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1. PERSISTENCE OF RINGS IN THE PRESENCE OF NEMATIC DOMAINS

Rings can be observed even at high interfacial fibril densities, where nematic domains cover most of the observed
area as shown in Fig. S1 and S2. At this point, the rings are usually composed of many fibrils or are completely filled
by short fibrils. It is worth noting, however, that some regions on the same sample can be void of rings. There is
a population of fibrils in all four batches investigated that is not consistent with the height and pitch distributions
observed in [1]. These fibrils are very tightly wound with a half-pitch length around 40 nm and a maximum height
between 4 and 7 nm and can also be seen to partake in ring formation.

2. SPONTANEOUS BENDING OF A POLAR TWISTED RIBBON AT AN INTERFACE

A. Surface Interaction

Most particles, including proteins, adsorb to a hydrophobic-hydrophilic interface in order to reduce the nascent
hydrophobic surface tension [2]. In addition to this, a protein will interact specifically with the two media according
to the nature of the amino acids. Such interactions are both short-range (charge, hydrophobic effect, steric shapes)
and long-range (dispersion interactions) [3]. Long range interactions depend weakly on the nature of the surface,
as they typically include the bulk of the two interface materials and the entire protein. However, the short range
surface interactions depend critically on the details of the surface of the protein. The inhomogeneous surface of a
protein results in a local moment or torque applied by the fluid at each point on the surface. For a helical protein
immersed in a homogeneous fluid, this local torque will sum to zero across the entire surface of the protein. However,
for a protein in an inhomogeneous environment, such as one confined to an interface, will experience a non-zero total
torque Γ. This can induce a spontaneous curvature or twist depending on both the direction of Γ and the strength
of the intrinsic bend and twist moduli.

The net torque on the protein due to its environment can be separated into contributions from short range and
long range forces:

Γ =

∫
V

d3r r× fLR(r) + ∆

∫
S

d2r r× fSR(r, z) , (1)

where S and V are respectively the surface and volume of the protein. The force densities are given by

f(r) = −
∫

env

d3r′
∂U (r− r′)

∂(r− r′)
, (2)
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where the energy density U(r − r′) of interaction (energy per volume squared) between material in the environment
at r′ and in the protein at r can be separated into long range (e.g. dispersion or Coulomb) and short-range (e.g.
hydrophobic or steric) interactions. Here, ∆ is the interaction depth within the protein (of order an amino acid in size),
and the forces are obtained by integrating over points r′ in the environment external to the protein. Although the
net torque will generally depend on the entire shape and volume of the protein (because of long range dispersion and
Coulomb interactions), we will illustrate the example where the effects of long range forces are negligible compared
to those of the short range interactions. For example, an unbalanced torque that leads to a bend in the plane of
the interface will not perturb the long range energy of interaction appreciably, since there will be neligible response
perpendicular to the interface.

In the case of short range interactions, we can approximate the integral over the environment as
∫

env
d3r′ ' a

∫
dz′,

where the coordinate z′ is along the surface normal and a is the lateral area of the short interaction. By integrating
the short range potential and using the reference U(z =∞) = 0, we can write the torque exerted on the surface as

Γ = a∆

∫
S

d2r (r× n̂)U(r), (3)

≡
∫
S

d2r (r× n̂) [γ̄ + δγ (r)] , (4)

The quantity (a∆)U(r) ≡ γ̄+ δγ(r) is the surface energy density of interaction introduced in Eq. [3] of the main text.
Fluid-fluid interface – At fluid-fluid interfaces an adsorbed fibril will be surrounded by both fluids, according to

the (inhomogeneous) degree of wettability of the fibril on the two fluids. This inhomogeneous environment leads to a
net uncompensated moment when averaged over the inhomogenous solvent environment around the fibril. Although
this applies to the problem at hand, we will take the a pragmatic approach and illustrate the method for the simpler
example of a fluid-solid interface with short-range interactions.

Fluid-solid interface – Consider a fibril adsorbed to a fluid-solid interface. Material within a short range ∆, set
by Coulomb screening, shapes of asperities, or hydrophobic effects, will interact with the solid substrate on a strip.
For short range interactions a surface interaction that is symmetric from head to tail (a non-polar interaction) will
lead to zero applied total torque, as the local torque will sum to zero, as in a homogeneous environment. However,
a non-symmetric interaction will lead to uncompensated torques, or bending moments, all along the length of the
adsorbed fibril.

