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Acronyms used in the article

1DT - one-dimensional IP-tuning, y-tuning

2DT - two-dimensional IP-tuning, a-y-tuning

acac — acetylacetonate

B3LYP — Becke 3-parameter Lee-Yang-Parr functional with a = 02

B3LYP — Becke-Lee-Yang-Parr functional

BNL - Baer-Neuhauser-Lifshifts functional with y = 0.33 a.u.,,a = 0.0, § =1.0
BP — Becke-Perdew functional

BTX-D - brevetoxin-D

CAM - Coulomb-attenuated method

CAM-B3LYP - Coulomb-attenuated method Becke 3-parameter Lee-Yang-Parr functional with
y =033 au., a=0.19, f =0.46

CC2 - second-order approximate coupled cluster singles and doubles model

CC - coupled-cluster

CD - circular dichroism

CIS(D) — configuration interaction singles with perturbative treatment of doubles
CT - charge transfer

DAN — N,N-dimethyl-4-nitroaniline

DANS - (E)-N,N-dimethyl-4-(4-nitrostyryl)aniline

DE - delocalization error

EA - electron affinity

EFG - electric field gradient

EPR - electron paramagnetic resonance

eX — exact exchange

GGA - generalized gradient approximation

H, HOMO - highest occupied molecular orbital

HF — Hartree-Fock, HF theory

hfc — hyperfine coupling

IP — ionization potential

KST - Kohn-Sham theory

L, LUMO - lowest unoccupied molecular orbital

LC - long-range correction

LC-PBEO - long-range corrected Perdew-Burke-Ernzerhof hybrid functional with y = 0.3 a.u.,
a=0.25p=0.75

LC-PBEO* - long-range corrected Perdew-Burke-Ernzerhof hybrid functional with « = 0.25,
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f = 0.75 and system-specific IP-tuned y

LC-PBEh* —long-range corrected Perdew-Burke-Ernzerhof hybrid functional with system-specific
IP-tuned y anda=1-p

LC-PBE - long-range corrected Perdew-Burke-Ernzerhof functional with y = 0.3 a.u., a = 0.0,
p=10

LC-PBE* — long-range corrected Perdew-Burke-Ernzerhof functional with « = 0.0, f# = 1.0 and
system-specific IP-tuned y

LDA - local density approximation

LMO - localized molecular orbital

LP — lone pair

MAE - mean absolute deviation

MM - matrix model

MP2 — Mgller-Plesset second-order perturbation method

NBO - natural bond obital

NLO - non-linear optics

NMR - nuclear magnetic resonance

NQCC - nuclear quadrupole coupling constant

OR - optical rotation

PBEO - Perdew-Burke-Ernzerhof hybrid functional with &« = 0.25

PBE - Perdew-Burke-Ernzerhof functional

p-NA — para-nitroaniline

RSE - range-separation exchange

S — singlet

SCE - static correlation error

SOS - sum over states

T — triplet

TD - time dependent

TTP — tetraphenylporphyrin

WEFT - wavefunction theory

XC - exchange-correlation
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Response calculations with KST and TD-KST: The impact of approximations

illustrated by the charge-transfer (CT) problem for excitation energies

When KST and TD-KST are applied to the calculation of atomic and molecular response proper-
ties, the use of approximate functionals reveals problems that are related to the breakdown of KST
in other areas. One particularly well publicized and well understood problem is the treatment of
charge-transfer (CT) excitations by TD-KST linear response theory.' Consider a CT excitation
from a donor (D) to an acceptor (A) moiety separated by a large distance R, with the system over-
all being neutral and possessing a singlet ground state. The CT excited state can be approximated
by a pair of point charges, an electron and a hole, at the distance R. The CT excitation energy is

then roughly (atomic units, a.u.)
Eqop ~IPP —EA* - 1/R (S1)

Here, IP? is the ionization potential of the donor and EA* is the electron affinity of the acceptor.
In the limit R — co the energy approaches E.; ~ IP? — EA”, which is simply the energy it
takes to remove the electron from the donor minus the energy gained from attaching it to the
acceptor. The —1/R term is the electron-hole electrostatic interaction energy in a.u. A two-
orbital (2-level) model derived from time-dependent HF (TD-HF) theory or from TD-KST for
an occupied canonical orbital ¢, centered on the donor and an unoccupied ¢, centered on the

acceptor, with orbitals energies €, £, gives’

+lai j TD-KST
E.rr e, —¢ { [(_l_llé(clla] ( ) + 2[ai|r]_21|ia] (S2)
_[lllrlz |aa] (TD'HF) (singlet excitation)

Here, the shorthand notation means [ab|O|cd] = [ @*(r))@*(r))O(r,, 1)@, (r))@,(ry)d>r d*r,.
For the operator O = r1_21 we have the usual electron-repulsion integrals. The operator f . is for-
mally the frequency-dependent linear response XC kernel. Note that fx. is not the same for singlet
and triplet excitations if it is obtained from a functional that depends on the spin-density, but the
two variants share a common component. With the adiabatic approximation and a semi-local XC
potential, fx(r,r,, @) = fxc(ry) - 6(ry — r)) (also, [ai| fxclial = [aa| fxclii]). The adiabatic
approximation is used for the vast majority of TD-KST computations currently performed. The
term +2[ai|r1‘21 |ia] containing the exchange integral between orbitals ¢, ¢, is common to TD-HF
and TD-KST; it is absent for triplet excitations.® It is important to keep in mind that the orbital
energies and the orbital shapes are different in KST and HF. Further, it is emphasized that the
common term +2[ai|rl‘21 |ia] in Equation (S2) originates from the Coulomb (‘Hartree’) compo-

nent of the potential, which is common to HF and KST except that it is calculated from different
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sets of orbitals. The [ai| fyc|ia] and —[ii|r1‘2l |aa] terms in the TD-KST and TD-HF expressions,
respectively, have their origin in the perturbation of the XC and HF-exchange component of the
potential.

