Supporting Information

High-Temperature, High-Pressure Hydrothermal Synthesis, Characterization, and Structural Relationships of Layered Uranyl Arsenates

Hsin-Kuan Liu,^a Eswaran Ramachandran,^a Yi-Hsin Chen,^a

Wen-Jung Chang,^a and Kwang-Hwa Lii^{a,b,*}

^aDepartment of Chemistry, National Central University, Zhongli, Taiwan 320, R.O.C.

^bInstitute of Chemistry, Academia Sinica, Taipei, Taiwan 115, R.O.C.

Figure S1. The observed and simulated X-ray powder patterns of Na₁₄[(UO₂)₅(AsO₄)₈]·2H₂O.

Figure S2. The observed and simulated X-ray powder patterns of $K_6[(UO_2)_5O_5(AsO_4)_2]$. Asterisks denote the minor phase of $K_4[(UO_2)_3O_2(AsO_4)_2]$.

Figure S3. The observed and simulated X-ray powder patterns of Rb₄[(UO₂)₃O₂(AsO₄)₂].

Figure S4. The observed and simulated X-ray powder patterns of $Cs_6[(UO_2)_5O_2(AsO_4)_4]$.

Figure S5. The EDS spectra of $Na_{14}[(UO_2)_5(AsO_4)_8] \cdot 2H_2O$, $K_6[(UO_2)_5O_5(AsO_4)_2]$,

 $K_4[(UO_2)_3O_2(AsO_4)_2], \ Rb_4[(UO_2)_3O_2(AsO_4)_2], \ and \ Cs_6[(UO_2)_5O_2(AsO_4)_4].$

Figure S6. Thermogravimetric analysis of $Na_{14}[(UO_2)_5(AsO_4)_8] \cdot 2H_2O$ in flowing nitrogen gas at 2 °C/min.

Figure S7. Room-temperature fluorescence spectrum of 1 excited at 360 nm.

Figure S1

____ observed

Figure S2

Figure S3

Figure S4

 $Na_{14}[(UO_2)_5(AsO_4)_8] \cdot 2H_2O$ (compound 1)

 $K_6[(UO_2)_5O_5(AsO_4)_2]$ (compound 2a)

 $K_4[(UO_2)_3O_2(AsO_4)_2]$ (compound **2b**)

 $Rb_4[(UO_2)_3O_2(AsO_4)_2]$ (compound 3)

 $Cs_6[(UO_2)_5O_2(AsO_4)_4]$ (compound 4)

Figure S5

Figure S6

Figure S7