Supporting information

Binding Mode Investigations on the Interaction of lead (II) Acetate with Human Chorionic Gonadotropin

Hao Zhang^a, Yang Liu^a, Rui Zhang^a, Rutao Liu^{a,*}, Yadong Chen^b

^aSchool of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China

^b Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.

*All correspondence should be addressed to: Rutao Liu School of Environmental Science and Engineering, Shandong University, Jinan 250100 Phone/Fax: 86-531-88364868 Email: <u>rutaoliu@sdu.edu.cn</u> P.R. China

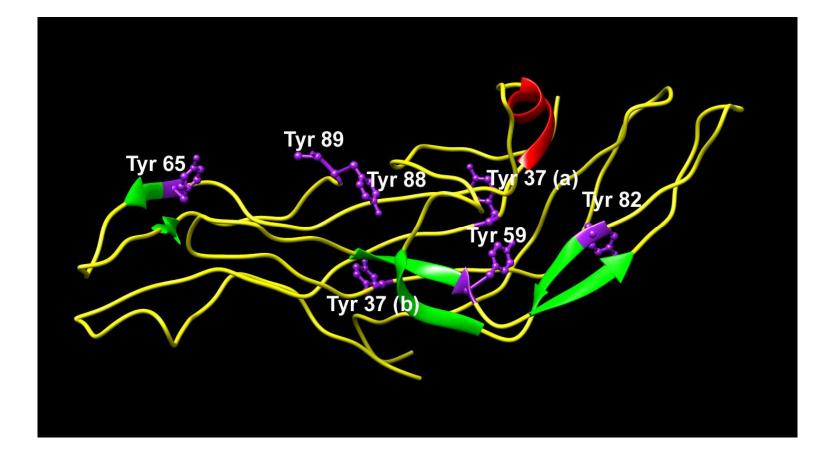
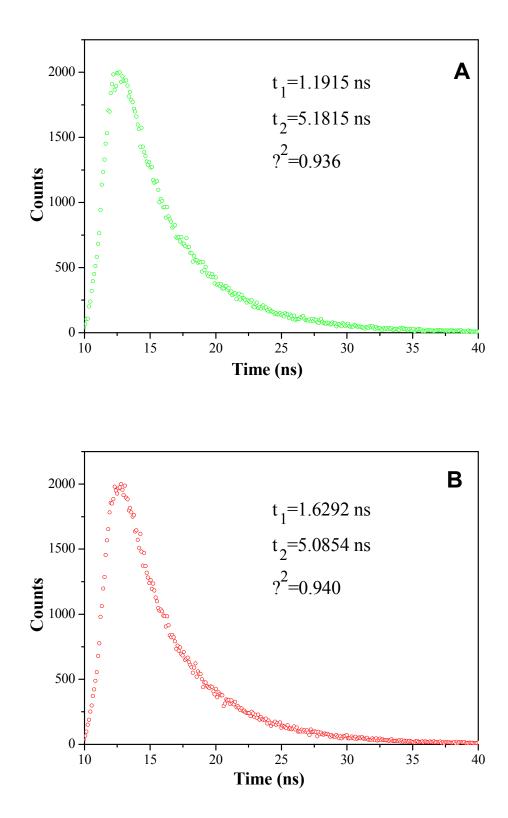



Fig. S1: Molecular structure of HCG (PDB code 1HRP). Different types of the secondary structure of HCG are color-coded as follows: α -helix: red, β -pleated sheet: green, β -turn and random coil: yellow. Tyr residues are also marked in purple.

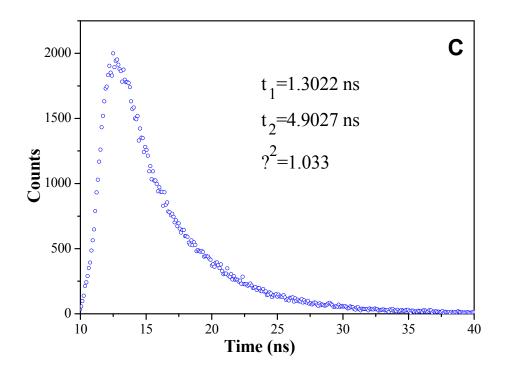


Fig. S2: Time-resolved fluorescence decay profiles of HCG in the presence of lead. Conditions: HCG: 2.7×10^{-6} mol/L; Pb(Ac)₂/(10^{-5} mol/L) (a-e): 0, 4, 10; pH=5.5; T=298 K.

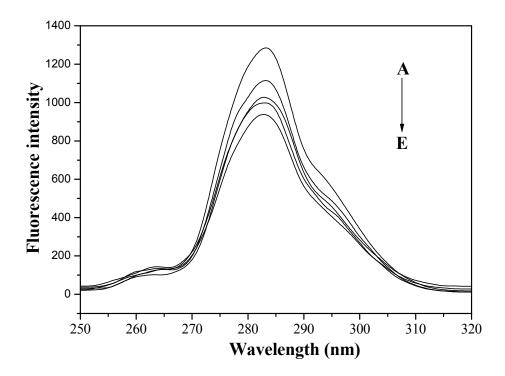


Fig. S3: synchronous fluorescence spectra ($\Delta\lambda = 15$ nm) of HCG in the presence of lead acetate. Conditions: HCG: 2.7×10^{-6} mol/L; Pb(Ac)₂/(10^{-5} mol/L) (a-e): 0, 1, 4, 7, 10; pH=5.5; T=298 K.

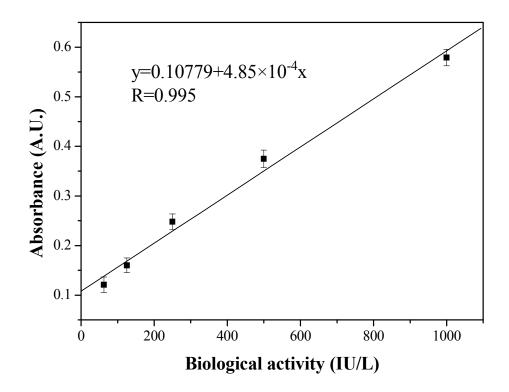


Fig. S4: Standard curve of HCG biological activities in the range of 0-1000 IU/L by ELISA.

S5: Why lead acetate (Pb(Ac)₂) has been chosen for this study?

There are three soluble lead salts: $Pb(Ac)_2$, $PbCl_2$, $Pb(NO_3)_2$. which can be easily bought. We also need to choose proper buffer solutions to control acidity in the experiments. $Pb(NO_3)_2$ is an explosive and reactive compound, So $Pb(Ac)_2$ with HAc-NaAc and $PbCl_2$ with Tris-HCl seem the reasonable choices used in this work, because lead toxicity is what we care about. $PbCl_2$ is poorly soluble in Tris-HCl (pH=7.4) solution, and $Pb(Ac)_2$ is easily soluble in HAc-NaAc buffer. At last we choose $Pb(Ac)_2$ in our study.

The isoelectric point of HCG is 2.95, so HCG is negatively charged in our experiments (pH=5.5), and the acetate anion can poorly affect the HCG conformation in our opinion. Considering these factors above, $Pb(Ac)_2$ with HAc-NaAc was selected in our study.