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1. Methods 

 

Synthesis of VO2 beams 

Bulk VO2 powder was placed in a quartz boat in the center of a horizontal tube furnace. 

The typical growth temperature was 1000 ºC with Ar used as the carrier gas. The VO2 

beams were collected on a Si substrate with a 500nm thick thermally grown surface oxide 

downstream from the source boat. The catalyst, which determines the size of the beam, 

can be partially diffused away by tuning the pressure and temperature to induce tapered 

or asymmetrical beam growth. 

 

2. Thermal Conductance Measurement of Single VO2 Beam 

A resistive heater is used to heat the whole Si chip uniformly inside a cryostat to control 

the global device temperature, TG. For thermal conductance measurements, a small DC 
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current (~6 µA) is passed through the platinum (Pt) coil on one of the membranes to heat 

it to a temperature, Th, above TG, thus inducing a heat flow Q through the VO2 beam to 

heat up the other membrane to Ts. An AC current of 500 nA is passed through the Pt coils 

on both membranes to determine its electrical resistance through a 4-point technique, 

which is then used to estimate the temperatures Th and Ts. Using two SRS 850 lock-in 

amplifiers for the AC signals, signals from the sensing side were measured using a 

frequency of 199 Hz whereas that for the heating side utilized 1.11 kHz. Details of the 

experimental procedure can be found elsewhere 
1,2

, while the error analysis from this 

experimental procedure is discussed later in the Supplementary Information. The 

resistance of the patterned coils, Rh and Rs varies between 3 and 5 kΩ at room 

temperature for different devices and is proportional to the temperature of the pads. 

Following the analysis of Shi et. al. 
1
, the thermal conductance of the Platinum beams that 

suspended each platform can be described as follows: 

Gl = P
∆Th +∆Ts( )  (SI 1) 

Here, a known power P was supplied to the Pt coil heater on one SiNx membrane which 

also takes into account heat losses through the supporting legs, while resistance changes 

of the heater and sensor were used to determine the resulting temperature changes of the 

heater (∆Th =Th-TG) and sensor (∆Ts=Ts-TG) pads. Again following careful heat transfer 

analysis accounting for uniform joule heating in the Silicon Nitride (SiNx) legs that 

suspended the platforms 
1,2

, it can be shown that P = Ih
2 Rh + Rleg( ) . Here Ih is the DC 

current supplied, Rh ~ 3kΩ  is the resistance of the Platinum coil on the heating side and 

Rleg ~ 3kΩ is the electrical resistance of one out of six SiNx legs that help suspend each 
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platform.  At 300K, we can estimate that the heat loss through the SiNx legs using the 

equation (SI 1) is Gl ~ 100nW K . 

For an actual thermal device where the heating current is 6 µA, Rh = 3.336kΩ , 

Rl = 3.340kΩ , with a VO2 beam placed across the heating and sensing pads, we obtain 

∆Th = 2.49K  and ∆Ts = 0.96K , which results in a leg conductance of Gl = 69.5nW K . 

Note here that using a 500 nA rms AC current on the heating and sensing pads to measure 

the resistances thus only gives a temperature rise on either membrane of 

∆Th,AC = ∆Ts,AC ~ 10mK , which is below the temperature fluctuations in the cryostat and 

only causes an additional increase in temperature excursion of ∆TAC ∆Ts ~ 10mK 1K ~ 1%. 

Further, the heat flow through the VO2 beam, Q can be determined as a function of ∆T = 

Th – Ts, which is typically maintained close to 1K.  The thermal conductance G of the 

VO2 beams can hence be determined from ∆Th and ∆Ts with the use of the relation 

G =
P

∆Th −∆Ts

∆Ts

∆Th +∆Ts









 (SI 2) 

The DC power input, P is known to a very high accuracy (<0.5%), while the temperature 

measurement uses the temperature coefficient of resistivity (TCR) of the Platinum thin 

film on either membrane(<2%) (see below for error analysis).  The thermal measurement 

technique only measures a two-probe conductance, which includes the thermal contact 

resistance between the beams and the membrane.  The contact resistance is shown to be 

negligible and in the limiting case, contributing insignificantly to the rectification 

behaviour (see below for details).
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3(a). Heat flow and heat flow deviation as a function of temperature difference 

across a uniform VO2 beam at 300K and 360K  

 

Fig. S1  A) and C) Heat flow (Q) as a function of temperature difference (∆T) across the 

uniform VO2 beams at 300K and 360K respectively. Different signs (+) and (-) of thermal 

power (Q) represent different directions of heat transfer. B) and D) Heat flow deviation 

(δQ) from linear fit as a function of temperature difference (∆T) across the VO2 beams at 

300K and 360K correspondingly.  

