Unique Regioselectivity in the $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H} \alpha$-Alkylation of Amines: The Benzoxazole Moiety as a Removable Directing Group

Günther Lahm and Till Opatz*
Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany

Email: opatz@uni-mainz.de

Supporting Information

General Methods
Experimental procedures and spectroscopic data
Spectra

General Methods

Reaction conditions

All reactions requiring anhydrous conditions were performed in dried glassware under argon atmosphere.

Solvents and reagents

All reagents and solvents were obtained from commercial suppliers without further purification. Anhydrous DME was distilled from potassium / benzophenone under argon.

Melting points

Melting points were determined in open capillary tubes with a KRÜSS OPTRONIC KSP 1N apparatus.

NMR spectra

NMR spectra were recorded with a Bruker AC $300\left(300 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$ and $\left.75.5 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$, a Bruker ARX 400 or Avance-II $400\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$ and $\left.100.6 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$ and with a Bruker Avance-III $600\left(600 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$ and $\left.151 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$. Deuterated solvents were used as internal standard. The δ values are reported in parts per million (ppm) downfield from TMS and were referenced to the residual solvent signal $\left(\mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O}, \text { DMSO- } \mathrm{d}_{6}\right)^{1}$ Coupling constants J are given in Hertz (Hz).

Infrared spectra

IR spectra were recorded on a Tensor 27 or on a Vector 22 (both Bruker) FTIR-spectrometer using a diamond ATR and are reported in terms of frequency of absorption $\left(\mathrm{v}, \mathrm{cm}^{-1}\right)$.

Mass spectra

ESI-HRMS spectra were recorded on a Q-TOF Ultima-III spectrometer (Waters) with a dual source and a suitable external calibrant.

Thin-layer chromatography

Thin-layer chromatography was carried out on $0.2-\mathrm{mm}$ silica gel plates (F-254 Merck). They were detected by UV light (254 and 360 nm).

Preparative thin-layer chromatography

Preparative thin-layer chromatography was performed on silica gel plates (SIL G-200 UV ${ }_{254}$ Macherey-Nagel).

Experimental procedures and spectroscopic data

General experimental procedure for $\mathbf{C}\left(\mathbf{s p}^{3}\right)-\mathbf{H}$ alkylation:

N-(Benzoxazol-2-yl)amine (1 equiv) and catalyst ($\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \operatorname{BARF}$ or $\left.\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}, 7 \mathrm{~mol} \%\right)$ were placed in a microwave reaction vessel (10 mL) with a septum (conditions A) or in an oven-dried Schlenk tube (conditions B). The vial was evacuated and flushed with argon (three times). To the reaction vessel were added dry and degassed dimethoxyethane (0.2 M) and olefin (8 equiv). The sealed reaction vessel was heated either under microwave irradiation to $140^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$ (300 W , conditions A) or in an oil bath to $85^{\circ} \mathrm{C}$ for $4-48 \mathrm{~h}$ (conditions B). After cooling to room temperature, the volatiles were removed under reduced pressure. The resulting crude product was purified by preparative TLC unless noted otherwise

Ethyl 3-[2-(1,3-benzoxazol-2-yl)-1,2,3,4-tetrahydroisoquinolin-3-yl]propanoate (2a)

Reaction conditions B were applied using benzoxazole 1 ($23.0 \mathrm{mg}, 0.092 \mathrm{mmol}$), ethylacrylate ($80.4 \mathrm{ul}, 0.74 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}(7 \mathrm{~mol} \%)$. After 48 h , purification by thin-layer chromatography (cyclohexane $/ \mathrm{AcOEt}=8 / 1$) afforded the title compound ($27.1 \mathrm{mg}, 84 \%$) as a colourless amorphous solid.
$\mathbf{R}_{f}=0.20($ cyclohexane $/ \mathrm{AcOEt}=8 / 1)$

IR (ATR): 3061 (w), 2979 (w), 2842 (w), 1731 (m), 1633 (s), 1572 (s), 1459 (m), 1244 (s).
${ }^{1} \mathbf{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.25-7.13(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-$ H), 7.04 (pseudo-td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.10\left(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-1\right.$ '), $4.85-4.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.58$ (d, $J=$ $16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-1$ '), 4.10-3.98 (m, 2H, CH 2 -ethyl), 3.28 (dd, $J=16.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-\mathrm{4}^{\prime}$), 2.79 (dd, $J=16.0,1.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-1\right)^{\prime}$, $2.44-2.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 2.01-1.9(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.13\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-ethyl).
${ }^{13}$ C NMR, HMBC, HSQC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0(\mathrm{C} 1), 161.8(\mathrm{C}=\mathrm{N}), 148.6,142.4,132.0,131.4\left(4 \times \mathrm{C}_{\mathrm{q}}\right)$, 129.6, 127.2, 126.8, 126.3, 124.3, 120.9, 116.3, 108.9 ($8 \mathrm{x} \mathrm{Ar-C)}$,60.7 (CH_{2}-ethyl), 51.3 (C3'), 44.2 (C1'), 33.1 (C4'), 31.2 (C2), 27.2 (C3), $14.2\left(\mathrm{CH}_{3}\right.$-ethyl).
$161.8,142.4$ out of HMBC

ESI-MS: $m / z(\%)=351.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\right]^{+}: m / z=373.1528$, found: 373.1523

Methyl 3-[2-(1,3-benzoxazol-2-yl)-1,2,3,4-tetrahydroisoquinolin-3-yl]propanoate (2b)

Reaction conditions B were applied using benzoxazole 1 ($74.3 \mathrm{mg}, 0.30 \mathrm{mmol}$), methylacrylate $\left(222 \mu \mathrm{l}, 2.4 \mathrm{mmol}, 8.0\right.$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}(7 \mathrm{~mol} \%)$. After 48 h , purification by thin-layer chromatography (cyclohexane/ $\mathrm{AcOEt}=8 / 2$) afforded the title compound ($77.6 \mathrm{mg}, 78 \%$) as a colourless amorphous solid.
$\mathbf{R}_{f}=0.19$ (cyclohexane/AcOEt $=8 / 2$)

IR (ATR): 2981 (w), 2928 (w), 2854 (w), 1734 (m), 1637 (s), 1576 (s), 1460 (m), 1241 (br, sh).
${ }^{1}$ H NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-736(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31-7.13(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Ar}-\mathrm{H}), 7.03$ (pseudo-td, $J=$ $7.7,1.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.09\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-11^{\prime}\right), 4.84-473(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 '), 4.57\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-1^{\prime}\right), 3.58(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}), 3.28$ (dd, $J=16.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-4^{\prime}$), 2.79 (dd, $\left.J=16.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-4^{\prime}\right), 2.43-2.33$ (m, 2H, H-2), 2.071.72 (m, 2H, H-3).
${ }^{13}$ C NMR, HMBC, HSQC $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.4(\mathrm{C} 1), 162.0(\mathrm{C}=\mathrm{N}), 148.7,143.1,132.0,131.5\left(4 \mathrm{x} \mathrm{C} \mathrm{C}_{\mathrm{q}}\right), 129.6$, 127.2, 126.7, 126.3, 124.2, 120.8, 116.4, 108.9 ($8 \times \mathrm{Ar}-\mathrm{C}$), $51.8\left(\mathrm{OCH}_{3}\right)$, $\left.51.2\left(\mathrm{C} 3^{\prime}\right), 44.2\left(\mathrm{Cl}^{\prime}\right), 33.1(\mathrm{C} 4)^{\prime}\right), 31.0(\mathrm{C} 2)$, 27.2 (C3).

ESI-MS: $m / z(\%)=337.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\right]^{+}: m / z=359.1372$, found: 359.1369

2-(1,3-Benzoxazol-2-yl)-3-(2-phenylethyl)-1,2,3,4-tetrahydroisoquinoline (2c)

Reaction conditions A were applied using benzoxazole 1 ($89.5 \mathrm{mg}, 0.36 \mathrm{mmol}$), styrene ($328.5 \mathrm{ul}, 2.9 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \operatorname{BARF}(7 \mathrm{~mol} \%)$. After 2 h , purification by thin-layer chromatography (cyclohexane $/ \mathrm{AcOEt}=8 / 2$) afforded the title compound (102.4 $\mathrm{mg}, 81 \%$) as a colourless amorphous solid.
$\mathbf{R}_{f}=0.53$ (cyclohexane $/ \mathrm{AcOEt}=8 / 2$)
IR (ATR): 3026 (w), 2931 (w), 2855 (w), 1628 (s), 1566 (s), 1458 (s), 1245 (s), 739 (s, sh).

${ }^{1}$ H NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.43-7.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.25-7.08(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-$ H), 7.04 (pseudo-td, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $5.12\left(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-1\right), 4.82-4.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.58(\mathrm{~d}, J=$ $\left.16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-1\right), 3.27\left(\mathrm{dd}, J=16.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-4\right), 2.81\left(\mathrm{dd}, J=16.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-4\right), 2.75-2.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $\left.2^{\prime}\right), 2.07-1.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-1^{\prime}\right), 1.89-1.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{l}^{\prime}\right)$.
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=162.2(\mathrm{C}=\mathrm{N}), 148.8,143.3,141.3,132.3,131.7\left(5 \times \mathrm{C}_{\mathrm{q}}\right), 129.6$, 128.5 (4 x), 127.1, 126.6, 126.2, 126.1, 124.2, 120.6, 116.3, 108.9 (13 x Ar-C), 51.7 (C3), 44.2 (C1), 33.6 (C1'), 33.0, 32.8 .

