SUPPORTING INFORMATION

Binding of a Monoclonal Antibody to the Phospholamban Cytoplasmic Domain

Interferes with the Channel Activity of Phospholamban Reconstituted in a Tethered

Bilayer Lipid Membrane

Serena Smeazzetto,[†] Alessio Sacconi,[†] Adrian L. Schwan,[‡] Giancarlo Margheri,[§] Francesco Tadini-Buoninsegni*[†]

[†]Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy

[‡]Department of Chemistry, University of Guelph, Guelph, ON Canada, N1G 2W1

§Institute for Complex Systems, National Research Council, 50019 Sesto Fiorentino, Italy

*Francesco Tadini-Buoninsegni, Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy,

Phone: +39-055-4573239; Fax: +39-055-4573142; E-mail: francesco.tadini@unifi.it

Figure S1. Impedance spectra were obtained by plotting log(Z) (logarithm of impedance) versus log(f) (logarithm of frequency) (A), and phase angle versus log(f) (B) for a tBLM containing no PLN (filled squares), and following PLN reconstitution in the absence (empty circles) or presence of AbPLN (empty triangles) at an applied electrode potentials of -0.1 V (versus Ag/AgCl/0.1M KCl). The solid lines represent fitting curves of the EIS spectra by the equivalent circuit model shown in Fig. 1 (main text). The model parameters are reported in Table S1.

	CPE	α	CPE _{pores}	α_{pores}	R _{pores}
	$\left(\mu F \cdot cm^{-2} s^{(\alpha-1)}\right)$		$(\mu F \cdot cm^{-2} s^{(\alpha_{pores}-1)})$		$(k\Omega \cdot cm^2)$
tBLM	0.63 ± 0.05	0.98 ± 0.02	0.93 ± 0.1	0.54 ± 0.02	193 ± 15
tBLM + PLN	0.67 ± 0.05	0.99 ± 0.02	4.12 ± 0.5	0.70 ± 0.02	28 ± 5
(overnight incubation)					
tBLM + PLN + AbPLN	0.66 ± 0.05	0.98 ± 0.02	2.37 ± 0.05	0.73 ± 0.02	201 ± 10

Table S1. Model parameters obtained by fitting the equivalent circuit shown in Fig. 1 (main text) to the EIS spectra of Fig. S1 (A and B). The error gives the deviation from the fit.

Figure S2. Impedance spectra were obtained by plotting log(Z) (logarithm of impedance) versus log(f) (logarithm of frequency) (A), and phase angle versus log(f) (B) for a tBLM containing no PLN (filled squares), and following PLN reconstitution in the absence (empty circles) or presence of AbPLN (empty triangles) at an applied electrode potentials of 0.0 V (versus Ag/AgCl/0.1M KCl). The solid lines represent fitting curves of the EIS spectra by the equivalent circuit model shown in Fig. 1 (main text). The model parameters are reported in Table S2.

	СРЕ	α	CPE _{pores}	α_{pores}	R _{pores}
	$\left(\mu F \cdot cm^{-2} s^{(\alpha-1)}\right)$		$\left (\mu F \cdot cm^{-2} s^{(\alpha_{pores}-1)}) \right $		$(k\Omega \cdot cm^2)$
tBLM	0.61 ± 0.05	0.98 ± 0.02	0.93 ± 0.1	0.51 ± 0.02	204 ± 15
tBLM + PLN	0.63 ± 0.05	0.99 ± 0.02	3.82 ± 0.5	0.75 ± 0.02	35 ± 5
(overnight incubation)					
tBLM + PLN + AbPLN	0.65 ± 0.05	0.98 ± 0.02	1.94 ± 0.05	0.63 ± 0.02	187 ± 10
	0.02 = 0.02	0.50 = 0.02	1.5. = 0.03	0.02 = 0.02	10, = 10

Table S2. Model parameters obtained by fitting the equivalent circuit shown in Fig. 1 (main text) to the EIS spectra of Fig. S2 (A and B). The error gives the deviation from the fit.

Figure S3. Impedance spectra were obtained by plotting log(Z) (logarithm of impedance) versus log(f) (logarithm of frequency) (A), and phase angle versus log(f) (B) for a tBLM containing no PLN (filled squares), and following PLN reconstitution in the absence (empty circles) or presence of AbPLN (empty triangles) at an applied electrode potentials of 0.1 V (versus Ag/AgCl/0.1M KCl). The solid lines represent fitting curves of the EIS spectra by the equivalent circuit model shown in Fig. 1 (main text). The model parameters are reported in Table S3.

	CPE	α	CPE _{pores}	α_{pores}	R _{pores}
	$\left(\mu F \cdot cm^{-2} s^{(\alpha-1)}\right)$		$\left (\mu F \cdot cm^{-2} s^{(\alpha_{pores}-1)}) \right $		$(k\Omega \cdot cm^2)$
tBLM	0.63 ± 0.05	0.99 ± 0.02	0.96 ± 0.1	0.52 ± 0.02	208 ± 15
tBLM + PLN	0.63 ± 0.05	0.99 ± 0.02	4.22 ± 0.5	0.77 ± 0.02	42 ± 5
(overnight incubation)					
tBLM + PLN + AbPLN	0.67 ± 0.05	0.98 ± 0.02	1.64 ± 0.05	0.65 ± 0.02	191 ± 15

Table S3. Model parameters obtained by fitting the equivalent circuit shown in Fig. 1 (main text) to the EIS spectra of Fig. S3 (A and B). The error gives the deviation from the fit.