 

  

A C 

B D 
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3(b). Temperature dependent conductance for a uniform VO2 beam without 

rectification 

 

Fig. S2  Thermal conductance of a uniform VO2  beam (the same as SI section 2(a)) along 

two opposite directions (green and red filled squares) as a function of global temperature. 

Also shown is the corresponding thermal rectification (black closed circles) that suggests 

no appreciable rectification.  Note the phase transition temperature of 340K shown by a 

vertical blue dashed line. 
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4(a). Temperature dependent conductance for an asymmetrical VO2 beam showing 

rectification – Beam II in main manuscript (Table I) 

 

Fig. S3 Thermal conductance of the VO2 beam II (see Table 1 in main manuscript) as a 

function of global heating temperature along two opposite directions, represented by two 

different symbols (green triangular and red squares).  Also shown is the rectification 

(closed black circles) and its corresponding error bar. Thermal rectification ranges from 8 

�1 % up to 16�1.2% in the temperature range from 200 to 340K. 
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4(b). Temperature dependent conductance for Beams III-VI in the main manuscript 

(Table I) 

 

Beam III and IV: 

 

 
 

Beam V and VI: 

 

 
 

Fig. S4 Temperature Dependent Conductance of Beams III-VI in the main manuscript 

(Table I). Rectification in Beam V does not switch off in the purported fully-metallic 

phase. The temperature dependence of conductance is different for different beams and 

we hypothesize that this is due to the conflicting effect of phonon scattering and 

interfaces.  
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5. Electrical Measurement on VO2 beams 

 

 
Fig. S5 Electrical resistance of three asymmetrical VO2 beams as a function of global 

heating temperature, showing the electrical phase transition at 340K. It is a two probe 

measurement performed at the same temperature as the thermal conductance 

measurement. Except for the temperatures close to phase transition, the electrical 

rectification is below 1%.  
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6. Near-field Infrared Spectroscopic Study on VO2 Beams 

Near-field infrared spectroscopic imaging was performed with a (scattering type scanning 

near-field microscope (s-SNOM) which is based on a tapping mode AFM. Vertically 

vibrating PtIr-coated Si-tip (apex radius R ≈ 20 nm) with an amplitude of about 25-30 nm 

at a frequency of Ω ≈ 280 kHz is illuminated by a focused CO2 laser beam at wavelength, 

λ=10.7 µm. The tip converts the illuminating radiation diffraction limited spot into a 

highly localized and enhanced near field at the tip apex. Due to the near-field interaction 

between tip and sample, the back-scattered radiation from the probe tip is modified in 

both amplitude and phase, commensurate to the local dielectric response of the sample. 
3,4

 

The tip-scattered light is detected using a pseudo-heterodyne interferometric detection 

scheme, which enables simultaneous recording of amplitude and phase of the scattered 

field 
3–5

. Background signals are efficiently suppressed by demodulating the detector 

signal at the second harmonic of the tip oscillating frequency.  

 

The contrast formation in s-SNOM near-field imaging of metal-insulator transition (MIT) 

in VO2 is understood by considering the scattered signal at the second harmonic of the tip 

frequency as a function of the optical constants of the tip and the sample. Metallic regions 

show higher scattering amplitude owing to large negative real part and large positive 

imaginary part of the optical constants at λ=10.7 µm. Insulating regions have lower 

scattering amplitudes because of the small imaginary and real part of the optical constants. 

This difference in locally varying optical constants, and thus s-SNOM scattering 

amplitude signal, provides the basis for image contrast formation of the metal and 

insulating phases in VO2.  
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We directly observe the nanoscale spatial evolution of one phase to another of a tapered 

crystal VO2 beam grown on SiO2 as shown in figure S6.  Fig. S6a shows the topography 

of the taper, s-SNOM second harmonic optical amplitude images recorded at several 

temperatures are shown in figure S6b-d.  

 

Fig. S6 Topography (a), s-SNOM second harmonic optical amplitude images (b-d) 

recorded at several temperatures at selected  laser wavelength, λ=10.7 µm. 

 

We selected to perform s-SNOM direct imaging of VO2 beam at laser wavelength, 

λ=10.7 µm because the dielectric constant of the insulating and metallic phases of VO2 

display significant differences at this wavelength that allow strong s-SNOM optical 

contrast. As discussed in the main text the thinner part of the taper generates brighter 

contrast than the wider side suggesting phase coexistence even at room temperature. As 

temperature is increased, inhomogeneous mixed phase dynamics across the taper is 

observed until the phase transition is more complete at higher T leading to a more 

uniformly bright near-field contrast. As described in literature, the stress due to the 

underlying substrate can affect phase nucleation in VO2.  Hence, we use a freestanding 

suspended beam in Figure 4 in the main manuscript to illustrate a similar qualitative 

effect to demonstrate co-existence of the metallic and insulating phases at room 

temperature. 



