Electronic Supplementary Material (ESI) for

An effective integrated design for enhanced cathodes of Ni foam supported Pt/CNTs for Li-O₂ batteries

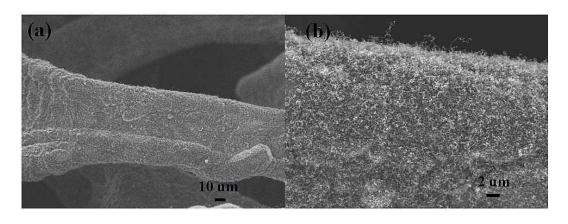
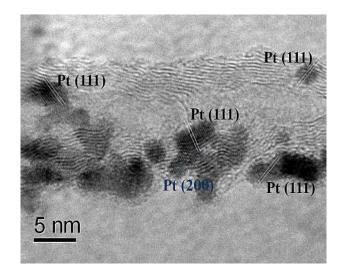
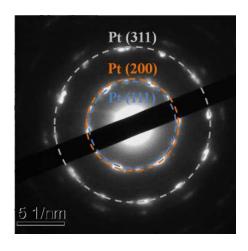
 $Jiaxin\ Li^{\S^{\uparrow}}$, Yi Zhao § , Mingzhong Zou^{\dagger} , ChuXin\ Wu § , Zhigao Huang $^{\dagger^*}$, Lunhui Guan $^{\S^{\#^*}}$

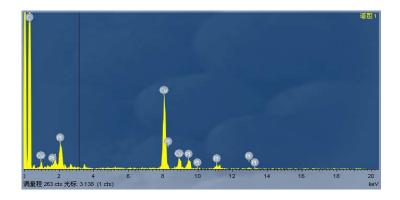
§State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

[†]College of Physics and Energy, Fujian Normal University, Fuzhou, 350007, China

*Key Laboratory of Design and Assembly of Functional Nanostructures, Chinese Academy of Sciences, Fuzhou 350002, China

*Telephone/Fax: 86-591-83792835. E-mail: guanlh@fjirsm.ac.cn, zghuang@fjnu.edu.cn.


Figure S1. (a) SEM image and (b) magnified SEM image of Pt/CNTs-NF.

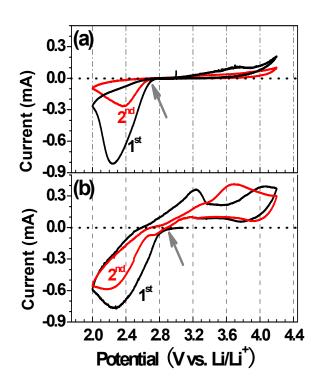

Figure S2. HR-TEM image of Pt/CNTs-NF.

Figure S3. SAED pattern of Pt/CNTs-NF.

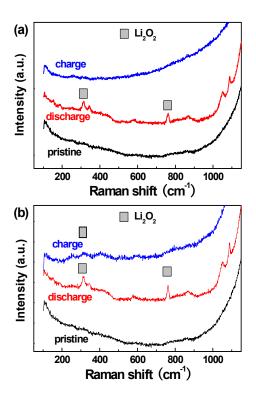
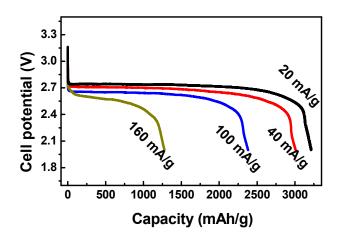


Figure S4. EDS pattern of Pt/CNTs-NF.


Figure S5. CV curves of (a) CNTs-NF electrode and (b) Pt/CNTs-NF electrode.

To explore the application of the CNTs-NF and Pt/CNTs-NF as cathodes in LOBs, the CVs are obtained at a scan rate of 0.2 mV/s. As shown in Figure S5(a), featureless CV curve of CNTs-NF electrode is observed in its OER process, while the Pt/CNTs-NF electrode exhibits an obviously lower OER onset potential and higher OER peak current than CNTs-NF electrode. Meanwhile, in the ORR scan, Pt/CNTs-NF electrode exhibits a slightly higher ORR onset potential in the first cycle as remarked by arrows in Figure S5, and higher ORR peak currents than CNTs-NF electrode in the following cycle. These anodic peaks in ORR process can be attributed to the oxidation of Li₂O₂. This result revealed that Pt/CNTs-NF has considerable ORR/OER catalytic activity in non-aqueous LOBs.

