## Phosphorus Complexes of Meso-Triaryl-25-Oxasmaragdyrins

Hemanta Kalita,<sup>a</sup> Way-Zen Lee<sup>b</sup> and Mangalampalli Ravikanth<sup>\*a</sup>

<sup>a</sup>Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400076, India

<sup>b</sup>Instrumentation Center, Department of Chemistry, National Taiwan Normal University,88 Sec.

4 Ting-Chow Road, Taipei, 11677, Taiwan

E-mail: ravikanth@chem.iitb.ac.in

| 1.                                             | Structural Elucidation of compound 1 by COSY and NOESY NMR | S1-S2      |
|------------------------------------------------|------------------------------------------------------------|------------|
| 2.                                             | HR-MS spectrum of compound 1                               | <b>S</b> 3 |
| 3.                                             | <sup>1</sup> H NMR spectrum of compound <b>1</b>           | <b>S4</b>  |
| 4.                                             | <sup>31</sup> P NMR spectrum of compound 1                 | <b>S</b> 4 |
| 5.                                             | <sup>13</sup> C NMR spectrum of compound <b>1</b>          | <b>S</b> 5 |
| 6.                                             | HR-MS spectrum of compound 2                               | <b>S</b> 6 |
| 7.                                             | <sup>1</sup> H NMR spectrum of compound <b>2</b>           | <b>S</b> 7 |
| 8.                                             | <sup>31</sup> P NMR spectrum of compound <b>2</b>          | <b>S7</b>  |
| 9.                                             | <sup>13</sup> C NMR spectrum of compound <b>2</b>          | <b>S8</b>  |
| 10                                             | .HR-MS spectrum of compound <b>3</b>                       | <b>S</b> 9 |
| 11                                             | <sup>1</sup> H NMR spectrum of compound <b>3</b>           | S10        |
| 12                                             | <sup>31</sup> P NMR spectrum of compound <b>3</b>          | S10        |
| 13                                             | <sup>13</sup> C NMR spectrum of compound <b>3</b>          | S11        |
| <b>14.</b> HR-MS spectrum of compound <b>4</b> |                                                            | S12        |
| 15                                             | <sup>1</sup> H NMR spectrum of compound 4                  | S13        |

| <b>16.</b> <sup>31</sup> P NMR spectrum of compound <b>4</b>                          | <b>S13</b> |
|---------------------------------------------------------------------------------------|------------|
| <b>17.</b> <sup>13</sup> C NMR spectrum of compound <b>4</b>                          | <b>S14</b> |
| <b>18.</b> HR-MS spectrum of compound <b>10</b>                                       | <b>S15</b> |
| <b>19.</b> <sup>1</sup> H NMR spectrum of compound <b>10</b>                          | S16        |
| <b>20.</b> HR-MS spectrum of compound <b>9</b>                                        | <b>S17</b> |
| <b>21.</b> <sup>1</sup> H NMR spectrum of compound <b>9</b>                           | S18        |
| <b>22.</b> <sup>31</sup> P NMR spectrum of compound <b>9</b>                          | <b>S18</b> |
| <b>23.</b> <sup>11</sup> B NMR spectrum of compound <b>9</b>                          | S19        |
| <b>24.</b> <sup>19F</sup> NMR spectrum of compound <b>9</b>                           | S19        |
| <b>25.</b> Absorption spectra of compounds <b>2</b> and <b>3</b> recorded in $CHCl_3$ | S20        |
| <b>26.</b> Absorption spectra of compound 10 recorded in $CHCl_3$                     | S20        |
| <b>27.</b> Absorption spectra of compound <b>9</b> recorded in $CHCl_3$               | S21        |
| <b>28.</b> Emission spectra of compounds <b>2</b> and <b>3</b> recorded in $CHCl_3$   | S21        |
| <b>29.</b> Cyclic voltammogram of compound <b>2</b> recorded in $CH_2Cl_2$            | S22        |
| <b>30.</b> Cyclic voltammogram of compound <b>3</b> recorded in $CH_2Cl_2$            | S23        |
| <b>31.</b> Solid state crystal packing diagram of compound <b>1</b>                   | S24        |
| <b>32.</b> Solid state crystal structure of compound 1                                | S25        |
|                                                                                       |            |

Structural Elucidation of compound 1 by COSY and NOESY NMR: The <sup>1</sup>H-<sup>1</sup>H COSY and NOESY NMR spectra of complex 1 are shown in the Figure S2 along with the proton assignments. The assignments were made on the basis of resonance position and intensity data as well as the proton-to-proton connectivity revealed in the COSY and NOESY NMR spectra. Inspection of <sup>1</sup>H-NMR spectrum of complex 1 showed two singlets at 2.60 and 2.70 ppm corresponding to three and six protons respectively of meso-tolyl-CH<sub>3</sub> protons. The signal at 2.60 ppm was assigned to type I –CH<sub>3</sub> protons of meso-tolyl group and the signal at 2.70 ppm was assigned to *type II* –CH<sub>3</sub> protons of *meso*-tolyl group. The *type I* signal at 2.60 ppm showed NOE correlation with a doublet signal at 7.80 ppm which we assigned as *x*-type aryl protons of *meso*-tolyl group. The *x*-type protons signal at 7.80 ppm showed cross peak correlation with doublet signal at 8.50 ppm which we identified as x'-type aryl protons of meso-tolyl group. The signal at 8.50 ppm showed NOE correlation with a doublet at 9.60 ppm which we assigned as a*type* pyrrole protons. The *a-type* pyrrole protons showed cross peak correlation with a signal at 10.40 ppm which was identified as *b-type* pyrrole protons. To identify the signals corresponding to other two *meso*-tolyl groups, furan protons and pyrrole protons c and d, we looked at NOE correlations observed for type II, -CH<sub>3</sub> protons. The type II -CH<sub>3</sub> protons at 2.80 ppm showed NOE correlation with a doublet at 7.72 ppm which was assigned to *y-type* protons of *meso-*tolyl The *y-type* signal showed cross peak correlation with a doublet at 8.38 ppm group. corresponding to y'-type aryl protons of meso-tolyl group. The singlet at 9.72 ppm was identified as *e-type* furan protons based on its NOE correlation with *y'-type* protons. The *y'-type* signal also showed NOE correlation with a signal at 9.27 ppm which was assigned as *d-type* pyrrole signal. The *d*-type signal showed a cross peak correlation with a multiplet at 10.38 ppm