 11

We have also performed s-SNOM on straight suspended VO2 beams. Figure S7 shows the 

topography and near-field amplitude images of a straight suspended VO2 beam. Unlike a 

tapered beam, which displays s-SNOM amplitude contrast at room temperature, the 

contrast in Fig. S7 evolves uniformly across the rod displaying an overall stronger signal, 

but no variation in contrast along the line profile in the metallic phase (71 C, Fig. S7c) 

compared to the insulating phase (26 C, Fig. S7b).  

 

Fig. S7. Topography (a) and near-field amplitude images (b-c) of a straight suspended 

VO2 beam. Unlike a tapered beam, which displays s-SNOM amplitude contrast at room 

temperature, the  contrast in Fig S8 evolves uniformly across the rod displaying strong 

contrast in the metallic phase (71 C, Fig. S7c) compared to the insulating phase (26 C, 

Fig. S7b). 
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7. Auger Electron Spectra for Composition Analysis  

 
 

Fig. S8 A) Scanning Electron Microscopy (SEM) image of a uniform VO2 beam, where 

the colored symbols represent locations used (~10nm resolution) for stoichiometric 

analysis. B) Auger Electron Spectra for the uniform VO2 beam, with different colors 

representing the places labeled in A). C) Scanning Electron Microscopy (SEM) image of 

an asymmetric VO2 beam, where the colored symbols represent places for stoichiometric 

analysis. D) Auger Electron Spectra for the asymmetric VO2 be=am, where the different 

colors represent the places labeled in C).   

 

It is observed that the oxygen composition on the surface of the uniform beam is higher 

than 66.7% (as in VO2). This oxygen-rich surface can be attributed to the general oxygen 

rich environment, as the beams are exposed to air during storage. It has been 

demonstrated in literature that exposing bulk VO2 single crystals to an oxygen 

environment can produce surface oxidation tending towards V2O5 (71.4% oxygen) 
6
.  

Such a study has not been performed on VO2 beams grown using our techniques, but 

given the larger surface-to-volume ratio of such nano/micro scale beams, it is highly 

likely that the surface of the VO2 beams in our study is oxygen-rich. Interestingly, it is 

observed that the oxygen composition on the surface of an asymmetric beam is lower 

than 66.7% (Fig. S8 (D)), despite the general oxygen rich environment. As discussed in 

A B 

C 
D 
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the main manuscript, the phase transition temperature is very sensitive to the 

stoichiometry of VnO2n-1. Hence, we expect these oxygen-deficient spots to remain in a 

metallic phase over a large range of temperatures (down to 135K for V2O3) 
7,8

.  
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8. The Impact of Thermal Contact Resistance 

 

Since we measure the two-probe thermal conductance of the VO2 beam, it is 

impossible to eliminate the effect of thermal contact resistance.  The contribution of 

contact resistance between the nanobeam and the suspended membrane to the total 

measured thermal resistance can vary depending not only on the quality of the contact, 

but also the temperature drop across the nanobeam itself 
1
.  Let’s consider that the 

thermal conductivity of bulk VO2 is ~4-6 W/m-K in the insulating phase at 300K 
9–11

.  

The typical cross-section of the beams is rectangular with the width, w and height, h 

around 500nm to 1.5µm.  Consider for example beam IV (see Table 1) in the manuscript.  

The geometry of the beam is drawn below: 

   

Fig. S9 A. A representation of the typical geometry of VO2 beams used in this study.  For 

beam IV (see Table 1 in main manuscript), w = 270 nm, h1 = 510 nm, h2 = 820 nm, LVO2
 

= 13.7 µm B. Top view Scanning Electron Micrograph of beam IV showing the 

asymmetrical geometry and Pt/C Focused Ion Beam Induced Deposits (FIBID) to 

improve thermal contact resistance and also provide electrical contact to the Platinum 

electrodes on the suspended membranes C. Cross-section diagram of each of four 

contacts between the VO2 beam (grey) and the Platinum Electrode (blue) on the 

suspended membrane, with the interface (black).  The length of the interface is defined as 

LI, and the overlap between the VO2 beam and the Platinum Electrode is defined as Lc. 