Figure S6. Raman patterns for pristine, discharged, and subsequent charged cathodes in Li-O₂ batteries using (a) Pt/CNTs-NF and (b) CNTs-NF as electrodes.

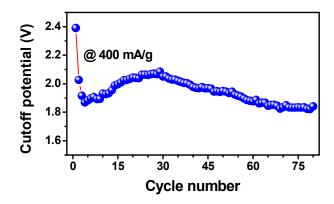
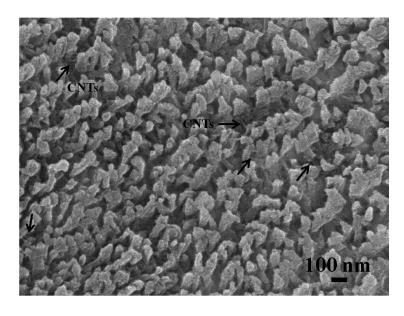

As we know, Raman spectroscopy is one of the most useful techniques for measuring Li_2O_2 formation during discharge in the Li-Air battery. As in the Raman patterns, Li_2O_2 was observed as the major discharge product in the Pt/CNTs-NF and CNTs-NF electrodes.² In addition, Raman charged up to a potential of 4.2 V showed no Li_2O_2 discharge product for Pt/CNTs-NF electrode, while the CNTs-NF electrode delivered Li_2O_2 discharge product. Thus, Li_2O_2 is the dominant discharge product for LOBs with a Pt/CNTs-NF electrode used TEGDME-based electrolyte and its formation /decomposition appears to be reversible.

Figure S7. Discharge characteristic of the pure CNTs-coating electrodes at various current densities.

Table S1. Discharge capacities of the Pt/CNTs-NF, CNTs-NF and pure CNTs-coating electrodes at various current densities.


Capacities for	Current density (mA/g)				
different electrodes	20	40	100	160	
Pt/CNTs-NF (mAh/g)	4050	3935	3250	2815	
CNTs-NF (mAh/g)	4040	3822	3265	2820	
CNTs-coating (mAh/g)	3205	3000	2375	1265	

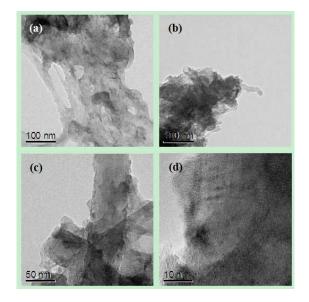

Figure S8. Voltage of the terminal discharge with a restriction of the capacity of 1500 mAh/g vs. the cycle number for Li-O₂ batteries with Pt/CNTs-NF electrode.

Table S2. Electrochemical performance of various Pt/carbon related cathode materials reported in previous works.

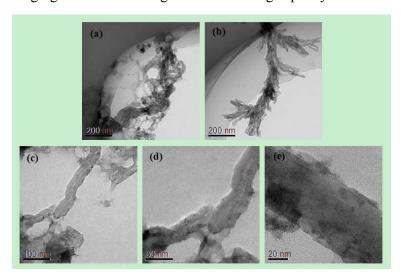

Typical materials	First discharge capacity (mAh/g) /Current density(mA/g)	Cycle number	Last discharge capacity (mAh/g)	Restricting capacity (mAh/g) /Cycle number	Potential difference for ORR/ OER (V)	Refs.
Pt/CNTs-NF	2900/160	4	2850	1500/80	1.1	this work
PtCo/XC-72 carbon	2578/100	10	1100		1.2	3
Pt/GO	1100/70	20	980		0.7	4
Pt/C	616/70	10	279		1.05	5
PtRu/C				700/42		6
Pt/C	500/240	3	700		1.4	7
Pt@MCN	1500/ (0.02mA/cm ²)	5	375		0.43	8
Pt/C	870/100	3	920		0.8	9

Figure S9. SEM and magnified SEM images of the Pt/CNTs-NF electrode after the 21th discharging state at 160 mA/g with a restricting capacity of 800 mAh/g.

