Supporting Information

Gate-Opening Gas Adsorption and Host-Guest Interacting Gas Trapping Behavior of Porous Coordination Polymers under Applied AC Electric Fields

Wataru Kosaka, Kayo Yamagishi, Jun Zhang and Hitoshi Miyasaka*

Corresponding author* Prof. Dr. Hitoshi Miyasaka Institute for Materials Research, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980-8577, Japan E-mail: <u>miyasaka@imr.tohoku.ac.jp</u> Tel: +81-22-215-2030 FAX: +81-22-215-2031

	3	
formula	$C_{44}H_{36}N_2O_{12}Ru_2$	
formula weight	986.91	
crystal system	triclinic	
space group	<i>P</i> -1	
a / Å	9.461(3)	
b / Å	10.660(4)	
<i>c</i> / Å	10.261(4)	
α / deg	92.650(4)	
β / \deg	102.491(5)	
γ/\deg	96.611(5)	
$V / Å^3$	1000.9(6)	
Ζ	1	
crystal size / mm ³	0.050×0.010×0.010	
Τ/K	123(1)	
$D_{\rm calc}$ / g·cm ⁻³	1.637	
F ₀₀₀	498.00	
λ/Å	0.71070	
μ (Mo K α) / cm ⁻¹	8.232	
data measured	10994	
data unique	4474	
R _{int}	0.0625	
no. of observations	4474	
no. of variables	271	
$R1 (I > 2.00 \sigma(I))^a$	0.0532	
R (all reflections) ^{<i>a</i>}	0.0697	
wR2 (all reflections) ^b	0.1123	
GOF	1.092	
CCDC No.	1003673	

 $Table \ S1. \ Crystallographic \ Data \ for \ 3$

Table S2. Selected bond length (Å) and angles (°) for **3**, where θ represents dihedral angle between the least squares planes defined by the phenyl ring of benzoate ligand and a carboxylate-bridging mode (atom set of Ru₂O₂C), and ϕ represents an angle between a carboxylate-bridging plane and C–C bond between phenyl ring and carboxyl carbon.

	1
Ru1–O1	2.049(3)
Ru 1–O2a	2.056(3)
Ru 1–O4	2.051(3)
Ru 1–O5a	2.064(3)
Ru 1–N1	2.402(4)
Ru1–Ru1a	2.2798(9)
Ru1a–Ru1–N1 <i>θ</i>	170.07(8)
set-1	21.9
set-2	29.5
ϕ	
set-1	3.7
set-2	6.6

Symmetry codes:

(a) -x+1, -y+1, -z

On the oxidation state of the [Ru₂] unit in 3. The oxidation state of [Ru₂] unit can be known from the Ru–O_{eq} length (O_{eq} = equatorial oxygen atoms), which is quite sensitive to the oxidation state of the [Ru₂] unit and to be 2.06–2.07 Å for [Ru₂^{II,II}] and 2.02–2.03 Å for [Ru₂^{II,II}]^{+.1} The average Ru–O_{eq} length of **1** is 2.055 Å, indicating an oxidation state of [Ru₂^{II,II}].

Figure S1. Adsorption (closed circles) and desorption (open circles) isotherms for compound **3** for several gas molecules. Inset: data for compound **1**.

Magnetic properties of 3. The magnetic behavior of **3** is consistent with those for isolated [Ru^{II,II}] complexes with an S = 1 ground state affected by strong zero-field splitting (ZFS; $D \approx 230 - 320 \text{ cm}^{-1}$) (Figure S2). The χ and χT were simulated using a Curie paramagnetic model with S = 1 taking into account zero-field splitting (*D*), temperature-independent paramagnetism (χ_{TIP}), and impurity with S = 3/2 (ρ).² The best fitting parameters were: g = 2.0 (fix), $D/k_{\rm B} = 369(1)$ K, $\chi_{TIP} = 66(15) \times 10^{-6} \text{ cm}^3 \text{ mol}^{-1}$, and $\rho = 0.00307(3)$.

Figure S2. Temperature dependences of χ (\circ) and χT (\Box) for **3**, where the red solid lines represent simulated curves based on a Curie paramagnetic model with *S* = 1 taking into account zero-field splitting (*D*), temperature-independent paramagnetism (χ_{TIP}), and impurity with *S* = 3/2 (ρ)

Figure S3. Temperature dependence of the dielectric constant (the real part (ε '), (a)–(c); the imaginary part (ε ''), (d)–(f)) for **1** ((a) and (d)), **2** ((b) and (e)), and **3** ((c) and (f)) measured on heating with electric field frequency of 0.1 kHz under 100 KPa of He (red), CO₂ (green), O₂ (blue), and NO (violet).

Figure S4. Adsorption isotherms for **1** (red) and **2** (blue); CO_2 at 195 K (a), O_2 at 90 K (b), and NO at 121 K (c). These plots were reproduced from the data reported previously.³

Figure S5. Temperature dependence of the dielectric constants of the real part (ε) (a), and the imaginary part (ε) (b) for **1** measured on heating under various pressure of CO₂ with an ac electric field frequency of 0.1 kHz.

Figure S6. Dublinin-Raduskevich plots on the CO₂ (a) and NO (b) adsorption (195 K for CO₂ and 121 K for NO) for **1**, where the fitting were performed in the range for the diffusional equilibration part from after the 1st gate-opening transition to before the 2nd gate-opening transition. The fitting curves evaluate $\beta E_0 = 10.5$ kJ mol⁻¹ for CO₂ and 8.6 kJ mol⁻¹ for NO in the DR equation, $lnW = -(RT/\beta E_0)^2 [ln(p_0/p)]^2 + lnW_0$, where β is the affinity coefficient and E_0 is a characteristic adsorption energy.⁴ Note that $q_{st,*=1/e} = \beta E_0 + \Delta H_v$.

Figure S7. Temperature dependence of the dielectric constants, the real part (ε) (a) and the imaginary part (ε) (b), for **1** measured on heating under various pressure of NO with an ac electric field frequency of 0.1 kHz.

Figure S8. Nyquist plots for **2** at 430 K (a), where the solid lines represent simulation curves based on a generalized Debye equation with a β value in the range of 0.92–0.97, and the Arrhenius plots (b) of σ_{ac} estimated from the Nyquist plots measured at several temperatures under 100 kPa of He (red), CO₂ (green), and O₂ (blue). The activation energy (E_a) is listed in Table 1.

Figure S9. Nyquist plots for **3** at 200 K (a) and 300 K (a, inset), where the solid lines represent simulation curves based on a generalized Debye equation with a β value in the range of 0.78–0.85, and the Arrhenius plots (b) of σ_{ac} estimated from the Nyquist plots measured at several temperatures under 100 kPa of He (red), CO₂ (green), O₂ (blue), and NO (violet). The activation energy (E_a) is listed in Table 1.

References

- (1) Cotton, F. A.; Walton, R. A. *Multiple Bonds Between Metal Atoms, 2nd ed.*, Oxford University Press: Oxford, 1993.
- (2) Kahn, O. Molecular Magnetism; VCH: New York, 1993.
- (3) Kosaka, W.; Yamagishi, K.; Hori, A.; Sato, H.; Matsuda, R.; Kitagawa, S.; Takata, M.; Miyasaka, H. J. Am. Chem. Soc. 2013, 135, 18469.
- (4) Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Kobayashi, T. C.; Horike, S.; Takata, M. *J. Am. Chem. Soc.* **2004**, *126*, 14063–14070.