Suppose that the D/A orbitals in question are the highest occupied molecular orbital (HOMO,
H) and the lowest unoccupied MO (LUMO, L). In HF theory, per Koopmans’ theorem, the HOMO-
LUMO gap (HLG), ; —&;, approximates IP°’—EA“. For spatially separated orbitals, the exchange
integral goes to zero much faster than 1/ R and can be neglected. Further, for increasingly spatially
separated orbitals —[ii |r1‘21 |aa] is increasingly well approximated by —1/R. The HF expression
for the two-level model then gives a reasonable approximation for Equation (S1), along with the
correct —1/ R asymptotic behavior at large R.

In a KST setup with a semi-local LDA or GGA XC potential, sometimes referred to as ‘pure’
KST, [ai| fyc|ia] vanishes exponentially for large R similarly to the exchange integral. The —1/R
asymptotic behavior of the CT excitation energy is therefore not obtained. Furthermore, while in
exact KST —ey = IP exactly,”® LDA and GGA potentials typically afford |¢,| < |IP|, where the
difference may easily reach several eV. At the same time, the LUMO approximates an excitation
rather than an electron detachment, ' i.e. typically |e,| < |EA|. As aresult, not only does the TD-
KST CT energy expression miss the asymptotic —1/R but the orbital energy gap is also typically
much smaller than IP” — EA#. In aggregate, this results in sometimes dramatic underestimations
of calculated CT energies. The exact KS potential must obviously yield the correct physics, but it
is evidently missing in semi-local functionals. An example from Reference 11 is shown in Figure
S1, where TD-KST calculations with the semi-local PBE functional are compared with coupled-
cluster calculations. The failure of TD-KST to describe the CT energies is clearly evident.

This problem is inherently related to the wrong asymptotic behavior of approximate KS ground-
state XC potentials V., which should behave as —1/ R for an isolated molecule centered at R = 0.
For approximate semi-local KS functionals, the asymptotic behavior is related to the lack of integer
discontinuities in Vy. as the electron number N passes through integers,'? a feature that the exact
KS functional should produce (see next section for more details). Maitra and Tempel analyzed
TD-KST CT excitations at large R and showed that the asymptotic f . should become strongly
frequency-dependent to obtain CT and local excitations correctly,'® indicating that there is also a
connection of the CT problem with the adiabatic approximation. Ziegler and coworkers came to
a similar conclusion when analyzing results from a recently developed ‘constricted variational’
KST approach for calculations of excitation energies.'*!> CT excitations are well described in
this method!® even with semi-local functionals, and the calculations possibly mimic the use of a
frequency-dependent response kernel in a TD-KST linear response scheme.!”-18
One may think of the asymptotic behavior of the potential in the context of the self-interaction

error in KST. Consider an N-electron molecule that is neutral (i.e. the sum of nuclear charges
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is equal to N), and the potential V' in the Fock operator at a large distance R from the center
of nuclear charges. In HF theory, the potential is V. + V., the sum of the attractive nucleus-
electron potential and the total electronic repulsion Coulomb potential, plus an exact exchange
(eX) term. Each orbital’s contribution to V- and its self-exchange cancel identically. Further, for
large R the eX terms involving a given orbital and other orbitals vanishes. Therefore, at large R
the potential is the positive Coulomb potential of N — 1 electrons, counteracted by the attractive
potential V. of N protons, leaving an asymptotic behavior of —1/R. In KST with approximate
semi-local XC functionals (excluding any explicit self-interaction corrections), the asymptotic Ve
vanishes exponentially with the density at large R instead of canceling the electron’s non-local
self-Coulomb repulsion in V., which causes the potential to lack the —1 /R asymptote.

The wrong asymptotic behavior of the potential in KST calculations with semi-local func-
tionals unsurprisingly also causes problems with the description of excitations to diffuse states.
This deficiency may also have a large impact on response properties that depend on an accurate
description of such states. Take, as an example, the ‘sum-over-states’ (SOS) expression for the

1sotropic frequency-dependent electric dipole-dipole polarizability,

a(w) = % Z

2 _ >
j# Wy — @

w,D?
T

(83)

with @ being the frequency of the perturbing electric field, w; an excitation frequency of the
system out of the ground state ‘0’, and DJZ. =D;-D; the dipole strength calculated from a transition
electric dipole moment D;. For a given approximate form of KST and a given basis set, calculating
a(w) directly from frequency-dependent linear response equations, or from the right-hand side of
Equation (S3) from all possible excitations and transition moments obtained from a TD-KST
calculation,'” gives the same numerical answer.?’ Therefore an approximation that would lead to
a very poor description of an excitation energy or a transition moment in a TD-KST calculation,
for a diffuse, CT, or valence excitation, is also detrimental for refractive properties such as a(w),
optical rotation, and non-linear response.