 

 

B 
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Using an average cross-sectional area based on the dimensions shown above in Fig S9A, 

and approximating k = 5 W/m-K for the VO2 beam, we expect the beam conductance to 

be 58.6 nW/K.  The actual measured conductances G+ and G- are 56 and 48 nW/K 

respectively, which are agreeably close to the expected value.  For other geometries of 

nanowires measured in this study, the range of measured thermal conductances is 

between 50 to 200 nW/K.  This translates to the measured thermal resistance, Rth = 1/G 

between the two pads of between 5 and 20 K/µW.  

In order to estimate the effect of contact resistance, we follow the analysis in Yu et al. 
12

 

and approximate the contacts between the beam and the membrane as rectangular fins.  

The thermal contact resistance Rc can be approximated as 
13

: 

Rc =
1

4
⋅

1

hPkAc tanh hP
kAc

Lc









 (SI 3) 

where h (W/m
2
K) is the lateral heat transfer coefficient between the VO2 beam and 

Platinum contact on the pads, P=width is the effective perimeter of contacts performing 

as fins (the beam touches the membranes at the Platinum electrodes, each Lc in width as 

shown in Fig.S9C), k is the thermal conductivity of the VO2 beam and Ac = width*height 

is the cross-sectional area of the beam.  Let’s approximate h ≈ kI
LI

12
, where kI  is the 

estimated thermal conductivity and LI
is the length of the ill-defined interface between 

the VO2 beam and the Pt electrodes on the suspended membrane, as illustrated by Fig 

S9C  in black.  In order to determine the maximum possible thermal contact resistance, Rc, 

let us consider the scenario where the interface is sandwiched between the VO2 beam and 

the Platinum electrode, as illustrated in Figure S9C.   
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The unknowns in Equation SI 3 are thus: kI and LI.  Also, the area of contact changes for 

different widths of the beam, w.  

a) Interface conductivity, kI: The worst scenario is all air contact, which is avoided by 

doing a tilted SEM and ensuring that the contact between the beam and Pt electrode is 

good.  Once the FIBID based Pt/C composite is placed on the electrode, the area is 

observed with tilted SEM to be filled.  Hence, the realistic lower limit is Pt/C 

composite with 30% Pt.  This is an organometallic, with Pt particles joined by an 

organic substance 
14

 and is known to resemble metal powders with 30% porosity (air 

gaps), who have a lower limit of thermal conductivity of kI =1 W/m-K 
15

. In the other 

extreme, the best-case scenario in the limit of perfect contact, is the Pt thermal 

conductivity itself, which is 20-30 W/m-K depending on the grain sizes for thin film 

Platinum.   

b) Length of the interface, LI: The length of the contact can be approximated to span 

values from 1 nm to 100 nm as an extreme case. 

Taking these length scales into considerations, Fig S10 shows the values of the thermal 

contact resistance (Rc) for different values of the unknown parameters: 
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Fig. S10A. The thermal contact resistance, Rc as a function of the interface thermal 

conductivity, kI approximating the contact area as a fin with adiabatic ends and a contact 

length of 1µm.  The maximum Rc ~0.75 K/µW is when kI = 0.01 W/m-K. For this graph, 

LI = 10 nm, w = 500 nm and h = 500 nm. B. Predicted thermal contact resistance, Rc as a 

function of expected values of the interface length, LI ranging from 1 to 100 nm where kI 

= 0.1 W/m-K, w = 500 nm and h = 500nm. C. Predicted thermal contact resistance, Rc as 

a function of beam widths and heights ranging from 500 nm to 1.5 µm when kI = 0.1 

W/m-K and LI = 10 nm. 

 

In Fig. S10A, we have plotted Rc as a function of different kI ranging from 0.01 W/m-K 

to 10 W/m-K.  As can be seen from Fig. S10A, Rc is expected to be < 0.75 K/µW for a 

large area of contact, which is at most 15% of our measured resistance.    Note that we 

have used a beam width and height of 500 nm and LI = 10 nm.  Fig. S10B shows the 
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effect that the interface length, LI has on Rc.  Even in the extreme case of LI = 100 nm, 

assuming kI = 0.1 W/m-K, we only get Rc ~ 0.75 K/µW.  Finally, as expected, the contact 

resistance decreases as we increase the beam width upto 1.5 µm, as the area of contact 

increases as illustrated in Fig. S10C. Here, we assume kI = 0.1 W/m-K and LI = 10 nm. 

Another way of estimating the contact resistance is by considering the thermal interface 

resistance reported in literature for highly dissimilar materials.  Even in this limit, the 

smallest thermal interface conductance between two solids is given by Gc’ ~ 10 MW/m
2
-

K 
16

.  Considering this value for the contact area in our system given by w = 500 nm, Lc = 

1 µm, we obtain Rc = 2 ⋅
1

Gc 'A
<

2

10MW m−2  K −1 ⋅500nm ⋅1µm( )
= 0.4K µW , which is at most 

8% of our measured thermal resistance. 