which was assigned as *c-type* pyrrole signal. Furthermore, the two inner NH protons were observed at -1.70 ppm and this signal also showed cross peak correlation with *c* and *d-type* pyrrole protons in COSY spectrum. The complexes **2**, **3**, and **4** also showed similar NMR features. In <sup>31</sup>P NMR, the complexes **1-4** showed one sharp signal in the region of ~ -32 to -33 ppm (Figure S4, S7, S10, S13). Thus, 1D and 2D NMR specroscopy was very useful in deducing the molecular structure of the PO<sub>2</sub> complexes of 25-oxasmaragdyrins **1-4**.



**Figure S2:** (a) Selected region of NOESY NMR spectrum of compound **1** (b) selected region of COSY NMR spectrum of compound **1** recorded in CDCl<sub>3</sub>.





Figure S3. HR-MS spectrum of compound 1.



**Figure S4**. <sup>1</sup>H NMR spectrum of compound **1** recorded in CDCl<sub>3</sub>. The inset shows the expansion.



Figure S4. <sup>31</sup>P NMR spectrum of compound 1 recorded in CDCl<sub>3</sub>.



Figure S5. <sup>13</sup>C NMR spectrum of compound of 1 recorded in CDCl<sub>3</sub>.





Figure S6. HR-MS spectrum of compound 2.



Figure S7. <sup>1</sup>H NMR spectrum of compound 2 recorded in CDCl<sub>3</sub>. The inset shows the

expansion.



Figure S7. <sup>31</sup>P NMR spectrum of compound 2 recorded in CDCl<sub>3</sub>.



Figure S8. <sup>13</sup>C NMR spectrum of compound of 2 recorded in CDCl<sub>3</sub>.





Figure S9. HR-MS spectrum of compound 3.



Figure S10. <sup>1</sup>H NMR spectrum of compound **3** recorded in CDCl<sub>3</sub>. The inset shows the

expansion.



Figure S10. <sup>31</sup>P NMR spectrum of compound 3 recorded in CDCl<sub>3</sub>.



Figure S11. <sup>13</sup>C NMR spectrum of compound of **3** recorded in CDCl<sub>3</sub>.





Figure S12. HR-MS spectrum of compound 4.



**Figure S13**. <sup>1</sup>H NMR spectrum of compound **4** recorded in CDCl<sub>3</sub>. The inset shows the expansion.



Figure S13. <sup>31</sup>P NMR spectrum of compound 4 recorded in CDCl<sub>3</sub>.



Figure S14. <sup>13</sup>C NMR spectrum of compound of 4 recorded in CDCl<sub>3</sub>.





Figure S15. HR-MS spectrum of compound 10.

S15



**Figure S16.** <sup>1</sup>H NMR spectrum of compound **10** recorded in CDCl<sub>3</sub>. The inset shows the expansion.





Figure S17. HR-MS spectrum of compound 9.



**Figure S18.** <sup>1</sup>H NMR spectrum of compound **9** recorded in CDCl<sub>3</sub>. The inset shows the expansion.



Figure S18. <sup>31</sup>P NMR spectrum of compound 9 recorded in CDCl<sub>3</sub>.



**Figure S19.** <sup>11</sup>B NMR spectrum of compound **9** recorded in CDCl<sub>3</sub>. The inset shows the expansion.



**Figure S19.** <sup>19</sup>F NMR spectrum of compound **9** recorded in CDCl<sub>3</sub>. The inset shows the expansion.



Figure S20. Q-bands absorption spectra of compounds of 2 and 3 recorded in CHCl<sub>3</sub>. The inset shows the corresponding Soret bands. The concentrations were used  $10^{-5}$  M and  $10^{-6}$  M for Q and Soret bands respectively.



Figure S20. Absorption spectrum of compound 10 recorded in CHCl<sub>3.</sub>



Figure S21. Absorption spectrum of compound 9 recorded in CHCl<sub>3</sub>



**Figure S21.** Emission spectra of compounds of **2** and **3** recorded in CHCl<sub>3</sub> by exciting at their corresponding absorption maxima.



**Figure S22.** Cyclic voltammogram of compound of **2** recorded in  $CH_2Cl_2$  containing 0.1 M TBAP as supporting electrolyte recorded using scan rate of 50 mV/sec. The dotted line represents the DPV curve.



Figure S23. Cyclic voltammogram of compound of 3 recorded in  $CH_2Cl_2$  containing 0.1 M TBAP as supporting electrolyte recorded using scan rate of 50 mV/sec. The dotted line represents the DPV curve.



**Figure S24.** Solid state crystal packing structure of compound **1**. The dotted lines show the H-bonding interaction.



**Figure S25.** Solid state crystal structure of compound **1**. The dotted lines represent the intramolecular H-bonding interaction.