ESI-MS: $m / z(\%)=355.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: m / z=355.1810$, found: 355.1819
2-(1,3-Benzoxazol-2-yl)-3-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]-1,2,3,4-tetrahydroisoquinoline (2d)

Reaction conditions A were applied using benzoxazole 1 ($26.0 \mathrm{mg}, 0.10 \mathrm{mmol}$), 2vinylboronic acid pinacolester ($141 \mu 1,0.83 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \operatorname{BARF}(7 \mathrm{~mol}$ $\%$). After 2 h , purification by HPLC (ACE $5 \mathrm{C} 18,125 \mathrm{x} 21.2 \mathrm{~mm}$, isocratic: water/acetonitrile ($50 / 50$), $30 \mathrm{~mL} / \mathrm{min}, 18.2 \mathrm{~min}$) afforded the title compound (25.6 mg , 61%) as a colourless amorphous solid.

$\mathbf{R}_{f}=0.64$ (cyclohexane $/ \mathrm{AcOEt}=7 / 3$)
IR (ATR): 2977 (w), 2932 (w), 2854 (w), 1633 (s), 1573 (s$), 1460$ (m), 1354 (m), 1261 (m).
${ }^{1} \mathbf{H}$ NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39-7.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.28-7.12(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.00$ (pseudo-td, $J=$ $7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.08\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-1\right), 4.70-4.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.56\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-1\right), 3.23$ (dd, $\left.J=16.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-4\right), 2.82\left(\mathrm{dd}, J=16.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-4\right), 1.87-1.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 1.20\left(\mathrm{~s}, 12 \mathrm{H}, 4 \times \mathrm{CH}_{3}\right)$, 0.82 (ddd, $\left.J=10.0,6.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$.
${ }^{13}$ C NMR, HMBC, HSQC ($75 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=162.4(\mathrm{C}=\mathrm{N}), 148.8,143.5,132.5,131.9,(4 \times \mathrm{Cq}), 129.7,126.9$, $126.4,126.2,124.0,120.4,116.2,108.8$, ($8 \times \mathrm{Ar}-\mathrm{C}$), $83.3\left(2 \times \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}, 53.7\right.$ (C3), 44.1 (C1), 32.4 (C4), 26.1 (C1'), 25.0, $24.9\left(4 \mathrm{x} \mathrm{CH}_{3}\right)$. Carbon C2' is missing

ESI-MS: $m / z(\%)=405.3(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for [C24H30BN2O3] ${ }^{+}: m / z=405.2349$, found: 405.2361

2-(1,3-Benzoxazol-2-yl)-3-[2-(trimethylsilyl)ethyl]-1,2,3,4-tetrahydroisoquinoline

(2e)

Reaction conditions B were applied using benzoxazole 1 ($34.0 \mathrm{mg}, 0.14 \mathrm{mmol}$), vinyltrimethylsilane ($171 \mu \mathrm{l}, 1.1 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right]$ BARF $(7 \mathrm{~mol} \%)$. After 12 h, purification by thin-layer chromatography (cyclohexane/ $\mathrm{AcOEt}=7 / 3$) afforded the title compound ($19.6 \mathrm{mg}, 41 \%$) as a colourless amorph solid.
$\mathbf{R}_{f}=0.79($ cyclohexane $/ \mathrm{AcOEt}=7 / 3)$

IR (ATR): 3069 (w), 2952 (m), 2925 (w), 1694 (m), 1634 (s), 1572 (s, sh), 1459 (s), 1244 (s).
${ }^{1}$ H NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.32-7.13(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.02$ (pseudo-td, $J=$ $7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.10\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-1\right), 4.65-4.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.52\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-1\right), 3.24$ (dd, $\left.J=16.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-4\right), 2.84\left(\mathrm{dd}, J=16.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-4\right), 1.69-1.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 0.61-0.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 2^{\prime}), $-0.09\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{x} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.4(\mathrm{C}=\mathrm{N}), 148.7,143.1,132.5$, 131.9, ($4 \times \mathrm{xq}$), 129.6, 127.0, 126.5, 126.2, 124.1, 120.5, 116.2, 108.8, (8 x Ar-C), 54.5 (C3), 44.1 (C1), 32.3 (C4), 26.1 (C1'), 13.1 (C2'), 1.7 (3 x CH_{3}).
143.1 out of HMBC

ESI-MS: $m / z(\%)=351.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OSi}\right]^{+}: m / z=351.1893$, found: 351.1897

2-(4,5-Dihydro-1,3-benzoxazol-2-yl)-3-(3-phenylpropyl)-1,2,3,4-tetrahydroisoquinoline (2f)

Reaction conditions A were applied using benzoxazole 1 ($38.3 \mathrm{mg}, 0.15 \mathrm{mmol}$), allylbenzene ($162 \mu \mathrm{l}, 1.2 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \operatorname{BARF}(7 \mathrm{~mol} \%)$. After 1 h , purification by thin-layer chromatography (cyclohexane $/ \mathrm{AcOEt}=7 / 3$) afforded the title compound ($43.9 \mathrm{mg}, 78 \%$) as pale brown oil.

$\mathbf{R}_{f}=0.71$ (cyclohexane $/ \mathrm{AcOEt}=7 / 3$)
IR (ATR): 3025 (w), 2934 (w), 2857 (w), 1634 (s), 1572 (s), 1459 (s), 1245 (s), 740 (s, sh).
${ }^{1}$ H NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.26-7.09(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-$ H), 7.03 (pseudo-td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $5.09\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-1\right), 4.79-4.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.53(\mathrm{~d}, J=$ $16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-1$), 3.25 (dd, $\left.J=16.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.77$ (dd, $J=16.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-4$), 2.65-2.54 (m, 2H, H$\left.3^{\prime}\right), 1.77-1.62\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}_{\mathrm{a}}-1^{\prime}\right), 1.57-1.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-1^{\prime}\right)$.
${ }^{13} \mathbf{C}$ NMR, HMBC, $\mathbf{H S Q C}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.1(\mathrm{C}=\mathrm{N}), 148.7,143.1,142.1,132.4,131.8\left(5 \times \mathrm{C}_{\mathrm{q}}\right), 129.6$, 128.5 (2 x), 128.5 (2 x), 127.1, 126.6, 126.2, 126.0, 124.2, 120.6, 116.3, 108.9 (13 x Ar-C), 51.7 (C3), 44.1 (C1), 35.7 (C3'), 32.8 (C4), 31.2 (C^{\prime} '), 28.1 (C2').

HMBC 143.1 out of HMBC
ESI-MS: $m / z(\%)=369.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: m / z=369.1967$, found: 369.1979

2-(4,5-Dihydro-1,3-benzoxazol-2-yl)-3-hexyl-1,2,3,4-tetrahydroisoquinoline (2g)

Reaction conditions A were applied using benzoxazole $1(61.0 \mathrm{mg}, 0.24 \mathrm{mmol}$), hex-1ene ($256 \mu 1,2.0 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \operatorname{BARF}(7 \mathrm{~mol} \%)$. After 2 h , purification by thin-layer chromatography (cyclohexane/ $\mathrm{AcOEt}=7 / 3$) afforded the title compound

($67.7 \mathrm{mg}, 83 \%$) as pale yellow oil.
$\mathbf{R}_{f}=0.81($ cyclohexane $/ \mathrm{AcOEt}=7 / 3)$
IR (ATR): 3069 (w), 2955 (m), 2855 (w), 1634 (s), 1572 (s), 1460 (m), 1245 (s), 754 (m, sh).
${ }^{1}$ H NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.25-7.12(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-$ H), 7.02 (pseudo-td, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.09 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-1$), 4.76-7.64 (m, 1H, H-3), 4.55 (d, $J=$ $\left.16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-1\right), 3.24\left(\mathrm{dd}, J=16.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-4\right), 2.79\left(\mathrm{dd}, J=16.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-4\right), 1.75-1.53(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), $1.53-1.10\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2}\right), 0.92-0.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13}$ C NMR, HMBC, HSQC $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.09(\mathrm{C}=\mathrm{N}), 148.6,143.2,132.4,131.7\left(4 \times \mathrm{C}_{\mathrm{q}}\right), 129.5,126.9$, $126.4,126.1,124.0,120.4,116.1,108.7$ ($8 \times \mathrm{Ar}-\mathrm{C}$), 51.7 (C3), 44.0 (C1), 32.6 (C4), 31.7, 31.5, 29.1, 26.2, 22.6 (5 x $\left.\mathrm{CH}_{2}\right)$, $14.0\left(\mathrm{CH}_{3}\right)$.

ESI-MS: $m / z(\%)=335.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: m / z=335.2123$, found: 335.2124

Ethyl 3-[2-(1,3-benzoxazol-2-yl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-3-yl]propanoate (4a)

Reaction conditions A were applied using benzoxazole 3 ($39.1 \mathrm{mg}, 0.13 \mathrm{mmol}$), ethylacrylate ($110 \mu 1,1.0 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \operatorname{BARF}(7 \mathrm{~mol} \%)$. After 2 h , purification by thin-layer chromatography (cyclohexane $/ \mathrm{AcOEt}=7 / 3$) afforded the title compound ($32.6 \mathrm{mg}, 63 \%$) as a colourless amorphous solid.