Also note that this contact resistance only assumes direct contact between the VO2 beam 

and the Platinum contacts via the Pt/C composite on the suspended pads.  In practice, this 

is alleviated by the focused ion beam induced deposition (FIBID) of a Pt/C composite, 

which (1) increases the contact area between the VO2 beam and the suspended membrane 

and (2) fills in any air gaps in the dry interface at the points of contact with the 

organometallic Pt/C substance.   It has been shown previously that the total measured 

thermal resistance (including the contact) can be reduced by 10-15% by depositing this 

composite using the FIBID 
12,17–19

.  

Further, we have used a non-tapered VO2 beam whose geometry was carefully 

ascertained with cross-sectional SEM.  The measured thermal conductance was 49.6 

nW/K, Rth = 20.2 K/µW.  The thermal conductivity matches that of bulk, k~5.5 W/m-K at 

room temperature, which indicates that when heat flows from the suspended membranes 
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into the nanowire, most of the temperature drop occurs across the beam and the 

discontinuity in temperature at the contact is small.  Based on the analysis above and Fig. 

SI 10A, Rc < 0.75 K/µW, which is at most 2% of the measured resistance without 

considering the additional improvement in contact from the Focused Ion Beam Induced 

Deposition (FIBID) of Pt/C. 

Next, we show below that the thermal contact resistance alone cannot explain the 

asymmetrical behavior of heat flow.  Consider the case where the contact resistance has 

different temperature dependences at a particular gate temperature; this could result in 

rectification.  Following the analysis of Dames, we can estimate an upper bound for 

thermal rectification due to contact resistance as shown in Figure 8(b) in the referenced 

manuscript, where the contacts are shown to dominate the thermal resistance across the 

two ends and the two contact ‘segments’ are labeled 1 and 2, respectively.  Specifically, 

using Equation (24) of the referenced manuscript, the rectification can be described as:  

γ =
n1 − n2

ρ1 2 + ρ−1 2( )
2
∆  (SI 4) 

where γ is the rectification, n1
and n2

are the temperature exponents that defines the 

temperature-dependence of thermal conductivity near gate temperature TG for each 

contact segment, ρ is the ratio R2 R1
where Ri is the thermal resistance of each segment 

and ∆ = Th −Ts( ) TG is a normalized temperature with respect to the gate temperature.  If 

the contacts are treated as thin heat conductors, then n1 − n2( ) ≤ 6 .  However, if the 

contacts are treated as a mismatch between the two materials at the contact, n1 −n2( ) ≤ 3

(see Reference 
20

 for details).  To maximize the rectification at a particular ∆ , the 
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denominator needs to be minimized, which gives us ρ =1.  Then, for our experiments 

performed in the low-bias limit, where Th −Ts( ) ≤ 2K  and TG ≈ 300K , 

γmax ≈
6

4
×

2

300
=1% . 

In summary, first, the measured thermal conductances for all the VO2 beams lie between 

5 and 20 K/µW, with the maximum thermal contact resistance of 0.75 K/µW.  This is 

expected to improve after Pt/C deposition using a FIB, which was also used to make 

electrical contact to the suspended VO2 beam. The measured thermal conductivity (~5.5 

W/m-K) of a uniform VO2 beam indicates that the thermal contact resistance in our 

measurement is negligible since the measured value matches that of bulk. Secondly, even 

in the limiting case of thermal contact resistance dominating, for the low-bias experiment 

we have performed, maximum rectification in the system could atmost be 1%. 
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9. Estimation of Metal-Insulator Thermal Interface Resistance 

If we consider electron-phonon inequilibrium at the Metal-Insulator interface, in the 

configuration illustrated below: 

 

Here, the heat flows from the metal to the insulator. Using the two-temperature model as 

described in 
21

, the interface conductance, hI can be defined as:  

hI =

kp

Ge−l

khm

1+
kp

hpp

.
Ge−l

khm
−
khm
ke

  (SI 5) 

 

where kp and ke are the phononic and electronic thermal conductivities on the metallic 

side and khm is the harmonic mean given by: khm = 1 kp +1 ke( )−1
, hpp

 is the phonon-

phonon interface conductance, and Ge-l is the electron-phonon cooling rate. For a normal 

metal, ke >>kp
. However, for VO2 we need three cases, when the total thermal 

conductivity is estimated as kT = 10 Wm
-1

K
-1

.  

