Supporting Information

Gate-Opening Gas Adsorption and Host-Guest Interacting Gas Trapping Behavior of Porous Coordination Polymers under Applied AC Electric Fields

Wataru Kosaka, Kayo Yamagishi, Jun Zhang and Hitoshi Miyasaka*

Corresponding author*
Prof. Dr. Hitoshi Miyasaka
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
E-mail: miyasaka@imr.tohoku.ac.jp
Tel: +81-22-215-2030
FAX: +81-22-215-2031

Table S1. Crystallographic Data for 3

	3	
formula	$\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{Ru}_{2}$	
formula weight	986.91	
crystal system	triclinic	
space group	$P-1$	
a / \AA	9.461(3)	
b / \AA	10.660(4)	
c / \AA	10.261(4)	
α / deg	92.650(4)	
β / deg	102.491(5)	
γ / deg	96.611(5)	
V / \AA^{3}	1000.9(6)	
Z	1	
crystal size $/ \mathrm{mm}^{3}$	$0.050 \times 0.010 \times 0.010$	
T/K	123(1)	
$D_{\text {calc }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.637	
F_{000}	498.00	
λ / \AA	0.71070	
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $/ \mathrm{cm}^{-1}$	8.232	
data measured	10994	
data unique	4474	
$R_{\text {int }}$	0.0625	
no. of observations	4474	
no. of variables	271	
$R 1(I>2.00 \sigma(I))^{a}$	0.0532	
R (all reflections) ${ }^{\text {a }}$	0.0697	
$w R 2$ (all reflections) ${ }^{b}$	0.1123	
GOF	1.092	
CCDC No.	1003673	
${ }^{a} R 1=R=\Sigma\| \| F_{\mathrm{o}} \mathrm{I}-\left\|F_{\mathrm{c}} \\| / \Sigma\right\| F_{\mathrm{o}} \mid .{ }^{b} w R 2=\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$		

Table S2. Selected bond length (\AA) and angles (${ }^{\circ}$) for 3, where θ represents dihedral angle between the least squares planes defined by the phenyl ring of benzoate ligand and a carboxylate-bridging mode (atom set of $\mathrm{Ru}_{2} \mathrm{O}_{2} \mathrm{C}$), and ϕ represents an angle between a carboxylate-bridging plane and $\mathrm{C}-\mathrm{C}$ bond between phenyl ring and carboxyl carbon.
Ru1-O1
$\mathrm{Ru} 1-\mathrm{O} 2 \mathrm{a}$
$\mathrm{Ru} 1-\mathrm{O} 4$
$\mathrm{Ru} 1-\mathrm{O} 5 \mathrm{a}$
$\mathrm{Ru} 1-\mathrm{N} 1$
$\mathrm{Ru} 1-\mathrm{Ru} 1 \mathrm{a}$
$\mathrm{Ru} \mathrm{a}-\mathrm{Ru} 1-\mathrm{N} 1$
θ set-1
set-2

Symmetry codes:
(a) $-x+1,-y+1,-z$

On the oxidation state of the $\left[R u_{2}\right]$ unit in 3 . The oxidation state of $\left[R u_{2}\right]$ unit can be known from the $\mathrm{Ru}-\mathrm{O}_{\mathrm{eq}}$ length ($\mathrm{O}_{\mathrm{eq}}=$ equatorial oxygen atoms), which is quite sensitive to the oxidation state of the $\left[\mathrm{Ru}_{2}\right]$ unit and to be $2.06-2.07 \AA$ for $\left[\mathrm{Ru}_{2}{ }^{\mathrm{II}, \mathrm{II}}\right]$ and $2.02-2.03 \AA$ for $\left[\mathrm{Ru}_{2}{ }^{\mathrm{II}, \mathrm{III}}\right]^{+} .{ }^{1}$ The average $\mathrm{Ru}-\mathrm{O}_{\mathrm{eq}}$ length of $\mathbf{1}$ is $2.055 \AA$, indicating an oxidation state of $\left[\mathrm{Ru}_{2}{ }^{\mathrm{II}, \mathrm{II}}\right]$.

Figure S1. Adsorption (closed circles) and desorption (open circles) isotherms for compound $\mathbf{3}$ for several gas molecules. Inset: data for compound 1.

