Supplementary information for paper

Ab initio quantum mechanical description of noncovalent interactions at its limits: approaching the experimental dissociation energy of the HF dimer

Jan Řezáč,1* Pavel Hobza^{1,2}

¹Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic ²Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University, 771 46 Olomouc, Czech Republic

*e-mail address: rezac@uochb.cas.cz

1) Optimized geometries of HF dimer

1a) CCSD(T)/CBS(aug-cc-pVDZ), counterpoise-corrected

Composite scheme: $HF/aug-cc-pVQZ + MP2/aug-cc-pV(T,Q)Z + \Delta CCSD(T)/aug-cc-pVDZ$

4

H0.000000000.8026770961.695289760F0.00000000-0.0459661691.340340769H0.000000000-0.120404367-0.490816810F0.0000000000.009768180-1.404250429

1b) CCSD(T)/CBS(aug-cc-pVTZ), counterpoise-corrected

Composite scheme: HF/aug-cc-pVQZ + MP2/aug-cc-pV(T,Q)Z + $\Delta CCSD(T)/aug$ -cc-pVTZ

4

Н	0.000000000	0.801914870	1.695044410
F	0.000000000	-0.045951140	1.338500700
Н	0.000000000	-0.120363250	-0.489162780
F	0.000000000	0.009792140	-1.402477460

1c) CCSD(T)/aug-cc-pVQZ

4

Н	0.00000000	0.805520090	1.683468580
F	0.000000000	-0.046108440	1.333655500
Η	0.000000000	-0.118280260	-0.482737710
F	0.000000000	0.009647660	-1.397359000

1c) CCSD(T)/aug-cc-pV5Z

4

Н	0.00000000	0.805189040	1.684994240
F	0.000000000	-0.046057430	1.335435640
Η	0.000000000	-0.119663150	-0.485179930
F	0.000000000	0.009687590	-1.399090500

2) Interaction energies and their components

The following tables summarize the individual calculations of interaction energy used to obtain the final (e.g. extrapolated) results presented in the paper. All the results were calculated on the CCSD(T)/CBS(aug-cc-pVDZ) geometry. Values are in kcal/mol.

Table S1. Interaction energies used in the extrapolation of the CCSD(T)/CBS contribution

Basis set	Frozen core	SCF energy	CCSD(T) correlation
aug-cc-pCVDZ	no	-3.76172	-0.22772
aug-cc-pCVTZ	no	-3.74442	-0.58170
aug-cc-pCVQZ	no	-3.81531	-0.71611
aug-cc-pCV5Z	no	-3.82048	-0.75555
aug-cc-pCV6Z	no	-3.82158	-0.76276

Table S2. CCSD(T) and CCSDT(Q) interaction correlation energies used for the evaluation of the contribution of quadruples.

Basis set	Frozen core	CCSD(T)	CCSDT(Q)
aug-cc-pVDZ	no	-0.22417	-0.21726
cc-pVTZ	no	-0.27829	-0.27896
heavy-aug-cc-pVTZ	no	-0.53005	-0.53581
heavy-aug-cc-pCVTZ	no	-0.54147	-0.54852
aug-cc-pVTZ	no	-0.57299	-0.58047
aug-cc-pCVTZ	no	-0.58172	-0.59043

Table S3. Interaction correlation energies used for the evaluation of the difference between perturbative and iterative treatment of triples.

Basis set	Frozen core	CCSD(T)	CCSDT
aug-cc-pVTZ	yes	-0.55813	-0.55554
aug-cc-pVTZ	yes	-0.69261	-0.69113
CBS	yes	-0.79074	-0.79008

Table S4. The source data used in the evaluation of more approximate composite CCSD(T)/CBS schemes.

Basis set	Frozen core	SCF	MP2 correlation	CCSD(T) correlation
aug-cc-pVDZ	yes	-3.75580	-0.18193	-0.22130
aug-cc-pVTZ	yes	-3.74225	-0.45189	-0.55813
heavy-aug-cc-pVTZ	yes	-3.74739	-0.43221	-0.51636
aug-cc-pVQZ	yes	-3.81600	-0.56563	-0.69261

3) Vibrational frequencies and ZPVE

ZPVE

2062

		Dimer		
	aug-cc-	aug-cc-pVQZ		
Mode	Harmonic	VPT2	Harmonic	VPT2
1	4088	3919	4103	3928
2	4009	3865	4021	3869
3	575	457	572	464
4	219	170	220	180
5	161	133	163	135
6	471	408	467	414
ZPVE	4762	4655	4773	4672
		Monomer		
	aug-cc-pVTZ		aug-cc-	pVQZ
Mode	Harmonic	VPT2	Harmonic	VPT2
1	4125	3950	4142	3963

2044

2071

2052

Table S5. Harmonic and anharmonic (VPT2) CCSD(T) vibrational frequencies and ZPVE calculated in aug-cc-pVTZ and aug-cc-pVQZ basis sets. Values in cm^{-1} .