$\mathbf{R}_{f}=0.25$ (cyclohexane $/ \mathrm{AcOEt}=7 / 3$)
IR (ATR): 2978 (w, sh), 2907 (w, sh), 2836 (w), 1730 (m), 1632 (s), 1573 (s), 1518 (s), 1460 (s), 1283 (s, sh).
${ }^{1} \mathbf{H}$ NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19$ (pseud-td, $J=7.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.04 (pseudo-td, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.68 (s, 1H, H-8'), 6.65 (s, 1H, H-5'), 5.05 (d, $J=16.5$ Hz, 1H, H-1'), 4.84-4.74 (m, 1H, H-3'), 4.50 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 4.14-4.03 (m, 2H, CH C_{2}-ethyl), 3.89 ($\mathrm{s}, 6 \mathrm{H}, 2$ x OCH $)_{3}$, $3.25\left(\mathrm{dd}, J=16.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-4^{\prime}\right), 2.70\left(\mathrm{dd}, J=16.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-4^{\prime}\right), 2.46-2.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 2.09-$ 1.78 (m, 2H, H-3), 1.16 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$-ethyl).
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0(\mathrm{C} 1), 162.2(\mathrm{C}=\mathrm{N}), 148.7,148.2,148.0,143.3$, ($4 \times \mathrm{C}_{\mathrm{q}}$), $124.2,123.8,123.1,120.7,116.4$ ($5 \mathrm{x} \mathrm{Ar}-\mathrm{C}$), 112.2 (C5'), 109.0, (C8'), 108.8 ($\mathrm{Ar}-\mathrm{C}$), 60.7 (CH_{2}-ethyl), 56.1 (2 x OCH_{3}), $51.2\left(\mathrm{C}^{\prime}\right), 43.7\left(\mathrm{C}^{\prime}\right), 32.6\left(\mathrm{C}^{\prime}\right), 31.3(\mathrm{C} 2), 27.0(\mathrm{C} 3), 14.2\left(\mathrm{CH}_{3}\right.$-ethyl).

ESI-MS: $m / z(\%)=411.3(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}\right]^{+}: m / z=411.1920$, found: 411.1917

2-(1,3-Benzoxazol-2-yl)-3-hexyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (4b)

Reaction conditions A were applied using benzoxazole 3 ($45.9 \mathrm{mg}, 0.15 \mathrm{mmol}$), hex-1-ene ($156 \mu \mathrm{l}, 1.2 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \operatorname{BARF}(7 \mathrm{~mol} \%)$. After 2 h , purification by HPLC (ACE $5 \mathrm{C} 18,125 \mathrm{x} 21.2 \mathrm{~mm}$, gradient: 50% water/acetonitrile for $10 \mathrm{~min}, \rightarrow 100 \%$ acetonitrile in $10 \mathrm{~min} 30 \mathrm{~mL} / \mathrm{min}, 14.4 \mathrm{~min}$) afforded the title compound ($27.4 \mathrm{mg}, 47 \%$) as a colourless amorphous solid.

$\mathbf{R}_{f}=0.53$ (cyclohexane/AcOEt $=8 / 2$)
IR (ATR): 2953 (m, sh), 2929 (m), 2855 (w), 1633 (s$), 1574$ (s), 1517 (m), 1258 (m, sh), 741 (w, sh).
${ }^{1}$ H NMR, COSY $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39-7.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.17$ (pseudo-td, $J=$ $7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.01 (td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.63$ (s, $1 \mathrm{H}, \mathrm{H}-5$), 5.03 (d, $J=16.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-1\right), 4.74-4.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.45\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-1\right), 3.87\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 3.19(\mathrm{dd}, J=15.8,5.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-4\right), 2.71-2.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-4\right), 1.77-1.09(\mathrm{~m}, 10 \mathrm{H}), 0.94-0.72(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.3(\mathrm{C}=\mathrm{N}), 148.8,148.1,147.8,143.5,(4 \times \mathrm{Cq}), 124.3,124.1$, $123.5,120.5,116.2$ ($5 \times \mathrm{Ar}-\mathrm{C}$), 112.3 (C5), 108.9 (C8), 108.8 ($\mathrm{Ar}-\mathrm{C}$), 56.1 ($2 \mathrm{x} \mathrm{OCH}_{3}$), 51.8 (C3), 43.6 (C1), 32.2 (C4), 31.8, 31.6, 29.3, 26.5, $22.7\left(5 \mathrm{x} \mathrm{CH}_{2}\right)$, $14.2\left(\mathrm{CH}_{3}\right)$.

ESI-MS: $m / z(\%)=395.3(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: m / z=395.2335$, found: 395.2344

Ethyl 3-[1-(1,3-benzoxazol-2-yl)-1,2,3,4-tetrahydroquinolin-2-yl]propanoate (6a)

Reaction conditions A were applied using benzoxazole 5 ($21.7 \mathrm{mg}, 0.087 \mathrm{mmol}$), ethylacrylate ($76.0 \mu 1,0.69 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right]$ BARF ($7 \mathrm{~mol} \%$). After 2 h , purification by thin-layer chromatography (cyclohexane/ $\mathrm{AcOEt}=9 / 1$) afforded the title compound ($28.8 \mathrm{mg}, 95 \%$) as a colourless amorphous solid.
$\mathbf{R}_{f}=0.15$ (cyclohexane $/ \mathrm{AcOEt}=9 / 1$)

IR (ATR): 2977 (w, sh), 2934 (w, sh), 2855 (w), 1732 (m), 1624 (m), 1559 (s), 1459 (m,), 755 (w, sh).
${ }^{1}$ H NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.77(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 1.2,1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.47-740(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31-7.24(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23-7.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.94-4.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.11$ (qd, $J=7.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}-ethyl), 2.96-2.75 (m, 2H, H-4'), 2.60-2.36 (m, 2H, H-2), 2.32-2.21 (m, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-3^{\prime}\right), 2.08-1.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-3^{\prime}, \mathrm{H}-3\right)$, 1.21 ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$-ethyl).
${ }^{13}$ C NMR, HMBC, HSQC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3(\mathrm{C} 1), 160.7(\mathrm{C}=\mathrm{N}), 148.4,142.6,136.0\left(3 \times \mathrm{C}_{\mathrm{q}}\right), 129.2$,(ArC) $129.2\left(\mathrm{C}_{\mathrm{q}}\right), 126.8,124.3,124.3,123.7,121.5,117.0,109.2$ ($7 \mathrm{x} \mathrm{Ar}-\mathrm{C}$) $60.6\left(\mathrm{CH}_{2}\right.$-ethyl), 54.8 (C2'), $31.0(\mathrm{C} 2), 27.1$ (C^{\prime}), $26.8(\mathrm{C} 3), 23.6\left(\mathrm{C}^{\prime}\right), 14.3\left(\mathrm{CH}_{3}\right.$-ethyl).

ESI-MS: $m / z\left(\mathrm{e}^{\%}\right)=351.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: m / z=351.1709$, found: 351.1715

1-(1,3-Benzoxazol-2-yl)-2-(2-phenylethyl)-1,2,3,4-tetrahydroquinoline (6b)

Reaction conditions A were applied using benzoxazole 5 ($44.7 \mathrm{mg}, 0.18 \mathrm{mmol}$), styrene ($164 \mu 1,1.4 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \operatorname{BARF}(7 \mathrm{~mol} \%)$. After 2 h , purification by thin-layer chromatography (cyclohexane/AcOEt =9/1) afforded the title compound (46.2 $\mathrm{mg}, 73 \%$) as a colourless amorphous solid.
$\mathbf{R}_{f}=0.24$ (cyclohexane/ $\mathrm{AcOEt}=9 / 1$)

IR (ATR): 2931 (w, sh), 2861 (w, sh), 2855 (w), 1624 (m), 1558 (s), 1458 (m,), 754 (w, sh).
${ }^{1} \mathbf{H} \operatorname{NMR}, \operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.79(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.40-744(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.3-6.97(\mathrm{~m}$, $11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.01-4.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.97-2.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-2\right.$) , 2.37-2.22 (m, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-3\right), 2.14-1.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-\right.$ 1'), 2.00-1.78 (m, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-3, \mathrm{H}_{\mathrm{b}}-1^{\prime}\right)$.
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.7(\mathrm{C}=\mathrm{N}), 148.4,142.7,141.8,136.3,129.5\left(5 \times \mathrm{C}_{\mathrm{q}}\right), 129.1$, 128.5 (4 x), 126.7, 126.0, 124.3, 124.2, 123.8, 121.4, 117.0, 109.1 (13 x Ar-C), 55.3 (C2), 33.6 (C1'), 32.5 (C2'), 27.1 (C3), 23.8 (C4).