Magnetic properties of 3. The magnetic behavior of $\mathbf{3}$ is consistent with those for isolated $\left[\mathrm{Ru}^{\mathrm{II}, \mathrm{II}}\right]$ complexes with an $S=1$ ground state affected by strong zero-field splitting (ZFS; $D \approx 230-$ $320 \mathrm{~cm}^{-1}$) (Figure S2). The χ and χT were simulated using a Curie paramagnetic model with $S=1$ taking into account zero-field splitting (D), temperature-independent paramagnetism ($\chi_{\text {TIP }}$), and impurity with $S=3 / 2(\rho) .{ }^{2}$ The best fitting parameters were: $g=2.0(f i x), D / k_{\mathrm{B}}=369(1) \mathrm{K}, \chi_{\text {TIP }}=$ $66(15) \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, and $\rho=0.00307(3)$.

Figure S2. Temperature dependences of χ (○) and χT (ㅁ) for 3, where the red solid lines represent simulated curves based on a Curie paramagnetic model with $S=1$ taking into account zero-field splitting (D), temperature-independent paramagnetism $\left(\chi_{\mathrm{TIP}}\right)$, and impurity with $S=3 / 2(\rho)$

Figure S3. Temperature dependence of the dielectric constant (the real part (ε^{\prime}), (a)-(c); the imaginary part ($\varepsilon^{\prime \prime}$), (d)-(f)) for $\mathbf{1}((\mathrm{a})$ and (d)), $\mathbf{2}$ ((b) and (e)), and $\mathbf{3}$ ((c) and (f)) measured on heating with electric field frequency of 0.1 kHz under 100 KPa of He (red), CO_{2} (green), O_{2} (blue), and NO (violet).

Figure S4. Adsorption isotherms for $\mathbf{1}$ (red) and 2 (blue); CO_{2} at 195 K (a), O_{2} at 90 K (b), and NO at $121 \mathrm{~K}(\mathrm{c})$. These plots were reproduced from the data reported previously. ${ }^{3}$

Figure S5. Temperature dependence of the dielectric constants of the real part (ε^{\prime}) (a), and the imaginary part ($\varepsilon^{\prime \prime}$) (b) for $\mathbf{1}$ measured on heating under various pressure of CO_{2} with an ac electric field frequency of 0.1 kHz .

Figure S6. Dublinin-Raduskevich plots on the CO_{2} (a) and $\mathrm{NO}(\mathrm{b})$ adsorption (195 K for CO_{2} and 121 K for NO) for $\mathbf{1}$, where the fitting were performed in the range for the diffusional equilibration part from after the $1^{\text {st }}$ gate-opening transition to before the $2^{\text {nd }}$ gate-opening transition. The fitting curves evaluate $\beta E_{0}=10.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for CO_{2} and $8.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for NO in the DR equation, $\ln W=-$ $\left(R T / \beta E_{0}\right)^{2}\left[\ln \left(p_{0} / p\right)\right]^{2}+\ln W_{0}$, where β is the affinity coefficient and E_{0} is a characteristic adsorption energy. ${ }^{4}$ Note that $q_{\mathrm{st}, 0=1 / \mathrm{e}}=\beta E_{0}+\Delta H_{\mathrm{v}}$.

Figure S7. Temperature dependence of the dielectric constants, the real part (ε^{\prime}) (a) and the imaginary part (ε^{\prime}) (b), for $\mathbf{1}$ measured on heating under various pressure of NO with an ac electric field frequency of 0.1 kHz .

Figure S8. Nyquist plots for $\mathbf{2}$ at 430 K (a), where the solid lines represent simulation curves based on a generalized Debye equation with a β value in the range of $0.92-0.97$, and the Arrhenius plots (b) of σ_{ac} estimated from the Nyquist plots measured at several temperatures under 100 kPa of He (red), CO_{2} (green), and O_{2} (blue). The activation energy $\left(E_{\mathrm{a}}\right)$ is listed in Table 1.

Figure S9. Nyquist plots for 3 at 200 K (a) and 300 K (a, inset), where the solid lines represent simulation curves based on a generalized Debye equation with a β value in the range of $0.78-0.85$, and the Arrhenius plots (b) of σ_{ac} estimated from the Nyquist plots measured at several temperatures under 100 kPa of He (red), CO_{2} (green), O_{2} (blue), and NO (violet). The activation energy $\left(E_{\mathrm{a}}\right)$ is listed in Table 1.

References

(1) Cotton, F. A.; Walton, R. A. Multiple Bonds Between Metal Atoms, 2nd ed., Oxford University Press: Oxford, 1993.
(2) Kahn, O. Molecular Magnetism; VCH: New York, 1993.
(3) Kosaka, W.; Yamagishi, K.; Hori, A.; Sato, H.; Matsuda, R.; Kitagawa, S.; Takata, M.; Miyasaka, H. J. Am. Chem. Soc. 2013, 135, 18469.
(4) Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Kobayashi, T. C.; Horike, S.; Takata, M. J. Am. Chem. Soc. 2004, 126, 14063-14070.