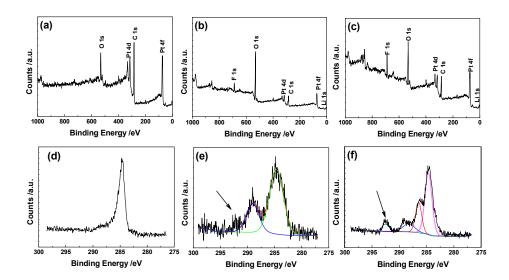


Figure S10. Different magnified TEM images for Pt/CNTs-NF cathode after the 21th discharging state at 160 mA/g with a restricting capacity of 800 mAh/g.

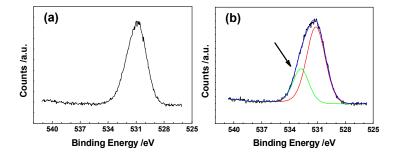
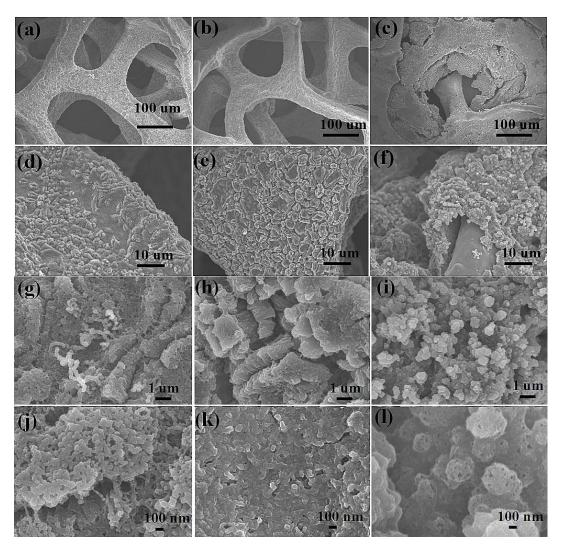
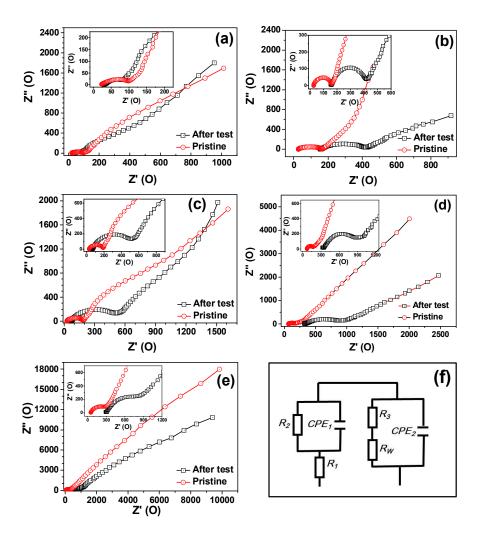


Figure S11. Different magnified TEM images for Pt/CNTs-NF cathode after the 86th discharging state at 400 mA/g with a restricting capacity of 1500 mAh/g.

In addition, the corresponding TEM study has been carried out to detect the LOB reaction products. Different magnified TEM images for Pt/CNTs-NF cathode after cycling were shown in the Figures S10~11. For both cathodes, they seemed to be covered by thin products on the CNT surface. Combined with the discussion of XPS and TEM results, the observed close-packed agglomerate shown in Figure 4 in manuscript is believed to be Li₂O and Li₂O₂ intermingled with some Li₂CO₃.

Figure S12. Full XPS spectra for Pt/CNTs-NF cathodes for (a) flesh electrode, (b) after the 21th discharging state at 160 mA/g with a restricting capacity of 800 mAh/g, and (c) after the 86th discharging state at 400 mA/g with a restricting capacity of 1500 mAh/g; (d)~(f) the corresponding C 1s XPS spectra for above three cathodes.