ESI-MS: $m / z(\%)=355.2(100)[\mathrm{M}+\mathrm{H}]^{+}$

ESI-HRMS: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: m / z=355.1810$, found: 355.1818

1-(1,3-Benzoxazol-2-yl)-2-hexyl-1,2,3,4-tetrahydroquinoline (6c)

Reaction conditions A were applied using benzoxazole 5 ($43.7 \mathrm{mg}, 0.17 \mathrm{mmol}$), hex-1ene ($184 \mu \mathrm{l}, 1.4 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \operatorname{BARF}(7 \mathrm{~mol} \%)$. After 2 h , purification by thin-layer chromatography (cyclohexane/ $\mathrm{AcOEt}=9 / 1$) afforded the title compound ($38.5 \mathrm{mg}, 66 \%$) as a colourless amorphous solid.
$\mathbf{R}_{f}=0.37$ (cyclohexane $/ \mathrm{AcOEt}=9 / 1$)

IR (ATR): 2952 (w, sh), 2927 (m, sh), 2856 (w), 1622 (m), 1554 (s), 1457 (m,), 754 (m, sh).
${ }^{1} \mathbf{H}$ NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.80(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.49-7.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.33-7.24$ (m, 2H, Ar-H), 7.24-7.13 (m, 2H, Ar-H), 7.13-7.03 (m, 2H, Ar-H), 4.87-4.76 (m, 1H, H-2), 2.98-2.63 (m, 2H, H-4), $2.3-2.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-3\right), 1.95-1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-3\right), 1.82-1.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-1 \mathrm{l}^{\prime}\right), 1.61-1.15\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2}\right.$-hexyl), 0.94-0.75 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{3}$-hexyl).
${ }^{13}$ C NMR, HMBC, HSQC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.7(\mathrm{C}=\mathrm{N}), 148.4,142.8,136.5,129.6\left(4 \mathrm{x} \mathrm{C}_{\mathrm{q}}\right), 129.0,126.6$, 124.1, 124.1, 123.7, 121.3, 116.9, 109.1 (8 x Ar-C), 55.6 (C2), 31.9, 31.7 (C1'), 29.3, 26.9 (C3), 26.0, 23.9 (C4), 22.7, $14.2\left(\mathrm{CH}_{3}\right.$-hexyl).

ESI-MS: $m / z(\%)=335.3(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: m / z=335.2123$, found: 335.2125

1-(1,3-Benzoxazol-2-yl)-2-[2-(trimethylsilyl)ethyl]-1,2,3,4-tetrahydroquinoline (6d)

Reaction conditions A were applied using benzoxazole 5 ($39.3 \mathrm{mg}, 0.16 \mathrm{mmol}$), vinyltrimethylsilane ($197 \mu \mathrm{l}, 1.3 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \operatorname{BARF}(7 \mathrm{~mol} \%)$. After 2 h , purification by thin-layer chromatography (cyclohexane $/ \mathrm{AcOEt}=9.5 / 0.5$) afforded the title compound ($44.4 \mathrm{mg}, 81 \%$) as a colourless amorphous solid.
$\mathbf{R}_{f}=0.36$ (cyclohexane $/ \mathrm{AcOEt}=9 / 1$)

IR (ATR): 2951 (w, sh), 2929 (w, sh), 1624 (m), 1558 (s$), 1459$ (m), 1248 (m), 754 (m, sh).
${ }^{1}$ H NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.80(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.49-7.41(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), 7.33-7.25 (m, 2H, Ar-H), 7.25-7.14 (m, 2H, Ar-H), 7.13-7.01 (m, 2H, Ar-H), 4.78-4.62 (m, 1H, H-2), 2.87-2.69 (m, 2H, H-4), 2.34-2.15 (m, 1H, Ha -3), $1.99-181\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-3\right), 1.80-1.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-1^{\prime}\right), 1.63-1.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{l}^{\prime}\right)$, $0.64-0.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2\right.$),$-0.06\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right)$.
${ }^{13}$ C NMR, HMBC, HSQC $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.8(\mathrm{C}=\mathrm{N}), 148.4,142.7$, 136.6, $130.1\left(4 \mathrm{x} \mathrm{C}_{\mathrm{q}}\right), 128.8,126.6$, 124.2, 124.1, 123.7, 121.3, 116.8, 109.1 (8 x Ar-C), 58.1 (C2), 26.7 (C3), 26.3 (C1'), 24.1 (C4), 12.5 (C2'), -1.7 ($3 \times$ CH_{3}).

ESI-MS: $m / z(\%)=351.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OSi}^{+}\right]^{+} m / z=351.1893$, found: 351.1886

Ethyl 3-[1-(1,3-Benzoxazol-2-yl)piperidin-2-yl]propanoate (8a)

Reaction conditions A were applied using benzoxazole $7(100.6 \mathrm{mg}, 0.50 \mathrm{mmol})$, ethylacrylate ($433 \mu \mathrm{l}, 4.0 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}(7 \mathrm{~mol} \%)$. After 2 h , purification by thin-layer

chromatography (cyclohexane $/ \mathrm{AcOEt}=8 / 2$) afforded the title compound $(85.3 \mathrm{mg}, 81 \%)$ as a colourless oil.
$\mathbf{R}_{f}=0.34$ (cyclohexane $/ \mathrm{AcOEt}=8 / 2$)
IR (ATR): 2978 (w, sh), 2938 (m, sh), 2867 (w, sh), 1733 (m), 1633 (s , 1575 (s), 1461 (m), 1247 (m), 741 (w, sh).
${ }^{1}$ H NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33-7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.14$ (pseudo-td, $J=$ 7.7, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, ~ A r-H), 6.98$ (pseudo-td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.54-4.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2\right.$ '), $4.22-4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-\right.$ 6^{\prime}), 4.07 (qd, $J=7.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-ethyl), 3.18 (td, $J=13.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{6}^{\prime}$), 2.43-2.31 (m, 2H, H-2), 2.32-2.18 (m, 1H, Ha -3), 1.93-1.46 (m, 7H), $1.15\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-ethyl).

Ethyl acetate could not be removed
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC (101 MHz, CDCl_{3}): $\delta=173.4(\mathrm{C} 1), 162.5(\mathrm{C}=\mathrm{N}), 148.6,143.5\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 124.0,120.3$, 116.0 , 108.6 ($4 \mathrm{x} \mathrm{Ar}-\mathrm{C}$), 60.6 (CH_{2}-ethyl), 52.6 (C 2 '), 41.0 (C 6 '), 31.4 (C 2), 28.5, 25.3, 24.9 (C 3), 19.0, 14.2 (CH_{3} ethyl).

ESI-MS: $m / z(\%)=303.1(100)[M+H]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: m / z=303.1709$, found: 303.1718

Methyl 3-[1-(1,3-benzoxazol-2-yl)piperidin-2-yl]propanoate (8b)

Reaction conditions A were applied using benzoxazole $7(65.1 \mathrm{mg}, 0.32 \mathrm{mmol})$, methylacrylate ($241 \mu \mathrm{l}, 2.6 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}(7 \mathrm{~mol} \%)$. After 2 h , purification by thin-layer chromatography (cyclohexane $/ \mathrm{AcOEt}=8 / 2$) afforded the title compound ($47.0 \mathrm{mg}, 51 \%$) as a colourless oil.
$\mathbf{R}_{f}=0.30$ (cyclohexane $/ \mathrm{AcOEt}=8 / 2$)

IR (ATR): 2945 (m), 2863 (w), 1737 (m), 1633 (s), 1575 (s), 1460 (m), 1247 (m), 742 (w, sh).
${ }^{1} \mathbf{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33-7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.14$ (pseudo-td, $J=$ $7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.98 (pseudo-td, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $4.52-4.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 2^{\prime}\right), 4.24-4.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-\mathrm{b}^{\prime}\right)$, $3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.17\left(\mathrm{td}, J=13.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-6\right.$ '), 2.40-2.34(m,2H, H-2), 2.33-2.20 (m, 1H, Ha -3), 1.94-1.49 (m, 7H).
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=173.8(\mathrm{C} 1), 162.5(\mathrm{C}=\mathrm{N}), 148.6,143.5\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 124.0,120.3$, $116.0,108.6(4 \times \mathrm{Ar}-\mathrm{C}), 52.6(\mathrm{C} 2 '), 51.8\left(\mathrm{OCH}_{3}\right), 41.0\left(\mathrm{C}^{\prime}\right), 31.1(\mathrm{C} 2), 28.5,25.3,24.9(\mathrm{C} 3), 19.0$.

ESI-MS: $m / z(\%)=289.1(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: m / z=289.1552$, found: 289.1557

2-[2-(2-Phenylethyl)piperidin-1-yl]-1,3-benzoxazole (8c)

Reaction conditions A were applied using benzoxazole 7 ($25.1 \mathrm{mg}, 0.12 \mathrm{mmol}$), styrene ($113 \mu \mathrm{l}$, $1.0 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right]$ BARF $(7 \mathrm{~mol} \%)$. After 1 h , purification by thin-layer chromatography (cyclohexane $/ \mathrm{AcOEt}=7 / 3$) afforded the title compound ($18.3 \mathrm{mg}, 48 \%$) as a colourless oil.

