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Supporting Figure 1. Temperature dependence of conversion efficiency used to model the 

theoretical upper limit to NPP. Functions were calculated assuming a CO2 concentration of 

379 µl l-1. The theoretical maximum εc for C4 and C3 plants (1) are shown in dashed red 

line and the solid red line, respectively. The temperature dependence of εc for C3 plants 

derives primarily from relative changes in oxygenase and carboxylase functions of the 
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primary carboxylating enzyme, ribulose bisphosphate carboxylase-oxygenase, and the 

relative temperature dependencies of the diffusion coefficients for CO2 and O2 (2). The 

dashed blue line represents and independent calculation of εc for C3 crops (3). Here we 

assume that respiration is a constant fraction of photosynthesis. The solid teal line and the 

solid green line represent the maximum εc currently observed for a C4 and C3 plant, 

respectively. 
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Supplemental Figure 2
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Supporting Figure 2. Maps of the difference between MODIS derived NPP and National 

Agricultural Statistics (NASS) derived NPP for counties in Iowa, Illinois, and Indiana (US 

corn belt). A) Negative numbers indicate an underestimation of NPP by MODIS compared 

to NASS data while positive numbers indicated and overestimation compared to NASS data. 

B) The fractional forested land area of each county. As forested land area increases, the 

underestimation of NPP compared to MODIS is reduced. County average MODIS NPP was 

compared to county average crop NPP (area-weighted by crop type). NASS crop area in 

each county was calculated using the NASS cropland data layer 

(http://nassgeodata.gmu.edu/CropScape/).  
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Supporting Figure 3A
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Supporting Figure 3B
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Supporting Figure 3. Global distribution of predicted maximum net primary production 

(NPP; tC ha-1 y-1) based on the theoretical maximum light conversion efficiency for a 

theoretical C3 crop (A) or a theoretical C4 crop (B). Values represent the predicted 

maximum total NPP (TU), maximum NPP supported by local water availability (TL), and 

NPP based using actual maximum observed conversion efficiency and local water 

availability (OL).
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Crop (country) Scientific name WUE Reference 

    

Soybean  (Australia) Glycine max 0.044 2 

Canola  (Australia) Brassica napus 0.057 7 

Wheat  (Argentina) Titicum aestivum 0.045 4 

Willow  (Sweden) Salix viminalis 0.048 4 

    

C3 average  0.049  

    

Miscanthus  (England) Miscanthus x giganteus 0.095 1 

Sugarcane  (Australia) Saccharum officinarum 0.083 3 

Cord-grass  (England) Spartina cynosuroides 0.082 1 

Bulrush Millett  (India) Pennisetum typhoides 0.095 5 

Maize  (US average) Zea mays 0.101 6 

    

C4 average  0.091  

    

 

 

Supporting Table 1. Water use efficiency for C3 and C4 crops (t DM / ha / mm *kPa), where 

values are normalized to daytime atmospheric VPD during the growing season. Average 

WUE is considerably greater for C4 than C3 crops. Because of the absence of 

photorespiration and the affinity of the primary carboxylating enzyme for CO2, C4 plants 

operate a lower CO2 concentration inside the leaf and lower stomata conductance, 

contributing to higher WUE than C3 crops.  
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Location Native 

Vegetation 

ANPP  Introduced 

Vegetation 

ANPP  ANPP 

Increase 

Wisconsin, 

USA1 

Restored prairie 0.8 No-till maize 5.1 540% 

Iceland2 Boreal dwarf 

birch 

1.0* Nootka lupine 5.0* 400% 

Illinois, USA3 Native prairie 3.24,5 

 

Miscanthus 

giganteus 

8.26 322% 

Thailand7 Dry deciduous 

tropical forest 

3.88 Teak plantation 11.5 206% 

Hawaii, USA9 Wet tropical 

forest 

2.0 Falcataria-

invaded forest 

5.4 170% 

Kansas, 

USA10 

Tallgrass prairie 2.411 Juniperus 

shrubland 

4.9 102% 

India12 Moist tarai sal 

forest 

7.3 Populus 

plantation 

12.5 71% 

Texas, USA13 Coastal prairie 1.6 Prosopis 

shrubland 

2.6 63% 

India14 Dry deciduous 

tropical forest 

9.615* Bamboo 

plantation 

13.5 40% 

 

Supporting Table 1 with references. Location, vegetation, and productivity (aboveground 

NPP; tC ha-1 yr-1) of eight sites where annual productivity changes with conversion to non-

native or cultivated vegetation. When native vegetation yield was not available in the cited 

article, it was drawn from a separate literature source from the same ecoregion.  ANPP was 

converted to ANPP-carbon (ANPP-C) by a factor of 0.46 for grasslands16, 0.47 for tropical 

species2117, and 0.5 for temperate woody species18,19. *ANPP unavailable, NPP shown.
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