Figure S13. The corresponding O 1s XPS spectra for (a) after the 21th discharging state at 160 mA/g with a restricting capacity of 800 mAh/g, and (b) after the 86th discharging state at 400 mA/g with a restricting capacity of 1500 mAh/g.


Figure S14. The corresponding Li 1s XPS spectra for (a) marked black for after the 21th discharging state at 160 mA/g with a restricting capacity of 800 mAh/g, and (b) marked red for after the 86th discharging state at 400 mA/g with a restricting capacity of 1500 mAh/g.

Combined with the discussion in the manuscript, XPS results are further shown in the following Figures S12-14. As revealed in Figures S12(d) and (e) for the C1s XPS spectra, the signal for C1s at ~292 eV for Li₂CO₃ can be found in the both of cathodes. Compared with Figure S12(d), most of them cannot be decomposed in the charged process for the sample after the 86th discharging state at 400 mA/g with a restricting capacity of 1500 mAh/g. As we know, the products of Li₂CO₃ can be decomposed when the charged potential is larger than 4.2 V.¹⁻² The finding is also supported by the D-C results shown in Figure 3 in manuscript. In addition, in the O 1s XPS spectra shown in Figure S13 presented the components representing Li₂O₂ (~531.5 eV), Li₂O (~529.0 eV) and C=O for CO₃ (~532.0 eV), ¹⁰⁻¹³ respectively. It is interesting to note that the peak of ~ 532.0 eV for the CO₃ in the products for the sample after the 86th discharging state at 400 mA/g with a restricting capacity of 1500 mAh/g is stronger than that case in Figure S13(a). Meanwhile, Figure S14 shows the absence of Li₂CO₃ characteristic signal for Li1s at 55.5 eV in the both of cathodes. 14 Combined with the XPS result shown in Figures S12-14, the observed close-packed agglomerate shown in Fig.4 in manuscript is believed to be Li₂O and Li₂O₂ intermingled with some Li₂CO₃. As a result, the polarization caused by residual un-decomposed products such

as Li₂CO₃, will increase their D-C overpotentials, further leading to fade their cycle performance.

Figure S15. SEM and magnified SEM images of the electrodes after long D-C cycles: (a), (d), (g) and (j) for Pt/CNTs-NF electrode; (b), (e), (h) and (k) for CNTs-NF electrode; (c), (f), (i) and (l) for CNTs-coating electrode.

Figure S16. Electrochemical impedance spectra (EIS) for LOBs with different D-C stages: (a) Pt/CNTs-NF electrode after 21 cycles at 160 mA/g with curtailing with the capacity to 800 mAh/g; (b) Pt/CNTs-NF electrode after 86 cycles at 400 mA/g with curtailing with the capacity to 1500 mAh/g; (c) Pt/CNTs-NF electrode after long D-C

cycles; (d) CNTs-NF electrode after long D-C cycles; (e) CNTs coating electrode after long D-C cycles; and (f) the corresponding equivalent circuit.

Electrochemical impedance spectroscopy is a highly resolved electroanalytical technique that may provide unique information about the nature of electrode process related to a wide range of time constants.¹⁴ Figure S16 presents EIS profiles of electrochemical impedance spectra for LOBs with different D-C stages and the corresponding equivalent circuit. In the circuit, the high frequency intercept of the semicircle on the real axis was reflected by an ohmic resistance (R_s , denoted as R_I in Figure S16(f)), which includes ionic resistance from the separator paper and electrical resistance between the electrode and the current collector. The depressed semicircle at middle frequency was contributed by a parallel combination of charge-transfer resistance (R_{ct}), corresponding to the kinetic reaction at the air electrode surface, which can be divided into R_2 and R_3 in Figure S16(f). The linear spike at low frequency could be described by a finite length Warbury element R_W .¹⁵