$\mathbf{R}_{f}=0.66$ (cyclohexane $/ \mathrm{AcOEt}=7 / 3$)
IR (ATR): 2938 (m), 2860 (w), 1737 (m), 1633 (s), 1574 (s), 1460 (m), 1247 (m), 741 (w, sh).
${ }^{1} \mathbf{H}$ NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30-7.11(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.99$ (pseudo-td, $J=$ $7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.59-4.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.26-4.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-6^{\prime}\right), 3.29-3.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-6^{\prime}\right), 2.76-2.51(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 2.2-2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-1 \mathrm{1}^{\prime \prime}\right), 1.99-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-1^{\prime \prime}\right), 1.79-1.46(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C NMR, HMBC, HSQC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.7(\mathrm{C}=\mathrm{N}), 148.6,143.6,141.8\left(3 \times \mathrm{C}_{\mathrm{q}}\right), 128.5(4 \mathrm{x}), 126.1$, $124.0,120.2,116.0,108.7$ (9 x Ar-C), 53.0 (C2'), 41.2 (C6'), 32.8 (C2'), 31.7 (C1"), 28.3, 25.4, 19.0.

ESI-MS: $m / z(\%)=307.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: m / z=307.1810$, found: 307.1809

2-(2-Hexylpiperidin-1-yl)-1,3-benzoxazole (8d)

Reaction conditions A were applied using benzoxazole 7 ($39.3 \mathrm{mg}, 0.19 \mathrm{mmol}$), hex-1-ene (204 $\mu \mathrm{l}, 1.6 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right]$ BARF $(7 \mathrm{~mol} \%)$. After 1 h , purification by thin-layer chromatography (cyclohexane $/ \mathrm{AcOEt}=7 / 3$) afforded the title compound $(23.3 \mathrm{mg}, 42 \%)$ as a colourless oil.

$\mathbf{R}_{f}=0.72$ (cyclohexane $/ \mathrm{AcOEt}=7 / 3$)
IR (ATR): 2928 (s , 2856 (m), 1737 (m), 1629 (s$), 1571$ (s$), 1459$ (m), 1246 (m), 739 ($\mathrm{s}, \mathrm{sh})$.
${ }^{1}$ H NMR, COSY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.13$ (pseudo-td, $J=$ $7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.97 (pseudo-td, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.47-4.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.123-4.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-\right.$ $\left.6^{\prime}\right), 3.23-3.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{6}^{\prime}\right), 1.90-1.47(\mathrm{~m}, 8 \mathrm{H}), 1.38-1.12(\mathrm{~m}, 8 \mathrm{H}), 0.92-0.77\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13}$ C NMR, HMBC, HSQC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.7(\mathrm{C}=\mathrm{N}), 148.6,143.7\left(2 \mathrm{x} \mathrm{C} \mathrm{C}_{\mathrm{q}}\right), 123.9,120.1,115.9,108.5(4 \mathrm{x}$ Ar-C), 53.1 (C2'), 41.1 (C6'), 31.9, 29.5, 29.4, 28.1, 26.4, 25.4, 22.8, $18.9\left(8 \times \mathrm{CH}_{2}\right)$, $14.2\left(\mathrm{CH}_{3}\right)$.

ESI-MS: $m / z(\%)=287.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: m / z=287.2123$, found: 287.2117

2-\{2-[2-(Trimethylsilyl)ethyl]piperidin-1-yl\}-1,3-benzoxazole (8e)

Reaction conditions B were applied using benzoxazole $7(42.4 \mathrm{mg}, 0.21 \mathrm{mmol})$, vinyltrimethylsilane ($263 \mu \mathrm{l}, 1.7 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right]$ BARF $(7 \mathrm{~mol} \%)$. After 48 h , purification by thin-layer chromatography (cyclohexane/AcOEt $=7 / 3$) afforded the title compound ($24.7 \mathrm{mg}, 39 \%$) as a pale brown oil.

$\mathbf{R}_{f}=0.67($ cyclohexane $/ \mathrm{AcOEt}=7 / 3)$
IR (ATR): 2947 (m, sh), 2862 (w), 1737 (m), 1634 (s), 1575 (s), 1460 (m), 1247 (m), 740 (m, sh).
${ }^{1} \mathbf{H}$ NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-7.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.14$ (pseudo-td, $J=$ 7.6, 1.2 Hz, 1H, Ar-H), 6.97 (pseudo-td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.43-4.26 (m, 1H, H-2'), 4.23-4.13 (m, 1H, $\mathrm{H}_{\mathrm{a}^{-}}$ $\left.6^{\prime}\right), 3.19-3.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-\mathrm{6}^{\prime}\right), 1.87-1.38(\mathrm{~m}, 8 \mathrm{H}), 0.58-0.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right),-0.02(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR, HMBC, HSQC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.8(\mathrm{C}=\mathrm{N}), 148.6,143.7\left(2 \mathrm{x} \mathrm{C}_{\mathrm{q}}\right), 123.9,120.1,115.8,108.6(4 \mathrm{x}$ Ar-C), 55.7 (C^{\prime} '), 41.1 (C^{\prime} '), 27.5, 25.4, 23.7, 18.9, 13.0 (C 2 "), -1.6 ($3 \times \mathrm{CH}_{3}$).

ESI-MS: $m / z(\%)=303.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OSi}^{+}{ }^{+}: m / z=303.1893\right.$, found: 303.1889

Ethyl 4-[1,3-benzoxazol-2-yl(ethyl)amino]pentanoate (12a)

Reaction conditions B were applied using benzoxazole $\mathbf{1 1}(21.5 \mathrm{mg}, 0.11 \mathrm{mmol})$, ethylacrylate ($98.4 \mu \mathrm{l}, 0.90 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right]$ BARF $(7 \mathrm{~mol} \%)$. After 4 h , purification by thinlayer chromatography (cyclohexane $/ \mathrm{AcOEt}=7 / 3$) afforded the title compound $(21.0 \mathrm{mg}, 64 \%)$ as colorless amorphous solid

$\mathbf{R}_{f}=0.52$ (cyclohexane $/ \mathrm{AcOEt}=7 / 3$)
IR (ATR): 2977 (m. sh), 2937 (w, sh), 1734 (m), 1633 (s , 1576 (s$), 1461$ (m), 1248 (m), 742 (w, sh).
${ }^{1} \mathbf{H}$ NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.14$ (pseudo-td, $J=$ $7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.99 (pseudo-td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.43-4.24 (m, $1 \mathrm{H}, \mathrm{H}-4$), 4.09 (q, $J=7.2, \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.60-3.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.41-2.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 2.15-1.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.35-1.27(\mathrm{~m}, 6 \mathrm{H})$, $1.18\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13}$ C NMR, HMBC, HSQC $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.3(\mathrm{C} 1), 162.5(\mathrm{C}=\mathrm{N}), 148.7,143.3\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 124.0,120.2,116.0$, $108.7(4 \mathrm{x} \mathrm{Ar}-\mathrm{C}), 60.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 53.7(\mathrm{C} 4), 39.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 31.5(\mathrm{C} 2), 29.7(\mathrm{C} 3), 19.3,15.1,14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

ESI-MS: $m / z(\%)=291.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\right]^{+}: m / z=313.1528$, found: 313.1524
162.5, 143.3 out of HMBC

N-Ethyl-N-(octan-2-yl)-1,3-benzoxazol-2-amine (12b)

Reaction conditions A were applied using benzoxazole 11 ($48.4 \mathrm{mg}, 0.25 \mathrm{mmol}$), hex-1-ene (277 $\mu \mathrm{l}, 2.0 \mathrm{mmol}, 8.0$ equiv) and $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \operatorname{BARF}(7 \mathrm{~mol} \%)$. After 2 h , purification by thin-layer chromatography (Cyclohexan/AcOEt $=7 / 3$) afforded the title compound ($36.9 \mathrm{mg}, 53 \%$) as colorless oil.
$\mathbf{R}_{f}=0.71$ (cyclohexane $/ \mathrm{AcOEt}=7 / 3$)

IR (ATR): 2957 (w, sh), 2929 (w, sh), 2857 (w, sh), 1631 (s), 1575 (s), 1461 (m), 1283 (m), 904 (m), 739 (s, sh).
${ }^{1} \mathbf{H}$ NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.28-7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.14$ (pseudo-td, $J=$ $7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.98 (pseudo-td, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $4.40-4.24$ (m, 1H, H2), 3.56-3.35 (m, 2H, H-2'), $1.76-1.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-3^{\prime}\right), 1.59-1.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-3^{\prime}\right), 1.39-1.07(\mathrm{~m}, 14 \mathrm{H}), 0.96-0.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8 \mathrm{H}_{\mathrm{a}}-3^{\prime}\right)$.
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.7(\mathrm{C}=\mathrm{N}), 148.7,143.4\left(2 \mathrm{x} \mathrm{C}_{\mathrm{q}}\right), 123.9,120.0,115.9,108.6(4 \mathrm{x}$ Ar-C), 54.2 (C2'), 38.7 (CH_{2}-ethyl), 34.9 (C^{\prime} '), 31.9, 29.4, 26.7, 22.7, 19.4 (Cl^{\prime}), $15.2 \mathrm{CH}_{3}$-ethyl, 14.2 (C^{\prime}).
143.4 out of HMBC

ESI-MS: $m / z(\%)=275.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: m / z=275.2123$, found: 275.2134

Introduction of the benzoxazol-2-yl (Bo-) group

2-(1,3-Benzoxazol-2-yl)-1,2,3,4-tetrahydroisoquinoline (1)