 

(a) if Weidemann-Franz law is violated and ke=0, then kp = 10 Wm
-1

K
-1

and khm = 0 

Wm
-1

K
-1

.  

(b) If Weidemann-Franz law is valid, and  

ke = LσT=(2.44e-8).(1e6).(350) = 8.5 Wm
-1

K
-1

. Then, kp = 1.5 Wm
-1

K
-1

 and  

khm = 1.275 Wm
-1

K
-1

. 

(c) If there is equal contribution from the electrons and phonons to the total thermal 

conductivity, ke = kp = 5 Wm
-1

K
-1

 and khm = 2.5 Wm
-1

K
-1

. 

 

In the insulating state, Ge−l ~ (0.1−3)e16Wm−3K −1

 
22

.  Also, since the lattice mismatch 

between the metallic and insulating state is very small, we can assume that the phonon-
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phonon interface resistance is very high, hpp ~ 100MWm−2K −1
.  Since hI ∝hpp

, this 

assumption will give us a conservative over-estimate of the interface conductance.  Then, 

using Equation (SI 5) and substituting values for all three cases, we find that hI ranges 

from ~33 to 92 MWm
-2

K
-1

. 

 

Now, consider our measured thermal conductance of the VO2 beam to be 

GT =100nWK −1, and hence total measured thermal resistance including the metal-

insulator interface is given by RT =1 GT =1e7KW −1 .  Since the total resistance is a series 

resistance of the metallic and insulating elements and the metal-insulator interface, if we 

assume that the observed thermal rectification comes purely from the metal-insulator 

interface, then for a rectification of 25%, the interface thermal resistance has to be given 

by: RI = 0.25 ⋅RT = 2.5e6KW −1. 

 

If we take this to be the measured interface resistance, then we can estimate how much 

area we need given the thermal interface conductance, hI calculated above. 

Then, AI =1 hIRI
gives an estimated effective-interface area AI ≈4350 −12120nm2 . If 

we approximate this interface to be a square cross-section, then the lateral dimensions 

would be (~66x66) nm
2
 up to (~110x110) nm

2
. Of course, this estimate of the interface 

area depends upon the total measured thermal conductance and the rectification 

magnitude.  
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10. Error Analysis for Thermal Conductance Measurements 

In the thermal measurement scheme, the conductance of the beam is determined by 

ramping up the temperature in a stepwise (50 steps) fashion by passing a DC current (0-

8µA) through the PRT on the heating membrane.  The rise in temperature on either side 

is monitored by measuring the resistances, Rs and Rh on both platforms, as seen in Fig 

S11 below. For a Platinum Resistance Thermometer (PRT) in the temperature range of 

our measurement (50K-300K), the resistance changes linearly with temperature:   

∆Rs = Rs − Rs,G( )∝ Ts −TG( ) = ∆Ts
 and ∆Rh = Rh − Rh,G( )∝ Th −TG( ) = ∆Th

 

Since the rise in temperature is proportional to the supplied power through Ih,

∆Th ∝ Ih
2Rh,G and∆Ts ∝ Ih

2Rh,G
. 

 

Fig. S11 Rs and Rh as a function of the heating current, Ih. Resistance is proportional to 

temperature, which in turn is proportional to the power supplied by joule heating.  Thus, 

the resistance has a quadratic dependence on Ih 

 

Following the analysis of Equation (SI 2), the heat flow in the VO2 beam can be 

estimated as: Q = γ ⋅
Ih

2Rh

∆Th +∆Ts( )
⋅ ∆Ts , where γ is a non-dimensional ratio of the resistance 

of the PRT and the resistance of the suspended legs.  γ is a constant at all temperatures.  
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The beam conductance can then be determined using the relation G = Q
∆Th −∆Ts( ) .  Then, 

error propagation rules determine that: 

δQ
Q











2

= 2 ⋅
δIh
Ih











2

+
δRh

Rh











2

+
δ ∆Ts( )

∆Ts











2

+
δ ∆Th +∆Ts( )

∆Th +∆Ts











2

 (SI 5) 

and, 
δG
G











2

=
δQ
Q











2

+
δ ∆Th − ∆Ts( )

∆Th −∆Ts











2

 (SI 6) 

Hence, the following error terms need to be determined:  

(1) 
δRh

Rh

, (2) 
δ ∆Ts( )

∆Ts

, (3) 
δ ∆Th +∆Ts( )

∆Th +∆Ts

 and (4) 
δ ∆Th −∆Ts( )

∆Th −∆Ts

 