REFERENCES AND NOTES

- 1. Zhang, K.; Zhang, L.; Chen, X.; He, X.; Wang, X.; Dong, S.; Han, P.; Zhang, C.; Wang, S.; Gu, L.; Cui, G. Mesoporous Cobalt Molybdenum Nitride: A Highly Active Bifunctional Electrocatalyst and Its Application in Lithium—O₂ Batteries *J Phys. Chem. C* 2013, 117, 858-865.
- 2. McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. Solvents' Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry *J Phys. Chem. Lett.* 2011, 2, 1161-1166.
- 3. Su, D.; Kim, H.-S.; Kim, W.-S.; Wang, G., A Study of Pt_xCoy Alloy Nanoparticles as Cathode Catalysts for Lithium-Air Batteries with Improved Catalytic Activity *J Power Sources* 2013, 244, 488-493.
- 4. Wang, L.; Ara, M.; Wadumesthrige, K.; Salley, S.; Ng, K. Y. S. Graphene Nanosheet Supported Bifunctional Catalyst for High Cycle Life Li-Air Batteries *J Power Sources* 2013, 234, 8-15.

- 5. Cheng, H.; Scott, K., Selection of Oxygen Reduction Catalysts for Rechargeable Lithium-Air Batteries-Metal or Oxide? *Appl. Catal. B: Environ.* 2011, 108-109, 140-151.
- 6. Ko, B. K.; Kim, M. K.; Kim, S. H.; Lee, M. A.; Shim, S. E.; Baeck, S.-H., Synthesis and Electrocatalytic Properties of Various Metals Supported on Carbon for Lithium-Air Battery *J Mole. Catal. A: Chem.* 2013, 379, 9-14.
- 7. Yin, J.; Fang, B.; Luo, J.; Wanjala, B.; Mott, D.; Loukrakpam, R.; Ng, M. S.; Li, Z.; Hong, J.; Whittingham, M. S.; Zhong, C.-J., Nanoscale Alloying Effect of Gold–Platinum Nanoparticles as Cathode Catalysts on the performance of A Rechargeable Lithium–Oxygen Battery. *Nanotechnology* 2012, 23 (30), 305404.
- 8. Lu, Y.; Wen, Z.; Jin, J.; Cui, Y.; Wu, M.; Sun, S., Mesoporous Carbon Nitride Loaded with Pt Nanoparticles as A Bifunctional Air Electrode for Rechargeable Lithium-Air Battery *J Solid State Electrochem.* 2012, 16 (5), 1863-1868.
- 9. Lu, Y.-C.; Xu, Z.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries *J Am. Chem. Soc.* 2010, 132, 12170-12171.
- 10. Lu, Y.-C.; Crumlin, E. J.; Carney, T. J.; Baggetto, L.; Veith, G. M.; Dudney, N. J.; Liu, Z.; Shao-Horn, Y., Influence of Hydrocarbon and CO₂ on the Reversibility of Li-O2Chemistry UsingIn SituAmbient Pressure X-ray Photoelectron Spectroscopy *J Phys. Chem. C* 2013, 117 (49), 25948-25954.
- 11. Li, F.; Tang, D.-M.; Chen, Y.; Golberg, D.; Kitaura, H.; Zhang, T.; Yamada, A.; Zhou, H., Ru/ITO: A Carbon-Free Cathode for Nonaqueous Li-O2 Battery *Nano Lett.* 2013, 13 (10), 4702-4707.
- 12. Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Bruce, P. G. The Carbon Electrode in Nonaqueous Li-O₂ Cells *J. Am. Chem. Soc.* 2013, 135, 494-500.
- 13. S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Bardé and P. G. Bruce, *Angewandte Chemie International Edition*, 2011, **50**, 8609.
- 14. Kitaura, H.; Zhou, H. Electrochemical Performance of Solid-State Lithium-Air Batteries Using Carbon Nanotube Catalyst in the Air Electrode *Adv. Ener. Mater.* 2012, 2, 889-894.
- 15. Kichambare, P.; Kumar, J.; Rodrigues, S.; Kumar, B. Electrochemical Performance of Highly Mesoporous Nitrogen Doped Carbon Cathode in Lithium–Oxygen Batteries *J Power Sources* 2011, 196, 3310-3316.