Shape-corrections®'~2? to the potential have been devised to deal with the poor description of
diffuse states in KST calculations, and to improve the agreement of the HOMO energy with —IP.
However, these methods do not offer clear improvements for CT energies and related problems.
Hybrid GGA functionals including a fixed (global) fraction ¢ of exact exchange (calculated from
the KS determinant using the HF exchange functional) may also alleviate the problems to some
degree. The coefficient ¢y is typically < 0.5. For example, the eX fraction for B3LYP is 0.2, for
PBEQO it is 0.25, and for ‘half-half” functionals such as BHLYP rises to 0.5. For a long-range CT

excitation one would recover only a fraction —cy/ R of the asymptote in Equation (S1), and the
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Figure S1: Calculated lowest CT excitation energy for (E)-N, N-dimethyl-4-(4-nitrostyryl)aniline
(DANS = DANSI) and derivatives DANS#, with longer bridges (n = 2 — 4). Comparison of an
approximate coupled-cluster singles and doubles method (CC2) with TD-KST (PBE functional).
The latter severely underestimates the excitation energies. Data from Reference 11.

asymptotic behavior of the potential would not be fully corrected. However, the fraction of eX
has a strong influence on the value for €, — ¢, in Equation (S2). Popular global hybrid functionals
such as B3LYP and PBEO may perform well for CT excitations if the relevant orbitals of the D and
A moieties have appreciable overlap. However, typically, the shortcomings of the global hybrid

become readily evident in studies of systems with larger D/A separations.'!

IP-tuning and DE minimization of RSE hybrids

Range-separated exchange (RSE)

The idea of combining KST with WFT in a way that switches between the two approaches de-
pending on the separation between two electrons, r,, has been around for some time.?*° One
motivation is that KST is presumably good at describing dynamic short-range (small r,) cor-
relation, while WFT is good for describing ground states that are inherently of multi-reference
character, and ensures correlation at long distance (to obtain vdW interactions), along with the
correct asymptotic behavior of the potential of a molecule in a gas-phase.

Range-separation may take different forms. In a commonly applied version one focuses only
on the exchange. The electron repulsion r1‘2l can be split into a short-range (SR) and a long-range
(LR) part. Since most molecular quantum-chemistry codes employ Gaussian-type orbital (GTO)
basis sets, an error-function based partitioning is frequently adopted for range-separated exchange

(RSE) functionals. A commonly used 3-parameter expression from Reference 27 allows to retain
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global eX and KST fractions of exchange at small and large r,, instead of switching between pure
approximate KS exchange and pure eX:?
1 —|a+ perf (yr a+ pert (yr
L _ [ ( 12)] + ( 12) (S4)

Fia AY) Fia

Here, y is a range-separation parameter. It represents the inverse of a cut-off range around which
the exchange functional switches from (predominantly) one type of exchange to (predominantly)
another type. Commonly used values for y in globally parametrized RSE functionals are in the
range of 0.3 to 0.5 a.u. For molecular applications, usually the second term on the right-hand side
is used for a long-range eX component, while the first term is used for a short-range KS component
of the exchange. The parameter a then quantifies the fraction of eX in the short-range limit, while
a + p gives the fraction of eX in the long-range limit. An asymptotically correct potential of a
molecule in the gas-phase requires @ + f = 1 (LC).

When the function erf(yr,,), switching from zero to one in Equation (S4), is replaced by
1 — exp(—yry,), the exponentially decaying component in the SR part of the range-separation

shown in Equation (S5) is known as the Yukawa potential:

1 _ I —[a+ f(1 —exp(=yr))] + a+ p(1 —exp(=yry,))

Fip Fip Fip

(S5)

This separation was developed for molecular GTO basis calculations by Akinaga and Ten-no.?
It has also been applied in atomic*® and plane-wave type calculations?! for the purpose of range-
separation. Other types of switching functions can be envisioned as well.? Seth and Ziegler
recently used an exponential form of the range separation of r1‘21 for a RSE implementation with
Slater-type orbital (STO) basis sets.*?

Henderson et al. have even considered a three-way range-separation of rl‘zl and focused on the
importance of eX in the middle range for thermochemistry, reaction barriers, and band gaps.®?
A kind of an ‘inverse’ range-separation is used, for instance, in the screened hybrid functional
by Heyd-Scuseria-Ernzerhof (HSE),**3> which has become popular for calculations of extended
periodic systems. Here, the functional has an eX component at short interelectronic distances
which is screened at long range. It has been shown that such a functional performs often better
for band gaps prediction of extended periodic systems than the HF theory, while at the same time
the too small band gaps predicted by non-hybrid functionals are improved significantly. Another
approach, currently less well explored, where the fraction of eX in a hybrid functional is not
constant, is the use of ‘local” hybrid functionals. The fraction of eX in these functionals is position-

and system-dependent and evaluated based on the kinetic energy density. The interested reader is
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referred to References 36 and 37 for details.

For a fully long-range corrected (LC, « + f = 1) RSE functional, a TD-KST calculation of
a CT excitation must produce the correct —1/R asymptotic behavior of Equation (S1) since for
large separations of @, and ¢, the response kernel switches to the TD-HF form in Equation (S2).
Therefore, by design an LC hybrid should produce significant improvements in linear-response
TD-KST calculations of CT excitations. This has indeed been found.?”-* However, it was noted
that a full LC is not always beneficial — at least in functional parametrizations where y is a
fixed predetermined parameter — partially because not every excitation that is labeled CT affords
large separations of the orbitals involved.?’” A Coulomb-attenuated method (CAM) was proposed
accordingly, where the long-range correction is incomplete. For instance, the CAM-B3LYP func-
tional®” uses the range-separation of Equation (S4), with @+ f = 0.65. It was also realized quickly
that parametrizations of RSE functionals that are suitable for CT excitations are not necessarily
simultaneously useful for other applications such as the determination of atomization energies,
molecular geometries or reaction barriers, and the performance of such functionals is sensitive to
the choice of a, #, and y parameters.**~° In particular, a strong dependence of calculated ground-

and excited-state properties on the range-separation parameter has been revealed.

