Supporting Material for

A Moving Window Formulation for Recursive Bayesian State Estimation of Systems with Irregularly Sampled and Variable Delays in Measurements

Vinay A. Bavdekar, † Jagadeesan Prakash, ‡ Sachin C. Patwardhan, ¶ and Sirish L. Shah *,†

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2V4, Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chennai, 600004, India, and Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.

E-mail: slshah@ualberta.ca

Tennessee Eastman Problem: process parameters

^{*}To whom correspondence should be addressed

 $^{^\}dagger \rm Department$ of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2V4

[‡]Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chennai, 600004, India

[¶]Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.

Table 1: Tennessee Eastman process: steady state values of the process states

No.	State	Description	Steady state	No.	State	Description	Steady state
			(kmol)				(kmol)
1	N_{Ar}	A in reactor	4.722	14	N_{Fs}	F in separator	0.71938
2	N_{Br}	B in reactor	1.9805	15	N_{Gs}	G in separator	20.492
3	N_{Cr}	C in reactor	3.4354	16	N_{Hs}	H in separator	16.195
4	N_{Dr}	D in reactor	0.18231	17	N_{Am}	A in feed zone	51.776
5	N_{Er}	E in reactor	10.32	18	N_{Bm}	B in feed zone	14.327
6	N_{Fr}	F in reactor	1.2572	19	N_{Cm}	C in feed zone	42.455
7	N_{Gr}	G in reactor	66.06	20	N_{Dm}	D in feed zone	11.10
8	N_{Hr}	H in reactor	67.87	21	N_{Em}	E in feed zone	30.156
9	N_{As}	A in separator	28.895	22	N_{Fm}	F in feed zone	2.6668
10	N_{Bs}	B in separator	12.119	23	N_{Gm}	G in feed zone	5.684
11	N_{Cs}	C in separator	21.022	24	N_{Hm}	H in feed zone	2.6807
12	N_{Ds}	D in separator	0.09656	25	N_{Gp}	G in stripper bottom	21.741
13	N{Es}	E in separator	5.9052	26	N_{Hp}	H in stripper bottom	17.736

Table 2: TE process: PI controller loops and their values

Controlled variable	Process variable	K_c	$ au_i$
Reactor pressure (P_r)	Purge (F9)	-10.768	1×10^{-3}
Reactor liquid level (V_{Lr})	E feed (F3)	2.016	3.630
Separator liquid level (V_{Ls})	Separator bottoms outflow (F10)	-2.975	0.130
Stripper bottom level (V_{Lp})	Stripper bottoms outflow (F11)	-3.1560	0.100