B. Twisted Ribbon of Fixed Radius

To make progress, we approximate the fibril of length L as a twisted ribbon with wavelength λ, which makes
contact every half wavelength with a solid surface on the exposed edges at the ribbon radius R (Figures S5, S6). The
wavelength is related to the helical angle θp by

cos θp =
qR√

1 + (qR)2
sin θp =

1√
1 + (qR)2

, (5)

where q = 2π/λ. The centerline of the undeformed fibril defines a tangent vector t̂0, which upon bending becomes

t̂(s), with local curvature κ = |dt̂/ds| ≡ | ˙̂t|. Equivalently, we can parametrize the curvature in terms of the vector

angular rotation of the tangent vector, defined by Θ̇ = t̂× ˙̂t.
Rather than work in terms of torques exerted across the body, we will calculate the surface energy of the adsorbed

fibril as a function of the fibril shape. Minimizing this energy with respect to in-plane bending will lead to an induced
spontaneous curvature, which is equivalent to finding an uncompensated torque for a straight fibril.

For a small interaction range, ∆� R, the interaction between the surface and the twisted ribbon can be approxi-
mated by the surface energy of series of strips of thickness ω = 2

√
2R∆−∆2 '

√
8R∆ (Fig. S5). The ribbon-surface

energy is given by

Gsurf =

2L/λ∑
j=1

∫
Sj

[γ̄ + δγ(r)] d2r (6)

≡
2L/λ∑
j=1

Gpolar,j , (7)
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where Sj is the surface area of the jth interaction strip, the average surface energy γ̄ represents the absorption
properties of the ribbon, and δγ captures the polar nature of the interaction. There are 2L/λ distinct interaction
strips. We assume that the strip has an anisotropic interaction potential that is polar along the direction û within
the strip, and assume the simple form

δγ(r) = ε r · û (8a)

= ε (x cos Φ + y sin Φ) , (8b)

where û is at an angle Φ with respect to the tangent vector t̂.In the limit of R� ∆ the strips can be approximated
as flat, taking r as a two-dimensional vector in the plane of the surface. For short range interactions these flat strips
constitute the primary interaction between the surface and the twisted ribbon.

Amyloid fibrils are composed of protofilaments, which in turn comprise layers of aligned beta sheets that are twisted
about their central axis. A given fibril contains a number of protofilaments that form a ribbon, which we approximate
as shown in Figure S6(A). The ribbon diameter D is given by the number of protofilaments in the fibrils, while the
ribbon thickness d is determined by the diameter of an individual protofilament. The ribbon length L is determined
by the total number of aligned beta strands.

For an undeformed fibril the interaction strip is a parallelogram tilted at an angle θp determined by the pitch of the
ribbon, and with lengths determined by the thickness d of the ribbon (the perpendicular distance between the edges)
and the strip thickness ω, as shown in Figure S6(B). Two sides of length ` = d/ sin θp are parallel to the tangent

vector t̂0, while the other two sides have length ω/ cos θp.
When the ribbon is bent the ribbon thickness d is fixed due to the fixed radius, but it curves to follow the deformed

tangent vector t̂. Given that we are in the small bend regime, we approximate these sides as straight, but tilted
additionally by φ̄ = 1

2 (φR + φL) according to the average tilt of the interaction strip (Figure S6(C)). Here φL and φR
represent the additional tilts on the left and right hand sides of the interaction strip.

When the strip is bent downwards the top of the interaction strip is under tension whereas the bottom of the strip
is under compression. Although the center of the strip is not under tension or compression, bend-stretch coupling
terms may cause the ribbon to stretch or compress, leading to a new strip length `′ = d/ sin(θp − φ̄). This change in
length contributes to the bend-stretch coupling, which is not of interest here.