The linear dependence of the PRT resistance with respect to temperature allows us to 

define ∆Ts
and ∆Th

.  One cycle of measurement constitutes gathering this raw data at 5 

different local temperature points around TG.  Consider the partial derivative

∂Rh/s

∂Th/s

≈ ∆Rh/s

∆Th/s

at TG = 300K. Then, we measure the resistances Rs,Gand Rh,G at 

295K, 298K, 300K, 302K and 305K.  The plot of resistance as a function of gate 

temperature is typically a line as below: 

 

Fig. S12 Measured Rs and Rh around TG=300K used for calibration of TCR. 
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If we define αs ≡ dRs

dTG
~

∆Rs

∆TG
 and αh ≡ dRh

dTG

~
∆Rh

∆TG
then these slopes can be 

determined to very high accuracy.  In general, δαs

αs

 and 
δαh

αh

≤1.75×10−2
 when R

2
 > 

0.9999 for the least squares fitting shown in Fig. S12 above.  To understand where this 

error comes from, consider the following error propagation (where i = h or s): 

δαi

αi











2

=
δ ∆Ri( )

∆Ri











2

+
δ ∆Ti( )

∆Ti











2

  

Following the analysis of Shi 
2
, we have verified that 

δRi

Ri

=
δvout
vout











2

+
δiac
iac











2

≈ 5×10
−5

 

from the AC measurements of the 4-probe resistance using a lock-in amplifier on both the 

heating and sensing sides.  We haven’t described the detailed error contributions for this 

term, but these are similar to those calculated in Shi 
1
and Li 

2
 and as is seen later in this 

analysis, two orders of magnitude smaller in comparison to other sources of error in the 

measurement. 

To determine the slope αi
, we use a temperature excursion of ∆T =10K .  Then, 

δ ∆Ti( ) = 2 ⋅δTi ≈ 2 ⋅ 40mK = 57mK . Hence, 
δ ∆Ti( )

∆Ti
≈

57mK

10K
≈ 5.7×10−3

. Therefore, we 

should expect 
δαi

αi









 ≈ 6×10−3  at most from direct measurement of the 4-probe resistance 

and the cryostat temperature.  However, this analysis doesn’t account for temperature 

fluctuations of the cryostat ~30-40mK (at room temperature) which are unavoidable. We 

wait for up to 60 minutes at each gate temperature for the cryostat head temperature to 

stabilize. Hence, the maximum standard deviation of the estimated slope for either Rh or 

Rs is given by ασ  (obtained from the the least-squares linear fit to the Resistance, Ri vs 
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Temperature, Ti curve) where i represents either the heating or the sensing side. The 

equation that determines this value is: 

σα
2 =σ R

2 •
n

n Ti
2

i

∑ − Ti
i

∑










2
 

where σ R
is the standard error for the Resistance estimate (either heating or sensing side) 

and n is the number of points taken (in this case, 5). σ R
 is given by: 

σ R

2 =
1

n− 2
Ri −αTi( )2

i

∑  

Then, in order to estimate the 95% confidence interval of the slope (considering two-

tailed uniform distribution), we obtain a t-value of 3.182 for 3 (n-2) degrees of freedom. 

Thus, the maximum possible error in the slope is: 

δαi = t
n−2( ) •σα  

which in terms of percentage can be written as (for beam I): 

%76.0≤
i

i

α
δα

 

 

Now, the error in ∆Ts
and ∆Th

 can be determined from the relation:  

( ) ( ) ( ) ( ) %76.01076.01076.0105 22225

22

=×≈×+×≈







+







 ∆
=

∆
∆ −−−

i

i

i

i

i

i

R

R

T

T

α
δαδδ

 

Or as a general expression, 
( )

i

i

i

i

T

T

α
δαδ

≈
∆

∆
where i stands for h(heating) or s(sensing). 

Let us define 
i

i

i
e

α
δα

α ≡ . 
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Then, 
( )

i
e

T

T

i

i
α

δ
≈

∆

∆
 

Now,  

  
( ) ( )[ ] ( )[ ] ( ) ( )

sh

sh

sh

sh

sh

sh

TT

TeTe

TT

TT

TT

TT sh

∆+∆

∆+∆
=

∆+∆

∆+∆
=

∆+∆
∆+∆

2222 .. ααδδδ
 

Hence, from Equation (SI 5), neglecting the small error contributions due to terms 
h

h

I

Iδ

and 
δRh

Rh

, we can rewrite this equation as: 

( ) ( ) 222










∆+∆
∆+∆

+








∆
∆

≈








sh

sh

s

s

TT

TT

T

T

Q

Q δδδ
 (SI 5a) 

which can be simplified with some simple algebra to determine the absolute error in the 

measured heat flux, Qδ : 