Method A: To a mixture of acetic acid ($3.54 \mathrm{~g}, 59 \mathrm{mmol} 3.0$ equiv) and tert-butylhydroperoxide (70% in water, $3.86 \mathrm{~g}, 30 \mathrm{mmol}$, 1.5 equiv) in acetonitrile (12.0 mL), tetrabutylammonium iodide ($350 \mathrm{mg}, 0.95 \mathrm{mmol}, 5 \mathrm{~mol} \%$), 1,2,3,4-tetrahydroisoquinoline
 $(3.15 \mathrm{~g}, 24 \mathrm{mmol}, 1.2$ equiv) and benzoxazole $(2.35 \mathrm{~g}, 20 \mathrm{mmol})$ in acetonitrile (12.0 mL) were added. The reaction mixture was stirred for 4.5 h at $80^{\circ} \mathrm{C}$. Then the mixture was cooled to room temperature and quenched by the addition of an aqueous solution of sodium disulfite $(120 \mathrm{~mL})$ and a saturated solution of sodium hydrogen carbonate $(300 \mathrm{~mL})$. The mixture was extracted with $\mathrm{DCM}(5 \times 200 \mathrm{~mL})$ The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography (cyclohexane/ $\mathrm{AcOEt}=10 / 1$) to afforded the title compound $(4.30 \mathrm{~g}, 87 \%)$ as a white solid, $\mathrm{mp} 95.2-97.0 .{ }^{\circ} \mathrm{C}$ (dec.), lit. $\mathrm{mp} 85-88{ }^{\circ} \mathrm{C} .{ }^{2}$
$\mathbf{R}_{f}=0.22$ (cyclohexane/ $\mathrm{AcOEt}=10 / 1$)
IR (ATR): 1634 (m, sh), 1576 (m), 1457 (m), 1371 (m), 1257 (m), 738 (s).
${ }^{1}$ H-NMR, COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-737(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.26-7.15(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-$ H), 7.03 (pseudo-td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-1), 3.96(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3), 3.01(\mathrm{t}, J=5.9 \mathrm{~Hz}$, 2H, H-4).
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.2(\mathrm{C}=\mathrm{N}), 148.9,143.3,134.2,132.5(4 \mathrm{x} \mathrm{Cq}), 128.9,126.9$, 126.7, 126.5, 124.1, 120.7, 116.4, 108.9 ($8 \times \mathrm{Ar}-\mathrm{C}$), 47.3 (C1), 43.2 (C3), 28.6 (C4).

ESI-MS: $m / z(\%)=251.1(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: m / z=251.1184$, found: 251.1191
Method B: To a mixture of 2-chlorobenzoxazole ($2.00 \mathrm{~g}, 13 \mathrm{mmol}, 1.2$) in dry THF (30 mL) was added 1,2,3,4tetrahydroisoquinoline ($1.47 \mathrm{~g}, 11 \mathrm{mmol}$) and triethylamine ($1.98 \mathrm{~g}, 20 \mathrm{mmol}, 1.8$ equiv) under an argon atmosphere. The reaction mixture was stirred for 2 h at $70^{\circ} \mathrm{C}$. Then the mixture was cooled to room temperature and quenched by the addition of water $(50 \mathrm{~mL})$. The mixture was extracted with DCM $(3 \times 100 \mathrm{~mL})$ The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography (Cyclohexan/AcOEt $=10 / 1$) to afforded the title compound ($2.64 \mathrm{~g}, 96 \%$) as a pale yellow solid, $\mathrm{mp} 97.1-98.3^{\circ} \mathrm{C}$ (dec.), lit. mp $85-88{ }^{\circ} \mathrm{C} .{ }^{2}$ The spectroscopic data were identically with the sample prepared by method \mathbf{A}.

6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline (16)

Compound 16 was prepared in 92% yield by the method Min Wang, et al. (2010). ${ }^{3}$ To 2-(3,4dimethoxyphenyl)ethylamine ($25.0 \mathrm{~g}, 137 \mathrm{mmol}$) was added formic acid (70 mL) at $0^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 10 min , paraformaldehyde $(8.14 \mathrm{~g}, 137 \mathrm{mmol}, 1.0$ equiv) was added. The
 reaction mixture was stirred for 14 h at $50^{\circ} \mathrm{C}$. Excess formic acid was evaporated under reduced pressure, and the residue was poured into ice-water. After basification with 1 N NaOH to pH 11 , the mixture was extracted with DCM ($3 \times 200 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was recrystallized from DCM to afforded the title compound ($24.5 \mathrm{~g}, 92 \%$) as pale yellow solid, $\mathrm{mp} 79.1-$ $80.2 .{ }^{\circ} \mathrm{C}$ (dec.), lit. mp $78-79{ }^{\circ} \mathrm{C} .{ }^{3}$
$\mathbf{R}_{f}=0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=3 / 1\right)$
IR (ATR): 2953 (m), 2792 (m), m1523 (w), 1227 (m), 1120 (m), 903 (s), 727 (s$), 650$ (w).
${ }^{1}$ H-NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.61(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}, 1-\mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.41(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3), 3.09(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4)$.
${ }^{13}$ C NMR, HMBC, HSQC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.0,148.5,123.5,119.3\left(4 \mathrm{x} \mathrm{C}_{\mathrm{q}}\right), 111.6$, $109.2(2 \mathrm{x} \mathrm{Ar}-\mathrm{C}), 56.2$, $56.1\left(2 \times \mathrm{OCH}_{3}\right), 44.0(\mathrm{C} 1), 41.7(\mathrm{C} 3), 25.1(\mathrm{C} 4)$.

ESI-MS: $m / z(\%)=194.1(100)[\mathrm{M}+\mathrm{H}]^{+}$

2-(1,3-Benzoxazol-2-yl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3)

To a mixture of 2-chlorobenzoxazole ($350 \mathrm{mg}, 3.6 \mathrm{mmol}$) in dry THF (15 mL) was added 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (16: $1.03 \mathrm{~g}, 5.3 \mathrm{mmol}, 1.5$ equiv) and Hünig's base ($0.69 \mathrm{~g}, 5.3 \mathrm{mmol}, 1.5$ equiv) under an argon atmosphere. The reaction mixture was stirred for 20 h at $60^{\circ} \mathrm{C}$. Then the mixture was cooled to room temperature and quenched by the addition of water (30 mL). The mixture was extracted with DCM $(3 \times 50 \mathrm{~mL})$ The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and
 concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether $/ \mathrm{AcOEt}=2 / 1$) to afforded the title compound $(1.10 \mathrm{~g}, 96 \%)$ as a pale yellow solid, $\mathrm{mp} 110.9-111.4^{\circ} \mathrm{C}$.
$\mathbf{R}_{f}=0.53$ (petroleum ether/ $\mathrm{AcOEt}=1 / 1$)
IR (ATR): 2935 (m), 2836 (m), 1634 (s$), 1575$ (s$), 1515$ (s$), 1458$ (s$), 1202$ (s$), 1115$ (s$), 739$ (s$)$,.
${ }^{1}$ H-NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45-7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.20$ (pseudo-td, $J=$ $7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.06 (pseudo-td, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.83(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{H}-1), 3.99(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.94(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4)$.
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.3(\mathrm{C}=\mathrm{N}), 148.4,148.1,148.0,141.3,125.8\left(5 \times \mathrm{C}_{\mathrm{q}}\right), 124.5$ ($\mathrm{Ar}-\mathrm{C}$), $123.8\left(\mathrm{C}_{\mathrm{q}}\right), 121.3,116.1,111.6,109.2,109.1(5 \mathrm{x} \mathrm{Ar}-\mathrm{C}), 56.1,\left(2 \times \mathrm{OCH}_{3}\right), 47.2(\mathrm{C} 1), 43.6(\mathrm{C} 3), 28.0(\mathrm{C} 4)$.

ESI-MS: $m / z(\%)=311.1(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: m / z=311.1396$, found: 311.1395

1-(1,3-Benzoxazol-2-yl)-1,2,3,4-tetrahydroquinoline (5)

To a mixture of 2-chlorobenzoxazole ($2.00 \mathrm{~g}, 13 \mathrm{mmol}$) in dry THF (30 mL) was added 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline ($2.60 \mathrm{~g}, 20 \mathrm{mmol}, 1.5$ equiv) and Hünig's base (2.53 $\mathrm{g}, 20 \mathrm{mmol}, 1.5$ equiv) under an argon atmosphere. The reaction mixture was stirred for 40 h under reflux. Then the mixture was cooled to room temperature and quenched by the addition of water $(50 \mathrm{~mL})$. The mixture was extracted with DCM $(3 \times 100 \mathrm{~mL})$ The combined organic
 layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether $/ \mathrm{AcOEt}=12 / 1$) to afforded the title compound ($2.84 \mathrm{~g}, 87 \%$) as a pale yellow solid, $\mathrm{mp} 63.2-64.6^{\circ} \mathrm{C}$.
$\mathbf{R}_{f}=0.53$ (petroleum ether/ $\mathrm{AcOEt}=5 / 1$)
IR (ATR): 3037 (w), 2947 (m), 1622 (s), 1552 (s), 1235 (m), 1455 (s), 802 (m), 741(s).
${ }^{1}$ H-NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.99-7.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-$ H), 7.31-7.26 (m, 1H, Ar-H), 7.23 (pseudo-td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.18-7.14$ (m, 1H, Ar-H), 7.14-7.03 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.10(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 2.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 2.17-1.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3)$.
${ }^{13}$ C NMR, HMBC, HSQC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.4(\mathrm{C}=\mathrm{N}), 148.4,142.5,137.7$, $129.2\left(4 \times \mathrm{C}_{\mathrm{q}}\right), 129.1,126.7$, 124.2, 123.6, 121.7, 121.6, 117.0, 109.2 (8 x Ar-C), 47.3 (C2), 27.5 (C4), 23.0 (C3).