‘One-dimensional’ and ‘two-dimensional’ IP-tuning of RSE hybrids

For global parametrizations of RSE functionals, y is typically determined by best fits to refer-
ence data such as thermochemical properties of a selected molecular training set. However, re-
parametrization — for example as in the case of the popular CAM-B3LYP functional — for spe-
cific purposes or a given class of molecules has been attempted almost as soon as a functional
was devised originally. Baer, et al.?’:>! showed that y is a functional of the density and should
be system-dependent (and density-dependent). Indeed, it was quickly shown that a description
of numerous properties / molecules, which are problematic for conventional (TD-)KST, can be
improved dramatically using a RSE functional with the range-separation parameter determined
individually for a system of interest.’>"% More recently it has been stated in no uncertain terms
that the use of a global (i.e. system-independent) y is “doomed to fail dramatically” for larger z-
conjugated systems, making an optimal tuning procedure “an unavoidable step” when using RSE
functionals to study such materials.®

Herein, we provide a detailed description of the IP-tuning approach and the minimization of

the DE. To illustrate various concepts, calculations were carried out for para-nitroaniline (p-NA):

H2NONO2

The molecule is a 7-conjugated donor = amino / acceptor = nitro (D/A) ‘push-pull’ chromophore.
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p-NA is frequently used in computational studies as a benchmark system for molecular response
properties, in particular regarding NLO response. There is a strong physically meaningful 7-
delocalization that goes along with the ‘push-pull” mechanism, and the molecule affords a low-
energy CT excitation with a large transition dipole moment in the direction of the N-N axis.

p-NA has previously been considered by us for tuning in Reference 11. Additional results
were generated with the Northwest Computational Chemistry (NWChem) package version 6.3.%
A planar C,, structure for p-NA was taken from Reference 67. The calculations employed a
triple-{ valence polarized (TZVP) Gaussian-type basis set,®® along with the functionals PBE®-7°
and PBEQ’"7? as well as non-tuned and tuned RSE variants of PBE (vide infra) using the error
function partitioning of Equation (S4). HF computations were performed as well. Some calcu-
lations employed the CAM-B3LYP functional.?” The NBO 5.0 program’ was used to generate
localized orbitals and to analyze the extent of their delocalization.”*”> To examine the dependency
of the energy on the fractional electron number, a series of single-point energy calculations, using
fractional frontier orbital occupations leading to fractional total electron numbers, was performed
utilizing a code implemented previously by one of the authors.”®

An overview of the calculated numerical results, including a variety of energy gaps and a
characterization of the amine N x lone-pair (LP) orbital is given in Table S1. The table also lists
experimental and calculated reference data available in the literature. Data pertaining to the IP-
tuning and the DE are presented in Figure S2, S3, and S4. Figure S5 illustrates the behavior of

the energy for fractional-spin states of the p-NA anion as a test for the static correlation error.
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An optimal tuning of the range-separation parameter y in Equations (S4), (S5), or related ex-
pressions is easy to perform. The most frequently used approach®* is based on the knowledge that
in exact KST for a system with N electrons the condition —& ,;(N) = IP(N ) should be satisfied.””
Here, € ;(N) is the HOMO energy of the N-electron system taken in the limit of approaching in-
teger N from below, and IP(N) = E(N — 1) — E(N) is the vertical ionization potential. With
an approximate RSE functional, €,(/N) and IP(N) have a molecule-specific dependence on the
range-separation parameter y. For a given system, one may therefore justify a non-empirical se-
lection of y by requiring that®!

£(Ny) + IP(Ny) = 0 (S6)

where N, indicates the ‘normal’ electron number of the target system (the electron number of
an atom or molecule of interest in its charge state of interest (often neutral)). IP(N,) is calcu-
lated as the difference between the total energy of the systems with N, and N, — 1 electrons.
Further, € ;(N,)) and IP(V,)) in Equation (S6) are based on the same functional / parametrization.
Evaluation of €,(N,) and IP(N,) for an array of different range-separation parameters y, typi-
cally between 0 and 0.5 atomic units, reveals quickly which parameter value leads to the condition
(S6) being satisfied if at all possible. This y* value determines an optimally tuned (IP-tuned, or
y-tuned) RSE functional for a molecule of interest.

The IP criterion (S6) holds for varying electron numbers N for a given external potential
(the set of nuclear charges in their chosen positions).?> Due to the approximate nature of the
functionals used in computations, the same value of y may not satisfy Equation (S6) exactly for
several different N. Following References 53 and 57, one thus may attempt to optimize the IP

criterion as best as possible by minimizing®®

J2= Y [en(Ny + i)+ IP(Ny + )] (S7)

1

Since multiply charged states with electron numbers deviating strongly from N, can be problem-
atic to deal with, the most commonly applied minimization uses i = 0, 1. In other words, using
this criterion the HOMO of the N -electron species and the HOMO of the N+ 1-electron species
are simultaneously IP-tuned to the best degree possible. Modeling of photoionization spectra of
organic molecules in Reference 87 required to tune additional orbitals below the HOMO, with
good success. Other possible tuning criteria are discussed in References 53, 56, 88, and 89.
Pioneering work on tuned RSE functionals employed fully long-range corrected functionals
(LC) with no eX component at r,, — 0, corresponding to « = 0, f/ = 1 in Equations (S4) and
(S5). In References 76 and 90 we obtained numerical evidence that a range-separated functional

may also be successfully IP-tuned for @ # 0 values, but a functional should be fully long-range
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Figure S2: p-NA. J? of Equation (S7) for i € {0,1} as a function of the range-separation pa-
rameter y calculated with LC-PBEO (panel a) and CAM-B3LYP (panel b). For LC-PBEOQ, the
numerical value of the optimal y is listed next to the minimum. No minimum of J?2 is found in
the case of CAM-B3LYP even for y values higher than the range shown in panel a.

