Model taking into account experimental noise. Pearsons correlation
coefficient is denoted by ρ .
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Table 2: Reproduction of experimental data and other ensemble properties as a function Expecta-
tion Maximization step. Model assuming no experimental noise. Pearsons correlation coefficient
is denoted by ρ .
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Table 3: Reproduction of experimental data and other ensemble properties for the first 100ns and
1 µs of previously reported 10 µs molecular dynamics simulations.27 Pearsons correlation coeffi-
cient is denoted by ρ .
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Table 4: Experimental values of the cross-correlated relaxation rates
(R=RHαiCαi−Hαi+1Cαi+1+RHαiCαi+1−Hαi+1Cαi – referred to as RHαCαi−HαCαi+1 above) measured.

i (Residue index) R (s−1) i (Residue index) R (s−1)
3 22.9 32 -18.3
4 15.5 33 -16.9
5 22.3 34 -4.4
6 23.4 35 -8.3
7 24.8 36 -15.9
8 22.2 37 -5.8
9 1.5 38 1.3

10 -0.9 39 2.6
11 4.2 40 23.1
12 -2.6 41 1.2
13 23.6 42 1.5
14 1.4 43 12.0
15 5.2 44 24.5
16 24.9 45 20.7
17 11.3 46 23.7
18 25.6 47 6.9
19 6.6 48 -9.8
22 9.6 49 5.0
23 -6.6 50 -2.3
24 -8.5 51 -6.4
25 -16.3 52 18.9
26 -10.0 53 24.8
28 -20.3 54 24.6
29 -9.9 55 22.2
30 -3.4 56 14.2
31 -17.4
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Table 5: Experimental values of the cross-correlated relaxation rates
(R=RHiNi−Hi+1Ni+1+RHiNi+1−Hi+1Ni – referred to as RHNi−HNi+1 above) measured.

i (Residue index) R (s−1) i (Residue index) R (s−1)
3 3.24 29 4.71
4 3.53 30 4.49
5 3.97 31 4.62
6 3.91 32 4.88
7 3.36 33 5.07
8 0.86 34 4.96
9 -1.15 36 2.90

10 3.10 37 -1.66
11 0.37 38 2.38
12 2.22 39 2.76
13 3.83 40 4.02
14 3.74 41 2.21
15 3.95 42 2.29
16 3.35 43 2.11
17 3.97 44 4.11
18 4.04 45 4.29
19 3.62 46 3.55
20 4.71 47 2.55
21 1.74 48 3.52
22 4.69 49 -1.43
23 3.49 50 3.77
24 4.24 51 3.86
25 4.23 52 3.21
26 4.92 53 4.56
27 4.79 54 4.41
28 4.37 55 4.12
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Table 6: Experimental values of the cross-correlated relaxation rates
(R=RHiNi−HαiCαi+RHαiNi−HiCαi – referred to as RHNi−HαCαi above) measured.

i (Residue index) R (s−1) i (Residue index) R (s−1)
3 -11.19 31 -2.94
4 -12.19 32 -3.94
5 -12.27 33 -0.83
6 -11.69 34 -2.23
7 -11.36 35 -2.34
8 -11.72 36 -1.43
10 -3.70 37 -10.91
11 -10.14 39 -11.582
12 -8.99 40 -9.55
13 -10.87 42 -10.14
15 -9.40 43 -9.97
16 -6.60 44 -10.68
17 -10.22 45 -11.37
18 -6.82 46 -12.19
19 -11.17 47 -2.85
20 -6.42 48 -3.34
21 -1.28 49 -11.63
22 -5.45 50 -3.90
23 -1.57 51 -12.44
24 -2.52 52 -12.02
25 -5.26 53 -11.74
26 -2.59 54 -11.91
27 -0.04 55 -12.36
28 -2.55 56 -8.97
29 -3.47
30 -3.83
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Table 7: Experimental values of the cross-correlated relaxation rates
(R=RHiNi−Hαi−1Cαi−1+RHαi−1Ni−HiCαi−1 – referred to as RHNi−HαCαi−1 above) measured.

i (Residue index) R (s−1) i (Residue index) R (s−1)
3 -9.82 29 -0.64
4 -7.83 30 -0.54
5 -9.81 31 -1.30
6 -11.14 32 -1.16
7 -10.85 33 -1.40
8 -10.98 34 -0.82
9 -6.12 35 -1.06

11 -0.58 36 -1.55
12 1.28 37 1.06
13 -10.22 38 4.83
14 -10.00 40 -10.16
16 -8.57 41 -7.97
17 -1.92 43 -9.27
18 -6.34 44 -11.00
19 -5.27 45 -7.63
20 -10.15 46 -10.70
21 -6.97 47 -10.33
22 2.00 48 1.12
23 -4.47 49 0.18
24 0.01 50 5.18
25 -0.88 51 1.05
26 -0.95 52 -9.75
27 -0.66 53 -10.29
28 -0.69 54 -10.00
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