ESI-MS: $m / z(\%)=251.1(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: m / z=251.1184$, found: 251.1194

2-(Piperidin-1-yl)-1,3-benzoxazole (7)

Method A: To a mixture of 2-chlorobenzoxazole ($2.00 \mathrm{~g}, 13 \mathrm{mmol}$) in dry THF (40 mL) was added piperidine ($1.66 \mathrm{~g}, 20 \mathrm{mmol}, 1.5$ equiv) and Hünig's base ($2.53 \mathrm{~g}, 20 \mathrm{mmol}, 1.5$ equiv) under an argon atmosphere. The reaction mixture was stirred for 2 h at $70^{\circ} \mathrm{C}$. Then the mixture
 was cooled to room temperature and quenched by the addition of water $(50 \mathrm{~mL})$. The mixture was extracted with DCM $(3 \times 100 \mathrm{~mL})$ The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography (cyclohexane/ $\mathrm{AcOEt}=5 / 1$) to afforded the title compound $(2.47 \mathrm{~g}, 93 \%)$ as a white amorphous solid.
$\mathbf{R}_{f}=0.35$ (cyclohexane $/ \mathrm{AcOEt}=5 / 1$)
IR (ATR): 2938 (m), 2853 (m), 1631 (s$), 1574$ (s), 1458 (s$), 1278$ (m, sh), 1226 (m, sh), 740 (s$)$.
${ }^{1}$ H-NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.12$ (pseudo-td, $J=$ $7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.96 (pseudo-td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 3.82-3.23 (m, 4H, H-2', H-6'), 1.71-156 (m, 6H, H-3', H-4'. H-5').
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.4(\mathrm{C}=\mathrm{N}), 148.7,143.4(2 \times \mathrm{Cq}), 123.8,120.3,116.0,108.6,(4 \mathrm{x}$ Ar-C), 46.6 (C2', C6'), 25.3 (C^{\prime}, C5'), 24.1 (C4').

ESI-MS: $m / z(\%)=203.2(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: m / z=203.1184$, found: 203.1178
Method B: Compound 7 was prepared in 69% yield by the method Froehr et al. (2011). ${ }^{4}$ To a mixture of acetic acid ($3.00 \mathrm{~g}, 50 \mathrm{mmol} 3.0$ equiv) and tert-butyl-hydroperoxide (70% in water, $3.58 \mathrm{~g}, 28 \mathrm{mmol}, 1.6$ equiv) in acetonitrile $(18.0 \mathrm{~mL})$, tetra-butylammonium iodide ($308 \mathrm{mg}, 0.83 \mathrm{mmol}, 5 \mathrm{~mol} \%$), piperidine ($1.70 \mathrm{~g}, 20 \mathrm{mmol}, 1.2$ equiv) and benzoxazole ($2.00 \mathrm{~g}, 17 \mathrm{mmol}$) were added. The reaction mixture was stirred for 1.75 h at $80^{\circ} \mathrm{C}$. Then the mixture was cooled to room temperature and quenched by the addition of an aqueous solution of sodium disulfite (250 mL) and a saturated solution of sodium hydrogen carbonate $(250 \mathrm{~mL})$. The mixture was extracted with DCM ($3 \times 300 \mathrm{~mL}$) The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography (cyclohexane/ $\mathrm{AcOEt}=15 / 1$) afforded the title compound $(2.33 \mathrm{~g}, 69 \%)$ as white amorphous solid. The spectroscopic data were identically with the sample prepared by method \mathbf{A}.

2-(pyrrolidin-1-yl)-1,3-benzoxazole (9)

Compound $\mathbf{9}$ was prepared in 49% yield by the method Froehr et al. (2011). ${ }^{4}$
$\mathbf{R}_{f}=0.31$ (cyclohexane/AcOEt $=5 / 1$)

${ }^{1}$ H-NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.14$ (pseudo-td, $J=$ $7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.98 (pseudo-td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $3.71-3.54$ (m, 4H, H-2', H-5'), 2.08-1.94 (m, 4H, H-3', H-4').
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=161.1(\mathrm{C}=\mathrm{N}), 149.1,143.8\left(2 \mathrm{x} \mathrm{C}_{\mathrm{q}}\right), 123.9,120.1,116.1,108.7(4 \mathrm{x}$ Ar-C), 47.5 (C2', C5'), 25.7 (C3', C4').

N, N-dimethyl-1,3-benzoxazol-2-amine (10)

To a mixture of 2-chlorobenzoxazole ($2.00 \mathrm{~g}, 13 \mathrm{mmol}$) in dry THF (40 mL) was added dimethylamine (40% in water, $14.65 \mathrm{~g}, 0.13 \mathrm{~mol}, 10$ equiv) under an argon atmosphere. Then the reaction mixture was stirred for 10 min at room temperature, filtered and washed with water to
 afforded the title compound in quantitative yield as a colorless solid $\mathrm{mp} 82.1-83.0^{\circ} \mathrm{C}(\mathrm{dec})$, lit. $\mathrm{mp} 80-82^{\circ} \mathrm{C} .{ }^{5}$
$\mathbf{R}_{f}=0.27$ (cyclohexane $/ \mathrm{AcOEt}=6 / 4$)
IR (ATR): 3053 (m), 2932 (w), 2878 (w), 1656 (s), 1580 (s), 1462 (s), 1422 (s), 1267 (s), 1237 (s), 811 (m), 733 (s).
${ }^{1}$ H-NMR, $\operatorname{COSY}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15$ (pseudo-td, $J=$ 7.7, 1.2 Hz, 1H, Ar-H), 6.99 (pseudo-td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $3.20\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$).

N, N-Diethyl-1,3-benzoxazol-2-amine (11)

To a mixture of 2-chlorobenzoxazole ($2.00 \mathrm{~g}, 13 \mathrm{mmol}$) in dry THF (10 mL) was added triethylamine ($1.98 \mathrm{~g}, 20 \mathrm{mmol}, 1.5$ equiv) under an argon atmosphere. The reaction mixture was stirred for 14 h under reflux. Then the mixture was cooled to room temperature and quenched by
 the addition of water $(50 \mathrm{~mL})$. The mixture was extracted with $\mathrm{DCM}(3 \times 100 \mathrm{~mL})$ The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether $/ \mathrm{AcOEt}=10 / 1)$ to afforded the title compound $(1.67 \mathrm{~g}, 67 \%)$ as a pale brown liquid.
$\mathbf{R}_{f}=0.19$ (petroleum ether $/ \mathrm{AcOEt}=10 / 1$)
IR (ATR): 2974 (m), 1634 (s), 1575 (s), 1459 (s), 1245 (s$), 779$ (m), 738 (s, sh).
${ }^{1}$ H-NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.34-7.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.13$ (pseudo-td, $J=$ $7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 6.97 (pseudo-td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 3.57 (q, $J=7.1 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{x} \mathrm{CH}_{2}$ ethyl), 1.27 (t, J $=7.1 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$ - ethyl).
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=162.3(\mathrm{C}=\mathrm{N}), 148.9,143.8\left(2 \mathrm{x} \mathrm{C}_{\mathrm{q}}\right), 123.8,120.0,115.9,108.6(4 \mathrm{x}$ $\mathrm{Ar}-\mathrm{C}), 43.0\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 13.6\left(2 \mathrm{x} \mathrm{CH}_{3}\right)$.

ESI-MS: $m / z(\%)=191.1(100)[\mathrm{M}+\mathrm{H}]^{+}$

1,2,3,4-tetrahydroisoquinoline (13)

Method A: To a mixture of benzoxazole (1: $84.0 \mathrm{mg}, 0.34 \mathrm{mmol}$) in ethylene glycol (53 mL) was added $\mathrm{KOH}(6.30 \mathrm{~g})$. The reaction mixture was stirred for 24 h at $140^{\circ} \mathrm{C}$. Then the mixture was cooled to room temperature and water (150 mL) was added. The aqueous phase was extracted with DCM ($3 \times$
 150 mL). The combined organic layers where washed with water (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo, to afford the title compound ($29.0 \mathrm{mg}, 65 \%$) as a pale brown liquid.
$\mathbf{R}_{f}=0.77\left(\mathrm{AcOEt} / \mathrm{EtOH}=2 / 1,1 \% \mathrm{NEt}_{3}\right)$
IR (ATR): 330 (m, br), 3056 (m, br), 2737 (m, sh), 1590 (m, sh), 1512 (s, sh), 1265 (s) 741 (s).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.18-7.05(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.06-6.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-1), 3.15(\mathrm{t}, J=$ $\left.6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.81\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

ESI-MS: $m / z(\%)=134.1(100)[\mathrm{M}+\mathrm{H}]^{+}$
Method B: To benzoxazole ($\mathbf{1}: 24.0 \mathrm{mg}, 0.096 \mathrm{mmol}$) in dry THF (2 mL) was added LAH ($144 \mu \mathrm{l}, 2 \mathrm{M}$ solution in THF, $0.29 \mathrm{mmol}, 3.0$ equiv) under an argon atmosphere. The reaction mixture was stirred for 20 h under reflux. Then the mixture was cooled to room temperature and quenched by the addition of $2 \mathrm{~N} \mathrm{NaOH}(1 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$. The suspension was filtrated and washed with DCM $50(\mathrm{~mL})$. The aqueous phase was extracted with DCM ($3 \times 10 \mathrm{~mL}$) The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afforded the title compound (11.3 $\mathrm{mg}, 88 \%$) as brown liquid. The spectroscopic data were identically with the sample prepared by method \mathbf{A}.