corrected to be tunable for y in the sense of Equation (S6), i.e. a+ f = 1. This requirement may be
related to the finding that accurate continuum (lacking an integer discontinuity) spin-dependent
XC potentials should not vanish asymptotically.”! Rather, one has a generalized Koopmans’ the-
orem &7, (N) + IP°(N) = Vic(o0) (here, o is a spin index to distinguish 1 from | orbitals), with
V¢c(o0) being nonzero. The condition implies that —e, # IP, which is certainly what is found
numerically with approximate continuum functionals. A nonzero fraction of the DFT exchange
potential from a continuum functional in the long-range part of an RSE functional may therefore
prevent the IP condition (S6) from being satisfied. In contrast, the correct asymptotic limit of the
XC potential afforded by approximate LC RSE functionals by construction, i.e. by switching to
100% eX at large r,, is Vyc(c0) = 0, and therefore IP-tuning is possible.

To illustrate the concepts discussed so far, Figure S2 presents calculated values of J2 of Equa-
tion (S7) for two RSE functionals as a function of the range-separation parameter y for our p-NA
example. As expected, for LC-PBEQ with & = 0.25, # = 0.75 an obvious minimum of J? is found
for y* = 0.21, with J?[y*] essentially zero. Therefore, Equation (S6) is satisfied for the HOMO
energies of the N, and N,+1 electron species. In the case of the popular CAM-B3LYP functional,
which has @« = 0.19 and f = 0.46 and therefore switches to only 65% eX at large interelectronic
distances, no clear minimum of J2 is found. As discussed above, this finding may be related to
the non-vanishing KS exchange in the limit of r;, — 0.

The optimal range-separation parameter for p-NA with the LC-PBEOQ functional is signifi-
cantly smaller than typical values of 0.3 to 0.5 a.u. used in global parametrizations of LC func-
tionals. Since y represents the inverse of a distance, this implies that for p-NA the switch to

full eX takes place around a larger interelectronic distance. This is typically found for larger
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Figure S3: p-NA. Panel a: Energy as a function of fractional electron number AN relative to
neutral system (AN = 0) for selected functionals and HF. Numerical values in parentheses (C_,
C. ) provide measures of curvature obtained from fitting quadratic functions to the data sets in the
electron-deficient and electron-rich regime, respectively (AN < 0, AN > 0). Panel b: Molecular
orbital energies (eV) for HOMO-1 (blue), HOMO (red), and LUMO (green) calculated with AN
using PBE and optimally a-y tuned functional LC-PBEh-3. Panel c¢: Isosurface (0.03 a.u.) of
amine N lone-pair ‘natural LMO’7* based on calculations with LC-PBEh-3. The contour plot
was taken in a slice approx. 0.5A above and parallel to the molecular plane with contour values
from 0.03 to 1.0 a.u. The numbers listed correspond to occupancy of a parent NBO (Occ.) and
percetages of amine N (%N) and neighboring aromatic C (%C) atomic hybrid contributions. LC-3
= LC-PBEh-3 parametrization of Table S2 and Figure S4.

r-conjugated molecules.!!-60-64.87.92.93 T gystems with spatially more extended conjugation (i.e.
r-delocalization occurs over a larger range) the switch to eX with an IP-tuned functional tends
to occur at larger interelectronic distances. In fact, the inverse of y has been associated with the

spatial extent of the conjugation.%%-%2

For comparison, y = 0.3 to 0.4 a.u. represents a switching
distance of about 1.8 to 1.3 A which brackets the linear extension of a C—C single bond.

Perdew et al. in Reference 7 demonstrated two interconnected properties of KST: (i) a linear
behavior of the exact total energy versus fractional electron numbers between integers, and (i7)
a discontinuous change of the local exact KS exchange-correlation potential at integer electron
numbers (integer discontinuity). Commonly used approximate exchange-correlation functionals
violate these requirements which may cause substantial errors in predicted properties. For in-
stance, as pointed out above the lack of the integer discontinuity is interconnected with the CT

problem of linear response TD-KST.!? Regarding point (i), as the exact total energy, E(N, +AN)
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varies linearly between integer electron numbers N,”-*% the slope of each segment is equal to
—IP of the species with integer N, , electrons.

When the exact energy E(N, + AN) is plotted for negative AN between —1 and O the slope
is equal to —IP(V,)). For the same molecule, the slope of E(N,+ AN with positive AN between
0 and +1 is equal to —=IP(N, + 1) = —EA(V,)). Atinteger N,, the slope of E(N; + AN) changes
therefore discontinuously unless EA(N;) and IP(N,) would happen to coincide numerically. In
the following, unless needed for clarity we omit N, in the notation and simply write E(AN).

Approximate KST functionals do not generally produce the correct straight-line segment be-
havior of E(A N) and the discontinuous change in the slope even if they perform well in predicting
the energy at integer N,. Instead, there may be pronounced curvature in E(AN) between integers
due to the approximations. As Yang & coworkers and others have discussed in detail, the E(AN)
curvature is an indication of an unphysical delocalization error (DE) that is related to the one-
and many-electron self-interaction problem.!?6® Positive curvature (referred to by Yang and
coworkers as convex behavior, or negative deviation of the E(AN) curve from linear) indicates
an unphysical too strong delocalization of the electronic structure. Conversely, negative curvature
(concave behavior, or positive deviation of the E(AN) curve from linear) indicates a too strongly
localized (not sufficiently delocalized) electronic structure (sometimes referred to as localization
error). Generally, LDA, GGA, and global hybrid functionals with typical (10 to 30%) fractions
of eX produce positive curvature, convex behavior i.e. too strong delocalization, while HF and
high magnitude eX-component functionals calculations produce negative curvature, the concave
behavior being associated with a too strongly localized electronic system. Recently, a relationship
of E(AN) curvature with the lack of integer discontinuities in approximate KST has been noted.®3
The DE manifests directly in calculated chemical and physical properties of molecules.!-*3-12 For
instance, there is a tendency of approximate density functionals to overestimate the covalent char-
acter of dative ligand—metal bonds, or the character of charge-transfer (CT) in the ground state
of ‘push-pull’ organic donor-acceptor z-conjugated chromophores. The DE plays an important
role in the aforementioned failure of simple popular functions to describe CT excitations by linear
response TD-KST.

