Supporting Information

Substituent-Enabled Oxidative Dehydrogenative Cross-Coupling of 1,4-Naphthoquinones with Alkenes

Chi Zhang,^{†,§} Meining Wang,^{‡,§} Zhoulong Fan,[‡] Li-Ping Sun,^{*,†} and Ao Zhang^{*,‡}

Table of Contents

1.	HMBC Spectrum of comound 3ba	S2
	- · · · · · · · · · · · · · · · · · · ·	
2.	NMR Spectra of Products	S3
	1	
3.	Kinetic Isotope Effect Experiments	.S29

[†]Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.

[‡]CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.

[§]These two authors contributed equally to this work.

1. HMBC Spectrum of comound 3ba

HMBC correlations [δ_C 130.1 (C-10) with δ_H 8.73 (H-11) and δ_C 130.1 (C-10) with δ_H 5.68 (H-3)] placed the alkene group at C-5.

2. NMR Spectra of Products

6.59 6.59 7.06 7.06 7.06 7.06 6.08 6.08 7.13

68.48 68.09 7.56 7.56 6.54 6.54 7.56

69.79 7.58 7.58 7.58 7.58 7.58 4.28 4.38

6.68 7.58 7.58 7.58 7.58 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.14 6.13 6.14 6.13 6.14 6.13 6.14 6.13 6.14

\$1.35 \$1.35 \$1.35 \$1.35 \$1.35 \$1.35 \$1.35 \$1.35 \$1.35

6.74 6.71 6.13

6.75 -6.08 -7.55 -7.24 -7.16 -6.17 -6.12 -5.68 -3.78

6.00 7.50 7.50 7.50 7.50 7.50 7.50 6.13

6.14

3. Kinetic isotope effect experiments.

A solution of substrate 1p or $[D_5]-1p$ (0.2 mmol), alkene 2a (0.4 mmol), $[RhCp*Cl_2]_2$ (2.5 mol %), $AgSbF_6$ (10 mol %), and $Cu(OAc)_2$ H_2O (20 mol %) in DCE (1 mL) was stirred in sealed tube at 120 °C. A portion of the crude solution (0.1 mL) was taken out every 15 min, concentrated in vacuum, and then subjected to 1H -NMR measurement with 1,2-dibromomethane as the internal standard.

Independent Initial Rate Comparison K_{H}/K_{D} for 3p and $\ensuremath{[D_{5}]\text{-}3p}$