3-(2-phenylethyl)-1,2,3,4-tetrahydroisoquinoline (14)

To tetrahydroisoquinoline ($\mathbf{2 c}: 56.0 \mathrm{mg}, 0.16 \mathrm{mmol}$) in dry THF (5 mL) was added LAH (240 $\mu 1,2 \mathrm{M}$ solution in THF, $0.47 \mathrm{mmol}, 3.0$ equiv) under an argon atmosphere. The reaction mixture was stirred for 48 h under reflux. Then the mixture was cooled to room temperature and quenched by the addition of $2 \mathrm{~N} \mathrm{NaOH}(1.5 \mathrm{~mL})$ and water $(1.5 \mathrm{~mL})$. The suspension was filtrated and washed with DCM $50(\mathrm{~mL})$. The aqueous phase was extracted with DCM (3×10
 mL) The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography (cyclohexane $/ \mathrm{AcOEt}=5 / 3,1 \% \mathrm{NEt}_{3}$) to afforded the title compound ($21.0 \mathrm{mg}, 57 \%$) as a pale brown oil.
$\mathbf{R}_{f}=0.13$ (cyclohexane $/ \mathrm{AcOEt}=5 / 3,1 \% \mathrm{NEt}_{3}$)
IR (ATR): 3023 (m), 2919 (s), 1495 (m), 1452 (m), 744 (s), 699 (s).
${ }^{1}$ H-NMR, COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.27-7.16(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.16-7.06(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-$ H), 7.05-6.99 (m, 1H, Ar-H), 4.07 (s, 2H, H-1), 2.97-2.70 (m, 4H), 2.57 (dd, $\left.J=16.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-4\right), 1.90-1.79$ (m, 2H, H-1'), 1.69 (br, s, 1H, NH).
${ }^{13}$ C NMR, HMBC, HSQC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.2,135.9,134.8\left(3 \times \mathrm{C}_{\mathrm{q}}\right), 129.4,128.5(4 \mathrm{x}), 126.2,126.1$, 126.0, 125.9 (9 x Ar-C), 53.3 (C3), 48.6 (C1), 38.6 (C1'), 35.6 (C4), 32.5 (C2').

ESI-MS: $m / z(\%)=238.1(100)[M+H]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}\right]^{+}: m / z=238.1596$, found: 238.1607

1,5,10,10a-Tetrahydropyrrolo [1,2-b]isoquinolin-3(2H)-one (15)

A mixture of propanoate ($\mathbf{2 a}: 62.0 \mathrm{mg}, 0.18 \mathrm{mmol}$) and $\mathrm{KOH}(5.20 \mathrm{~g})$ in ethylene glycol $(44 \mathrm{ml})$ was immersed in a pre-heated oil bad at $190^{\circ} \mathrm{C}$ and refluxed for 24 h . Then the mixture was cooled to room temperature and water $(100 \mathrm{~mL})$ was added. The aqueous phase was extracted with DCM (3 $\times 100 \mathrm{~mL})$. The combined organic layers where washed with water (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$
 and concentrated in vacuo, to afford the title compound ($24.1 \mathrm{mg}, 73 \%$) as a colourless amorph solid.
$\mathbf{R}_{f}=0.32$ (cyclohexane $/ \mathrm{AcOEt}=8 / 2$)
${ }^{1}$ H-NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26-7.03(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.94\left(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 4.27(\mathrm{~d}, J=17.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5$), $3.84-3.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}), 2.97\left(\mathrm{dd}, J=15.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-10\right), 2.75-2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-10\right), 2.51-2.32$ (m, 3H, CH ${ }_{2}$), 1.89-1.67 (m, 1H, CH $)_{2}$.
${ }^{13} \mathbf{C}$ NMR, HMBC, HSQC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.4(\mathrm{C} 3), 133.3,131.9\left(2 \mathrm{x} \mathrm{C}_{\mathrm{q}}\right), 129.2,126.9,126.8,126.7(4 \mathrm{x}$ Ar-C), 54.1 (C10a), 42.7 (C5), $37.0(\mathrm{C} 10), 30.3\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right)$.

ESI-MS: $m / z(\%)=188.1(100)[\mathrm{M}+\mathrm{H}]^{+}$
ESI-HRMS: calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{132} \mathrm{ONa}\right]^{+}: m / z=210.0895$, found: 210.0904

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
30	170	160	150	140	130	120	110	100			70	60	50	40	30	20	10	0

${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2a

COSY of compound 2a

HSQC of compound 2a

HMBC of compound 2a
${ }^{1} \mathrm{H}$-NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 2 b

${ }^{13} \mathrm{C}$-NMR ($\mathbf{7 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2b

COSY of compound 2b

HSQC of compound 2b

HMBC of compound 2b

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of compound 2c

${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2c

COSY of compound 2 c

HSQC of compound 2c

HMBC of compound 2c

HSQC of compound 2d

HMBC of compound 2d

COSY of compound 2 e

HSQC of compound 2e

HMBC of compound 2 e

${ }^{1} \mathrm{H}$-NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 2 f

${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2 f

COSY of compound $2 f$

HSQC of compound $2 f$

COSY of compound $\mathbf{2 g}$

HSQC of compound 2g

HMBC of compound 2 g

COSY of compound $\mathbf{4 a}$

HSQC of compound 4a

HMBC of compound 4a

HSQC of compound 4b

HMBC of compound 4b

${ }^{13}$ C-NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 6a

COSY of compound 6a

HSQC of compound 6a

HMBC of compound 6a

[^0]

HSQC of compound $\mathbf{6 b}$

HMBC of compound $\mathbf{6 b}$

${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 c 0}$

HSQC of compound $\mathbf{6 c}$

HMBC of compound $\mathbf{6 c}$

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 d}$

	1	1	1	1	1	1	1	1	,	,	1	1	1	1	1	1		
30	170	160	150	140	130	120	110	100			70	60	50	40	30	20	10	0

${ }^{13} \mathbf{C}$-NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 6d

COSY of compound 6d

HSQC of compound 6d

HMBC of compound 6d

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 8 a

COSY of compound $8 \mathbf{8}$

HSQC of compound 8a

HMBC of compound 8a

COSY of compound 8b

HSQC of compound 8b

HMBC of compound 8b

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
${ }^{1} 0$	170	160	150	140	130	120	110	100			70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 8c

COSY of compound 8c

HSQC of compound 8c

HMBC of compound 8c

${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 8d

COSY of compound 8d

HSQC of compound 8d

HMBC of compound 8 d

COSY of compound $8 e$

HSQC of compound 8 e

HMBC of compound 8e

${ }^{1} \mathrm{H}$-NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 12a

${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 12a

COSY of compound 12a

HSQC of compound 12a

HMBC of compound 12a

COSY of compound 12b

HSQC of compound 12b

HMBC of compound 12b

${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 1 ~ M H z}, \mathrm{CDCl}_{3}$) of compound 1

COSY of compound 1

HSQC of compound 1

${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16

COSY of compound 16

HSQC of compound 16

HMBC of compound 16

${ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 3

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3

COSY of compound 3

HSQC of compound 3

HMBC of compound 3

${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 5

COSY of compound 5

HSQC of compound 5

HMBC of compound 5

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of compound 7
范

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
30	170	160	150	140	130	120	110	100		$)^{80}$	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7

COSY of compound 7

HSQC of compound 7

HMBC of compound 7

| 30 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9

COSY of compound 9

HSQC of compound 9

HMBC of compound 9

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$ of compound 10

HSQC of compound 11

HMBC of compound 11

${ }^{1}$ H-NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 13

${ }^{1} \mathrm{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 14

${ }^{13}$ C-NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 14

COSY of compound 14

HSQC of compound 14

HMBC of compound 14

${ }^{1}$ H-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of compound 15

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 15

COSY of compound 15

HSQC of compound 15

HMBC of compound 15

References

(1) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics. 2010, 29, 2176.
(2) Lamani, M.; Prabhu, K. R. J. Org. Chem. 2011, 76, 7938.
(3) Wang, M.; Zheng, D. X.; Luo, M. B.; Gao, M.; Miller, K. D.; Hutchins, G. D.; Zheng, Q.-H. Appl. Radiat. Isot. 2010, 68, 1098.
(4) Froehr, T.; Sindlinger, C. P.; Kloeckner, U.; Finkbeiner, P.; Nachtsheim, B. J. Org. Lett. 2011, 13, 3754.
(5) Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem. Int. Ed. 2009, $48,9127$.

[^0]: ${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 b}$