As aforementioned, plots of total energies for fractional electron numbers may serve as a very

informative diagnostic tool for the DE.%!!:34.65.76.88,90.93,96,100-113

Figure S3a shows the energy
of p-NA calculated with HF and selected standard functionals for fractional electron numbers,
E(AN), with AN ranging between —1 and +1. The figure includes additional results that are

discussed below. Quadratic fits!'*

of E(AN) were generated separately in the electron-deficient
(AN < 0) and electron-rich (AN > 0) regimes. The coefficients of (AN)?, given as curvatures in
the figure, provide numerical measures of the deviation of E(AN) from linearity. The results for

p-NA reflect trends that are typically observed in such calculations. Negative curvature (convex
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behavior) in the HF calculations indicates insufficient delocalization, i.e. a too strong localization
of the p-NA electronic structure. The ‘pure’ GGA functional PBE produces pronounced positive
curvature of E(A N) (concave behavior), which is indicative of over-delocalization. A too strongly
delocalized electronic structure arises also from the calculations with the hybrid functional PBEO,
but to a lesser degree than with PBE due to the 25% eX component in the functional.

The canonical MOs produced by a KST calculation are delocalized by construction and there-
fore it is difficult to establish a visual or numerical link of these MOs with the extent of the DE.
Localization algorithms can be used to localize the orbitals spatially as best as possible for a given
input density matrix. There are molecule-specific limits posed by quantum mechanics as to how
well the orbitals of a molecule can be localized, depending on the extent of physically meaningful
delocalization and potentially because of the DE. For instance, even in the absence of the DE one
would expect that the 7 orbitals of a delocalized conjugated z-system cannot be fully localized to
the one-center lone-pair and two-center bonding ‘chemists’s orbitals’ shown in textbooks. Exam-
ples can be found in Reference 115. As demonstrated by Figure S3 and Table S1, the increasing
delocalization of the p-NA electronic structure when going from HF via PBEO to PBE due to the
DE, as measured by E(AN) curvature, is reflected in the degree of delocalization of the amine
nitrogen z lone-pair orbital represented by the corresponding LMO. A deviation of the occupa-
tion of the corresponding NBO from 2 (or 1 for spin-unrestricted calculations) is also a measure
of delocalization since the NBOs represent an idealized set of orthonormal one- and two-center
orbitals for the system onto which the actual electronic structure is mapped as best as possible. For
p-NA, the HF calculation produces a zLP(N) LMO with 5% of its density on the neighboring car-
bon atom of the aromatic ring and the corresponding 1.83 occupation of the idealized N-centered
lone-pair NBO. Due to the negative DE we argue that the 5% number is too small and the 1.83
number is too high, i.e. the calculation does not represent the physically meaningful extent of the
r-delocalization of p-NA. On the other hand, PBE gives an increase of the carbon percentage to
8% and a drop of the NBO occupation to 1.75. Here, due to the large positive DE the orbital is
too delocalized onto the aryl moiety.

For a global hybrid functional, without considering an IP-tuning, a curvature minimization
with respect to the fraction of exact exchange has been employed by Sai et al.''® to investigate
hole localization in molecular crystals by calculations with periodic boundary conditions. As the
E(AN) curvature usually changes sign between HF calculations and a pure GGA functional, an
appropriate fraction of exact exchange in a global hybrid minimizing E(AN) curvature system-
specifically ought to be possible in many cases. It has also been noticed that RSE functionals tend
to produce low curvature of E(AN) to begin with,3*65:96.103.104.107 The observations prompted
Yang and coworkers to develop functionals with small DE. The functional parameters were de-

termined to minimize the deviation from the exact linearity condition for the carbon atom and to
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Figure S4: p-NA. System-specific tuning of long-range corrected hybrid variant of PBE. Panel
a: 3D (left) and contour (right) plot of J? (in eV?) as function of a and y, with @ + f = 1. The
thick (orange) line corresponds to J? ~ 0 along which 12 parametrization were chosen (Table
S2). Panel b: Selected corresponding plots of J2 versus « for a given y. The numerical values of
the optimal « are listed using color code.

provide a good performance for thermochemistry for a molecular test set at the same time.'* An
example is a re-parametrized version of CAM-B3LYP, rCAM-B3LYP with a = 0.18, g = 0.95,
and y = 0.33. Although rCAM-B3LYP was successfully applied to a number of problematic

100,101,104 ¢ does not necessarily outperform standard RSE functionals.”® Vydrov et al.!®

systems,
conjectured that there is always some value of the range-separation parameter for a given RSE
functional in such a way that error cancelation leads to a (nearly) straight-line behavior of E(AN).
We have demonstrated in References 76 and 109 that such a value may be determined approxi-
mately via IP-tuning. Furthermore, as we showed in Reference 90, a combination of system-
specific IP-tuning of an RSE functional with simultaneous minimization of the DE can deliver
significantly improved performance in ground-state property calculations.

