Benzoyl Phenyltelluride as Highly Reactive Visible Light TERP-Reagent for Controlled Radical Polymerization

Stephan Benedikt^I, Norbert Moszner^{II} and Robert Liska^I

^IInstitute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry, Vienna
University of Technology, Getreidemarkt 9/163/MC, 1060 Vienna, Austria, and ^{II}IVOCLAR
VIVADENT AG, Bendererstrasse 2, FL-9494 Schaan, Liechtenstein, both part of the CDLaboratory for digital and restorative dentistry

CORRESPONDING AUTHOR: Robert Liska

e-mail: Robert.Liska@tuwien.ac.at, Tel: +43-1-58801-163614, Fax: +43-1-58801-16299

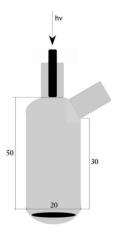
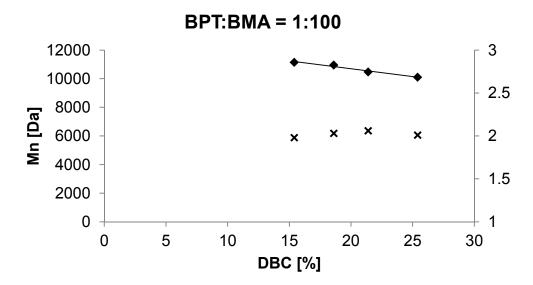
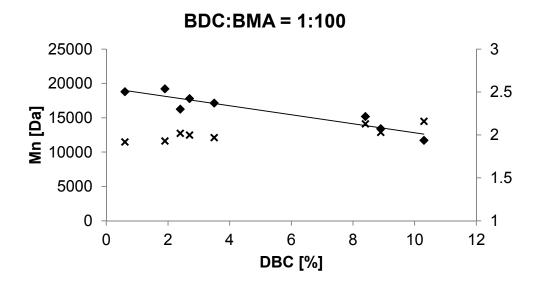
Supporting Information:

List of contents:

Figure S1. Photoreactor.

Figure S2 & S3. Polymerization kinetics of BMA with BPT and BDC.

Figure S4. Photo-DSC measurements of NAM with **BPT** in different concentrations and with different light intensities.

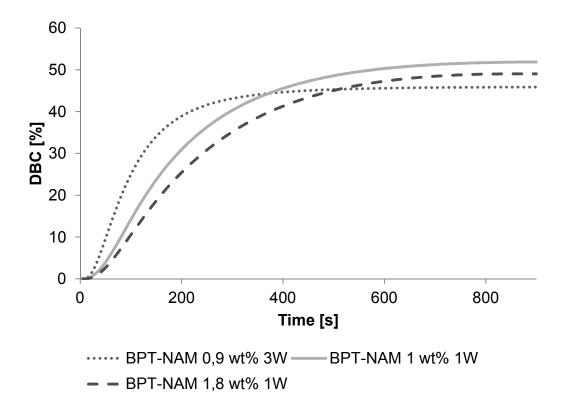

Figure S1. Scheme of the photoreactor used for kinetic measurements with dimension in [mm].

Figure S2. Number-average molecular weight M_n (diamonds) and PDI (crosses) vs. double bond conversion (DBC) plot for **BPT** with BMA in bulk determined with photoreactor experiments.

Figure S3. Number-average molecular weight M_n (diamonds) and PDI (crosses) vs. double bond conversion (DBC) plot for **BDC** with BMA in bulk determined with photoreactor experiments.

Figure S4. Double bond conversion DBC [%] vs. time [s] for **BPT** in NAM determined with photo-DSC experiments. Graph is showing different concentrations and irradiation intensities.