( ) ( ) ( )
( )2

22

2 ..

sh

sh

TT

TeTe
eQQ sh

s ∆+∆

∆+∆
+•= αα

αδ  (SI 7) 

We can thus estimate the error in Q(heat flux) for each T∆ (for beam I) to be: 

( ) ( ) ( ) ( ) %4.1102.11076.0105102.42
22222525 ≈×+×+×+×⋅= −−−−

Q

Qδ
 

Then, the error in conductance, G if defined as Q∆T  is given by Equation (SI 6): 

( ) ( ) %2.21066.1104.1
2222 ≈×+×= −−

G

Gδ
 

However, this is the error obtained for a single data-point for the case G ≡
Q

∆T
.  In 

practice, we obtain 200 such points during each measurement cycle as shown in Fig. S12 

above.  Further, we repeat each measurement cycle 2-3 times to ensure repeatability of 
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the data. Hence, a more accurate estimation of the beam conductance is given by the 

slope of the Q vs ∆T curve as the current, Ih, is ramped up.  The difference is illustrated 

in the cartoon below: 

 

Fig. S13 Illustration of the difference in definition of the conductance either by 

considering (a) a single data-point with a large enough ∆T, or (b) taking the local slope of 

the heat flux for a variety of temperature gradients across the suspended beam. 

 

To revisit the error bars in the case of Fig. S13(b), a similar analysis as described above 

can be performed. Since the slope of the Q vs ∆T curve (forcing the intercept to zero), 

gives the conductance, G, the standard error for the heat flux estimate as well as the error 

in conductance can be ascertained. As an example, data is reproduced below for beam I 

(see Table 1) in the manuscript: 

 
Fig S14 Heat flow through the tapered VO2 beam I, Q in nW as a function of the 

temperature difference across the beam, ∆T in K at TG = 300K. 

Q 

∆T 

G =
Q

∆T
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G =
dQ
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(a) (b) 



 29

 

Most importantly here, the error in heat flux is experimentally determined and can be 

called the pure error of each data point.   

Hence, the conductance can be determined by doing a linear least-squared fit to the data. 

In our case however, weightage from the errors at small ∆T is overwhelming.  Also, the 

variability in data for small ∆T is larger, thus the variance in the error is larger. As an 

example, consider the following residual plot in Fig S15(a), where the residual is defined 

as:  

TGQ fitii ∆−=ε  

  

Fig S15(a) Residual plot for linear least-squared fit and (b) weighted linear least-squared 

fit, with a weight given by 
21 Qwi δ=  

 

Taking advantage of the large number of data points we gather at every global 

temperature, TG we use the weighted least squares method to estimate the slope of the Q 

vs ∆T data.  Similar to a simple linear least-squares regression, this will minimize the 

weighted residuals ( )∑ ∆−=
i

iiiw TGQwGs
2

')'( , where 
21 Qwi δ=  

(see Fig S15b). This provides two advantages:  

(1) it accounts for the non-equal error variance in the small ∆T case, and  
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(2) it incorporates the pure error, Qδ  in Q measurement at every ∆T in to the linear fit 

and hence accounts for actual experimental uncertainty.   

It has been proven that such a weighted least-squares estimate is the best linear unbiased 

estimator (BLUE) when the weight is equal to the reciprocal of the measurement 

variance. Once the weighted least-squares fitting is completed, we can then estimate the 

error in conductance by considering the two-tailed 95% confidence interval with a t
n−2( )

value of 1.96 for n>100. Thus, the error in conductance is given by )96.1.(GG σδ = . 

In summary, for all beams measured, repeated measurements (2-3 times at each gate 

temperature) account for the error in Temperature Coefficient of Resistivity (TCR) of the 

Platinum Resistance Thermometers (PRTs), thus reducing the error in measured αh
and 

αs
. Secondly, slowly ramping up the heating current to get ~50-100 data points per 

temperature excursion allows for accurate estimation of the beam thermal conductance 

within 1% (depending on the cryostat temperature oscillations during measurement for 

each global gate temperature). 

Finally, for our definition of error in rectification given by R =
G+ −G−

G−

, we obtain for 

Beam I:  

%3.1

2

2

222

≈







+








=








+








= −

−

+

−

+

−

−

+

+ G
G

G

G

G

G

dG

G

dG

R

R
δ

δδ
 (SI 8) 

where G+ ±δG+ = 80.1± 0.6nW/K and G− ±δG− = 62.2 ± 0.4nW/K. A similar 

methodology is adopted to determine the error in thermal rectification for each of the 

VO2 beams measured in the manuscript. 
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