As depicted in Figure S3a, the parametrization of LC-PBEO with a standard y = 0.3 a.u.
and a/f = 0.25/0.75 indeed outperforms HF and both standard functionals, PBE and PBEQ,
in the sense that the delocalization error for the p-NA molecule is much smaller. The situation
improves even further when the IP-tuned system-specific y value (0.2 a.u.) from IP-tuning is used
(LC-PBEQ*), resulting in a very small DE. It may already be small enough to ensure a correct
description of the electronic structure of the molecule and its properties. However, in some cases,
a near-perfect straight-line segment behavior of E(AN) is needed. This leads to the question
how to remove a residual DE. The range-separations of 1/r, in Equations (S4) and (S5) have 3
unknown parameters. As we are requiring a full long-range correction, this implies @ + f = 1,
i.e. f = 1 — a, which reduces the number of adjustable parameters to two. In Reference 90 we

proposed a two-dimensional tuning (2DT, a-y tuning), described here using our p-NA example.
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Table S2: LC-PBEh parametrizations derived from two-dimensional tuning for p-NA. ¢

LC-PBEh-# Parametrization J? Coefficients of (AN)>
y a p AN <0 AN >0

1 0.000 0.684 0.316 9.06E-05 0.022 0.015
2 0.025 0.655 0.345 1.63E-05 0.014 0.017
3 0.050 0.622 0.378 7.04E-05 0.001 0.015
4 0.075 0.582 0.418 3.08E-04 -0.005 0.019
5 0.100 0.537 0.463 6.94E-04 -0.014 0.021
6 0.125 0485 0.515 1.18E-03 -0.020 0.025
7 0.150 0428 0.572 1.70E-03 -0.027 0.027
8 0.175 0.362 0.638 2.19E-03 -0.029 0.034
9 0.200 0.291 0.709 2.56E-03 -0.033 0.036
10 0.225 0.212 0.788 2.79E-03 -0.035 0.040
11 0250 0.127 0.873 2.85E-03 -0.037 0.041
12 0.275 0.031 0.969 2.77E-03 -0.035 0.046

@ See also Figures S4 and S3, and compare data from Table S1. y in a.u., J? in eV?, coefficients
of (AN)?in eV.

Figure S4a displays the J? criterion of Equation (S7) for p-NA obtained with a two-dimensional
11 x 11 grid of @/y points with a varying between 0 and 1, and y varying between 0 and 0.5 a.u.,
with the constraint f = 1 — «a to satisfy the LC condition, followed by interpolation. The thick
orange line in the ‘valley’ indicates an essentially continuous range of parameter sets for which J?2
is close to zero, while for values of @ above approximately 0.7 or y above approximately 0.28 an IP
tuning is not possible (compare Figure S4b). While the exact boundaries depend on the molecule,
we have since obtained similar looking plots for a considerable number of other molecules.
Within the tune-able a /y sector, 12 IP-tuned parameter combinations for p-NA were selected
as indicated in Figure S4a, and E(AN) plots were generated for each. The parameters, the cal-
culated J? based on Equation (S7), as well as the E(AN) curvatures are collected in Table S2.
All parametrizations satisfy the optimal tuning criterion to a satisfactory degree (for higher values
of a the J? are somewhat lower), prompting the question which one should be used? As shown
for many examples, calculated ground-state and response properties may be very sensitive to the
value of @. Our suggestion in Reference 90 was to select the best tuned @/y combination by the
criterion of the least DE overall as quantified in the curvature values in Table S2. For p-NA, this
unambiguously leads to parametrization #3. The 2DT approach is numerically more involved than
the simple one-dimensional tuning by an IP criterion alone (1DT, y-tuning), but it may be nec-
essary for KST calculations of molecular properties that are particularly sensitive to the DE. One
of the most representative example, the electric field gradient at the copper nucleus in the CuCl

molecule, is discussed in Reference 90.
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Janak’s theorem states that the derivative of the KST total energy with respect to the occupa-
tion number of a given orbital is equal to the energy of the orbital.>>!!” If the orbital in question
is the HOMO, it gives relation d E/d N = €,(N). Combined with the straight-line segment be-
havior of the exact E(AN) this leads to the conclusion that in exact KST, € ,(AN) calculated
with fractional electron numbers should be constant between integers and adopt the value of —IP
of the species with next higher integer N,. When passing through an integer electron number,
there is a discontinuous change in the value of €, because the slope of E(AN) and the IP change
discontinuously. Part of the discontinuous change of &/, is simply due to the fact that at integer N,
a different orbital becomes the HOMO. Furthermore, in exact KST the XC potential is supposed
to exhibit an integer (derivative) discontinuity, such that at integer electron numbers N, the poten-
tial ‘jumps’ globally by some system-dependent constant amount A(N,).” 118119 Consequently, it
follows that’™

—e,(N;) =IP(N)) (S8a)
—~€}(N,) = EA(N,) (S8b)

where in the case of exact KST the value of €, (V,) is taken in the limit of approaching the integer
from below (superscript —), and £, (V) is taken as the limit approaching N, from above (super-
script +), due to the integer discontinuity. L indicates the LUMO and EA(N,) = IP(N,,,) is the
electron affinity.

