SUPPORTING INFORMATION Binding of a Monoclonal Antibody to the Phospholamban Cytoplasmic Domain Interferes with the Channel Activity of Phospholamban Reconstituted in a Tethered Bilayer Lipid Membrane Serena Smeazzetto,[†] Alessio Sacconi,[†] Adrian L. Schwan,[‡] Giancarlo Margheri,[§] Francesco Tadini-Buoninsegni*[†] [†]Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy [‡]Department of Chemistry, University of Guelph, Guelph, ON Canada, N1G 2W1 §Institute for Complex Systems, National Research Council, 50019 Sesto Fiorentino, Italy *Francesco Tadini-Buoninsegni, Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy, Phone: +39-055-4573239; Fax: +39-055-4573142; E-mail: francesco.tadini@unifi.it **Figure S1**. Impedance spectra were obtained by plotting log(Z) (logarithm of impedance) versus log(f) (logarithm of frequency) (A), and phase angle versus log(f) (B) for a tBLM containing no PLN (filled squares), and following PLN reconstitution in the absence (empty circles) or presence of AbPLN (empty triangles) at an applied electrode potentials of -0.1 V (versus Ag/AgCl/0.1M KCl). The solid lines represent fitting curves of the EIS spectra by the equivalent circuit model shown in Fig. 1 (main text). The model parameters are reported in Table S1. | | CPE | α | CPE _{pores} | α_{pores} | R _{pores} | |------------------------|---|-----------------|--|---------------------------|------------------------| | | $\left(\mu F \cdot cm^{-2} s^{(\alpha-1)}\right)$ | | $(\mu F \cdot cm^{-2} s^{(\alpha_{pores}-1)})$ | | $(k\Omega \cdot cm^2)$ | | tBLM | 0.63 ± 0.05 | 0.98 ± 0.02 | 0.93 ± 0.1 | 0.54 ± 0.02 | 193 ± 15 | | | | | | | | | tBLM + PLN | 0.67 ± 0.05 | 0.99 ± 0.02 | 4.12 ± 0.5 | 0.70 ± 0.02 | 28 ± 5 | | (overnight incubation) | | | | | | | tBLM + PLN + AbPLN | 0.66 ± 0.05 | 0.98 ± 0.02 | 2.37 ± 0.05 | 0.73 ± 0.02 | 201 ± 10 | | | | | | | | **Table S1**. Model parameters obtained by fitting the equivalent circuit shown in Fig. 1 (main text) to the EIS spectra of Fig. S1 (A and B). The error gives the deviation from the fit. **Figure S2**. Impedance spectra were obtained by plotting log(Z) (logarithm of impedance) versus log(f) (logarithm of frequency) (A), and phase angle versus log(f) (B) for a tBLM containing no PLN (filled squares), and following PLN reconstitution in the absence (empty circles) or presence of AbPLN (empty triangles) at an applied electrode potentials of 0.0 V (versus Ag/AgCl/0.1M KCl). The solid lines represent fitting curves of the EIS spectra by the equivalent circuit model shown in Fig. 1 (main text). The model parameters are reported in Table S2. | | СРЕ | α | CPE _{pores} | α_{pores} | R _{pores} | |------------------------|---|-----------------|---|------------------|------------------------| | | $\left(\mu F \cdot cm^{-2} s^{(\alpha-1)}\right)$ | | $\left (\mu F \cdot cm^{-2} s^{(\alpha_{pores}-1)}) \right $ | | $(k\Omega \cdot cm^2)$ | | tBLM | 0.61 ± 0.05 | 0.98 ± 0.02 | 0.93 ± 0.1 | 0.51 ± 0.02 | 204 ± 15 | | tBLM + PLN | 0.63 ± 0.05 | 0.99 ± 0.02 | 3.82 ± 0.5 | 0.75 ± 0.02 | 35 ± 5 | | (overnight incubation) | | | | | | | tBLM + PLN + AbPLN | 0.65 ± 0.05 | 0.98 ± 0.02 | 1.94 ± 0.05 | 0.63 ± 0.02 | 187 ± 10 | | | 0.02 = 0.02 | 0.50 = 0.02 | 1.5. = 0.03 | 0.02 = 0.02 | 10, = 10 | **Table S2**. Model parameters obtained by fitting the equivalent circuit shown in Fig. 1 (main text) to the EIS spectra of Fig. S2 (A and B). The error gives the deviation from the fit. **Figure S3**. Impedance spectra were obtained by plotting log(Z) (logarithm of impedance) versus log(f) (logarithm of frequency) (A), and phase angle versus log(f) (B) for a tBLM containing no PLN (filled squares), and following PLN reconstitution in the absence (empty circles) or presence of AbPLN (empty triangles) at an applied electrode potentials of 0.1 V (versus Ag/AgCl/0.1M KCl). The solid lines represent fitting curves of the EIS spectra by the equivalent circuit model shown in Fig. 1 (main text). The model parameters are reported in Table S3. | | CPE | α | CPE _{pores} | α_{pores} | R _{pores} | |------------------------|---|-----------------|---|---------------------------|------------------------| | | $\left(\mu F \cdot cm^{-2} s^{(\alpha-1)}\right)$ | | $\left (\mu F \cdot cm^{-2} s^{(\alpha_{pores}-1)}) \right $ | | $(k\Omega \cdot cm^2)$ | | tBLM | 0.63 ± 0.05 | 0.99 ± 0.02 | 0.96 ± 0.1 | 0.52 ± 0.02 | 208 ± 15 | | tBLM + PLN | 0.63 ± 0.05 | 0.99 ± 0.02 | 4.22 ± 0.5 | 0.77 ± 0.02 | 42 ± 5 | | (overnight incubation) | | | | | | | tBLM + PLN + AbPLN | 0.67 ± 0.05 | 0.98 ± 0.02 | 1.64 ± 0.05 | 0.65 ± 0.02 | 191 ± 15 | **Table S3**. Model parameters obtained by fitting the equivalent circuit shown in Fig. 1 (main text) to the EIS spectra of Fig. S3 (A and B). The error gives the deviation from the fit.