Initially, the polarity vector û0 is at an angle Φ with respect to the tangent vector t̂0. When the twisted ribbon
is bent, then to first order the all vectors in the interaction strip rotate with the average rotation φ̄ of a particular
segment; this includes both the polarity vector and the local tangent vector. However, the stretching and compression
on either side of the bend cause the polarity vector to deflect non-affinely aross the strip; e.g the tilt of the polarity
vector should vary smoothly between φL and φR, when moving from left to right across the strip. For simplicity
we will take the polarity vector to be tilted by φ̄ everywhere on the interaction strip. With this notation, the polar
surface potential becomes

δγ(r)|bent = ε
[
x cos(Φ− φ̄) + y sin(Φ− φ̄)

]
. (9)

C. Polar Free Energy

The polar energy across a single interaction strip, or equivalently the energy per helical repeat, is then given by

Gpolar = ε

∫ 1
2ω

− 1
2ω

dy

∫ fR(y)

fL(y)

dx
[
x cos

(
Φ− φ̄

)
+ y sin

(
Φ− φ̄

)]
, (10)

where

fL(y) = y cot[θp + 1
2 (φR − φL)]− 1

2` (11)

fR(y) = y cot[θp − 1
2 (φR − φL)] + 1

2` , (12)

and ` is the length of center of the interaction strip parallel to t̂0. This evaluates to

Gpolar =
εω3

12

[
cot
(
θp − 1

2Θ
)
− cot

(
θp + 1

2Θ
)] {

sin
(
Φ− φ̄

)
+ 1

2cos
(
Φ− φ̄

) [
cot
(
θp − 1

2Θ
)

+ cot
(
θp + 1

2Θ
)]}

, (13)

where Θ = φR − φL is the angular deflection associated with the bend. The energy of deformation vanishes for zero
bend Θ = 0. A positive bend Θ > 0 corresponds to a right hand bend, when travelling parallel to the chosen direction
fo the tangent vector.
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Our goal is to study the lowest order effects of the surface, which induce a spontaneous curvature signified by the
term linear in bend Θ that arises from the small Θ approximation to Gpolar. The average tilt φ̄ can be related,
geometrically, to a combination of twist and stretch, which leads to surface-induced bend-twist and bend-stretch
couplings. Thus, we will expand Eq. 13 to first order in Θ, and set φ̄ = 0 because we are not interested in higher
order bend-twist or bend-stretch couplings (the effects of these would only be visible upon observing changes in total
fibril length, or in local chirality). To lowest order in the deflection we find

Gpolar =
εω3

12 sin2 θp
(cos Φ cot θp + sin Φ) Θ + . . . (14)

' εω3`

12 sin2 θp
(cos Φ cot θp + sin Φ)

dΘ

ds
. (15)

In performing this expansion we have assumed that the polar direction û (or Φ) rotates affinely with the tangent;
deviations from this will lead to higher order couplings Θ δΦ. Hence, the contribution to the bending energy of the
entire fibril is

Gsurf =

2L/λ∑
j=1

Gpolar,j (16)

=

∫ L

0

2 ds

λ

εω3`

12 sin2 θp
(cos Φ cot θp + sin Φ)

dΘ

ds
, (17)

where we have assumed that the bend is smooth between contacts, and converted the sum to an integral via
∑
j →∫

ds/λ.
The polar moment is given by

P =
2

λ

∫
S

r δγ(r) d2r, (18)

=
2ε

λ

∫
S

r (r · û) d2r, (19)

=
ε

λ

∂

∂û

∫ ω
2

−ω
2

dy

∫ y cot θp+
`
2

y cot θp−
`
2

[x cos Φ + y sin Φ]
2
dx (20)

=
εω3`

6λ

{[
cos Φ

(
cot2 θp +

(
`

ω

)2
)

+ sin Φ cot θp

]
t̂ + (sin Φ + cos Φ cot θp) n̂× t̂

}
. (21)

One component of P is parallel to the fibril direction t̂, while the other direction is perpendicular to t̂ and in the
plane specified by normal vector n̂. Note that {t̂, n̂× t̂, n̂} form an orthonormal basis. Hence,

P = P‖t + P⊥n̂× t̂, (22)

where

P‖ =
εω3`

6λ

[
cos Φ

(
cot2 θp +

(
`

ω

)2
)

+ sin Φ cot θp

]
(23a)

P⊥ =
εω3`

6λ
(sin Φ + cos Φ cot θp) . (23b)

Comparing the definition of P with the free energy Gsurf, we can rewrite the surface energy as

Gsurf =
1

sin2 θp

∫ L

0

dsP⊥
dΘ

ds
. (24)

In vector form, the angular rotation is given by Θ̇ = −n̂dΘ
ds (Fig. S6), while the component P⊥ can be extracted via