A(N;) canreach up to several eV, as based on numerical estimates for a variety of systems, 20123
and has crucial physical consequences for a description of fundamental gap, molecular dissoci-
ation, charge-transfer excitations, and quantum transport effects.!:7-%8 118:123-133 = Ap inability to
model this phenomenon by continuum XC potentials leads to their nonzero asymptotic limit and
the problems with CT excitations as mentioned above. In the absence of a A(N,), in approximate
KST calculations there is no distinction as to from which side the integer N, is approached in
Equations (S8), but the orbital energies may then also represent very poor approximations of IP
and EA. This situation is depicted for p-NA in Figure S3b for the PBE functional. The orbital
energies vary approximate linearly with AN, and at AN = 0 (NN,)) the orbital energy gap is only
about 1/3 of the correct value of IP-EA. The behavior is in stark contrast to the 2DT LC functional
LC-PBEh-3. Here, the HOMO energy stays constant between integers, which goes along with
the very small E(AN) curvatures, and jumps at N, from —IP to —EA of the neutral molecule.
The functional is not capable of delivering an integer discontinuity, and therefore the LUMO for
AN < 0 makes a smooth transition to the HOMO for AN > 0. Due to the IP-tuning and the
lack of the additional jump in the potential from an integer discontinuity, at N, the orbital energy

gap represents almost perfectly the calculated AE, = IP — EA, as seen in Table S1. At the same
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time, this functional gives an optical gap AE,, (= lowest electronic excitation energy) of 4.76 eV,
which is only 0.1 eV above an EOM-CCSD reference value, while PBEO and in particular PBE
significantly underestimate the excitation energy, in part due to its CT character.

An unphysical DE is not the only pitfall of approximate functionals. In References 1 and 134,
Yang and collaborators also discussed the static correlation error (SCE), which manifests itself in
an incorrect description of degenerate and nearly-degenerate electronic states commonly occuring
in transition-metal chemistry, strongly correlated systems, or during bond breaking. Prime exam-
ples where problems attributed to the SCE show up therefore include the dissociation of chemical
bonds, bonding in metal dimers, or the band structure of Mott insulators and high-temperature
superconductors.'?>13¢ The concept of SCE has been associated with another condition that the
exact KS density functional should satisfy, namely that the total energy for fractional-spin states
should be constant and equal to the energy of the corresponding integer-spin states.'** A violation
of the constancy condition of E versus fractional spins is therefore indicative of the SCE. ‘Inte-
ger’ spin and ‘fractional’ spin refers here to the number of +1/2 and —1/2 electron spins, i.e. in
relation to the integrated spin density, not the spin quantum number or spin expectation values.

Figure S5 presents numerical measures of the SCE calculated as a difference between energies
for fractional spins and the energy of integer spin state for our example case para-nitroaniline. For
simplicity, an unpaired electron has been added, and the calculations were performed for the p-
NA radical anion. The fractional spin was changed from —1 (zero a-spin (1), full f-spin (])
of the unpaired electron, (S,) = —1/2) through 0 (0.5 1, 0.5 |, (S,) = 0)to +1 (1 1,0 |,
(S,) = +1/2). Due to energetic degeneracy of all the intermediate fractional-spin states, as for
example (0.2 1, 0.8 |) and (0.8 1, 0.2 |), the plots are symmetric around 0.5. The results show that
HF and all hybrid functionals give a significant SCE. The smallest SCE is obtained by the non-
hybrid PBE functional. These findings match data reported in literature for atoms.!?”-13* The tuned
LC functionals, 1DT LC-PBEO* and 2DT LC-PBEh-3, also reveal a significant static correlation
error, larger than those for PBE and PBEO. Therefore, while the tuning evidently minimizes the
delocalization error there is little benefit in terms of the SCE.

To summarize this section: Suppose that (i) IP-tuning of an approximate RSE hybrid GGA
functional by criterion (S7) can be achieved with vanishing J2, and (ii) that a parametrization
can be found for which the curvature in E(AN) vanishes for AN in the range —1 to +1. This
implies that ey(N, + AN) = IP(N,)) = constant for AN between —1 and 0, and ey(N, + AN) =
IP(N,+ 1) = EA(N,) = constant for AN between 0 and +1. Since such a functional does not
have an additional integer discontinuity, —g; (IN,)) is then identical to EA(N,)) because the LUMO
energy of the N-electron system connects smoothly to the HOMO energy of the system with a
fractional extra electron. The HOMO energies for the systems with negative and positive AN are

constant between N, — 1 and N,,, and between N, and N, + 1, respectively. The conditions in

S20



- HF oo

NH2_| e, LC-PBE0 —o—
o e LC-PBEO*

LC-PBEh-3 —&—

: - PBEO —4—

PBE ——

AE/ eV

I I 3
on 0.2/0.8 0.4/0.6 0.6/0.4 0.8/0.2 1/0
o/

Figure S5: Energy of the radical anion of para-nitroaniline relative to the (S,) = +1/2 doublet,
calculated with fractional spins with a selection of functionals and HF theory. Splines fits were
added to guide the eye.

Equations (S8) would then be satisfied exactly, which is part of the reason for the successful treat-
ment of long-range CT excitations with an optimally tuned LC functional. At large separations R
of the donor and acceptor moieties, the approximate form of the CT energy in Equation (S2) for the
LC RSE functional corresponds to TD-HF, with the —[ii| r1_21 |aa] term being well approximated by
—1/R. Together with (S8), one obtains the expected behavior, Equation (S1). Without elimina-
tion of residual DE, an IP-tuned functional may not reproduce Equations (S8) exactly. Often, the
performance is already good without explicit consideration of the DE for the reason that IP-tuned
functionals tend to afford much smaller DEs than GGAs and global hybrids. The two-dimensional
tuning introduced by the authors in Reference 90 and outlined above was subsequently adopted by

157

Refaely-Abramson et al.®’ in order to obtain photo-electron spectra of polyaromatic hydrocarbon

molecules that were in excellent agreement with quasi-particle energies from GW many-body cal-

culations.!?’

As demonstrated with the radical ion calculations presented in Figure S5, IP-tuning
and DE minimization may go along with an increase of the SCE. Despite this and some other
shortcomings>! ! the ‘optimal tuning’ has attracted much interest, as indicated by an increasing

number of publications on this topic.!!:88.8%.92.93,108, 110-112,138-147
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