SUPPORTING INFORMATION

Direct Three-Dimensional Characterization and Multi-Scale Visualization of Wheat Straw Deconstruction by White Rot Fungus

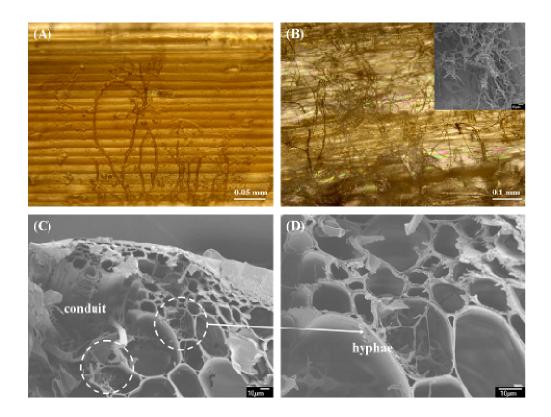
Li Liu^{1,2}, Chen Qian², Lei Jiang^{1,3*}, Han-Qing Yu^{2*}

¹School of Chemistry and Environment, BeiHang University, Beijing, 100191, China

²Department of Chemistry, University of Science & Technology of China, Hefei,

230026, China

³National Laboratory for Molecular Sciences Key Laboratory of Organic Solids
Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China


*Corresponding authors:

Prof. Lei Jiang, E-mail: jianglei@iccas.ac.cn; Prof. Han-Qing Yu, E-mail: hqyu@ustc.edu.cn

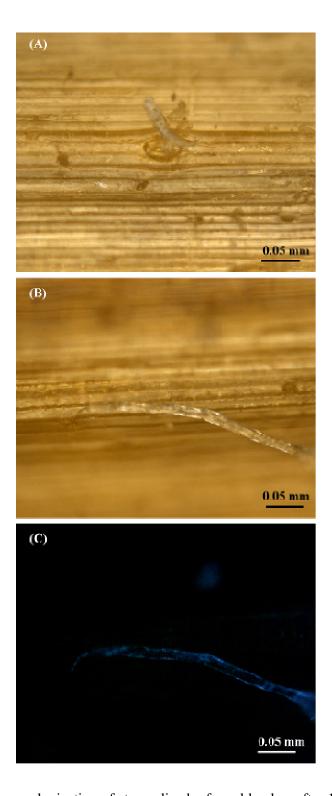

This Supporting Information contains 7-page text, one table and five figures, including this cover page.

TABLE S1. O/C Atomic Ratios and Relative C1–C4 Peak Areas of Straw and Its Main Components

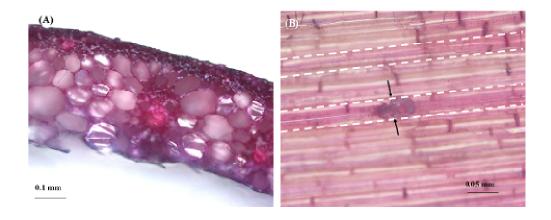

	material	O/C	C 1	C2	C3
			(%)	(%)	(%)
theoretical values	epicuticular wax (31)	0.11	94.0	0.0	6.0
	lignin (32)	0.33	49.0	49.0	2.0
	hemicellulose (31)	0.80	0.0	83.0	17.0
	cellulose (32)	0.83	0.0	83.0	17.0
measured values	untreated sample	0.44	50.6	39.5	9.9
	soaked in the PDA medium for 15 d	0.43	52.4	38.7	6.9
	fungal treated for 15 d	0.59	37.2	49.9	11.4

Figure S1. Straw slice after 5-d fungal degradation: (A) optical microscopic images of the outer layer surface morphology of the straw; (B) grown fungi hyphae in straw lumen after 5-d degradation (Inset shows the SEM images of the hyphae); SEM images of (C) the cross section of the straw after 5-d incubation; and (D) hyphae at high magnification.

Figure S2. Images colonization of straw slice by fungal hyphae after 15 d: (A) fungal hyphae were found to penetrat the stomata of straw slice. (B) fungal hypha attached to the slice; and (C) fluorescence image of this hypha (stained by DAPI staining solution and viewed on a Nikon Eclipse Ti inverted microscope)

Figure S3. Lignin distribution (red color) of the straw slice stained by the phloroglucinol solution after 15-d fungal degradation: (A) cross section of the straw slice shows the lignin distributed in the vascular bundles; and (B) big holes distributed on the vascular bundles of the straw slice.

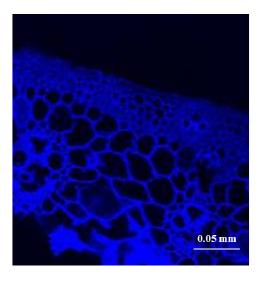
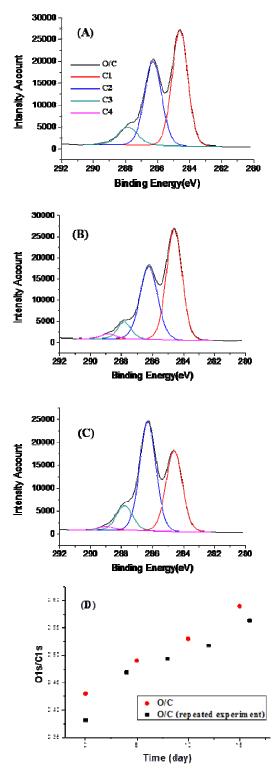



Figure S4. CLSM image of the control sample.

Figure S5. XPS spectra of C1s of straw slices: (A) untreated; (B) soaked in the PDA medium for 15 d; (C) *P. chrysosporium* degraded for 15 d; and (D) O/C of XPS results of the straw samples during the degradation process (the repeated experiment (black) and the original experiment (red)).