P⊥ = n̂ · t̂×P. Thus, the free energy becomes

Gsurf = − 1

sin2 θp

∫ L

0

ds Θ̇ · t̂×P, (25)

which corresponds to the free energy of Equations 5-6 in the main text, with A = 1/ sin2 θp.
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D. Induced Curvature

The total bending free energy is given by the sum of the standard bending energy and the coupling to the surface:

Gbend =

∫
ds

[
1

2
BΘ̇

2 − 1

sin2 θp
Θ̇ · t̂×P

]
(26)

=

∫
ds

[
1

2
Bκ2 − εω3`

6λ sin2 θp
(cos Φ cot θp + sin Φ)κ

]
, (27)

where the (signed) curvature is defined by Θ̇ = κn̂. The bending modulus generally includes contributions from
the surface, which can be calculated based on the formalism here. However, since our intent is to demonstrate the
significance of the induced curvature, we do not consider such perturbations. Moreover, the main contribution to
bending is usually from internal degrees of freedom that are only weakly influenced by the surface. An exception
occurs for highly charged filaments. In such cases the reduction in the dielectric constant and lack of screening near
a hydrophobic surface will increase the electrostatic contribution to B.

This bend energy is minimized by the following spontaneous curvature κ0:

κ0 =
εω3`

6λ sin2 θpB
(cos Φ cot θp + sin Φ) (28)

=
εω3`

λ sin2 θpB
α(θp,Φ), (29)

where α(θp,Φ) ≡ (cos Φ cot θp + sin Φ)/6.
The sign of the induced curvature can be understood as follows. Consider ε > 0, a helix with an opening angle of

θp = π/4, and a polarization direction specified by Φ = π/6 (roughly as in Figs. S5, S6). In this case there is a higher
energy for exposing the upper right part of the parallelogram in Fig. S6 to the surface. Hence the preferred bending
direction should be ‘up’ in Fig. S5 (rather than the downward shown), to allow the relatively less of the costly part of
the surface interaction to attain more contact with the surface. This corresponds to a positive bend around n̂, given
by Θ̇ = κ0n̂ with κ0 > 0 and matches the prediction in Eq. (28).
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FIG. S1: AFM image of fibrils at the air-water interface after t=60 minutes adsorption time from a cinit = 0.001% w/w fibril
suspension.
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FIG. S2: AFM image of fibrils at the air-water interface after t=10 minutes adsorption time from a cinit ≈ 0.008% w/w fibril
suspension. Rings coexist with nematic fibril domains.



8

FIG. S3: AFM image of fibrils at the air-water interface after t=60 minutes adsorption time from a cinit = 0.001% w/w fibril
suspension. Rings are often composed of many short fibrils.
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FIG. S4: AFM height and phase images of fibrils at the air-water interface immediately after sample preparation of a cinit =
0.001% w/w fibril suspension. The scale bar applies to both images. Distortions in the background peptide layer are readily
visible in the phase image but are rarely spherical and do not coincide spatially with fibril rings.

FIG. S5: (A) Helical fibril against a surface. (B) The contact area, or interaction strip, is a parallelogram that deforms
asymmetrically (C) when the fibril is bent. This leads to an excess contact area by one ‘charge’ of the polar interaction, leading
to a preference for one sign of bend and thus a spontaneous curvature. A positive red ‘charge’ and a negative ‘blue’ charge
corresponds to a polarization potential δγ = ε(cosπ/6 +y sinπ/6), with ε > 0. In this case the bend shown in (C) costs energy,

and the preferred spontaneous curvature instead correponds to a bend dΘ
ds

= Θ̇ = t̂ × ˙̂t which is parallel to n̂.
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(B)

Φ

(c)

Φ

FIG. S6: (A) Geometry of twisted ribbon. Initial (B) and deformed (C) interaction strips, obtained by bending the fibril. The
undeformed strip is shown in grey under the deformed strip. The bend causes a tilt in the two sides (right and left) depending
on the change in the tangent vector across the strip, while the top and bottom sides remain parallel to each other, but rotate
with respect to the undeformed strip by φ̄ = 1

2
(φL + φR), which describes the average tilt of the individual strip.
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FIG. S7: Whole AFM image used for the curvature distribution analysis showing fibrils at the air-water interface after t=10
minutes adsorption time from a cinit = 0.001% w/w fibril suspension.


