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EXPERIMENTAL SECTION 

Electrochemical testing 

Cyclic voltammetry (CV) was carried out in a voltage range from 0.01 V to 2 V at 

0.05 mV s-1 on an Autolab potentiostat (Autolab Instruments, Switzerland). Cycling 

performance and rate capability of the cells were evaluated on a Neware battery cycler 

(CT-4008, Shenzhen, China). Electrochemical impedance spectroscopy (EIS) 

measurements were conducted on Zahner Elektrik IM6 electrochemical working station 

over the frequency range of 10 mHz to 102 kHz with an alternating voltage of 5 mV. 

The cells were controlled at 60% depth of discharge. Galvanostatic intermittent titration 

(GITT) technique was measured on Neware CT-4008 with 0.1 C lasting for 15 min; 

followed by a relaxation time of 30 min. For full cell fabrication, the Si electrode after 

electrochemical pre-lithiation was assembled into a full cell with NCM523 cathode. 

Material characterizations  

FTIR (TENSOR 27, BRUKER OPTICS, Germany) was conducted to observe the 

functional groups. XRD (Rint 2000, Rigaku with Cu Kα) was applied to characterize 

the crystal structure. SEM was observed on Hitachi SV-8010 operated at 10 kV. TEM 

was conducted via FEI Tecnai G2 F20 S-TWIN under 200 KV. The chemical 

composition of Si electrodes was identified by XPS (Thermo Fisher, USA). The 

electrodes after cycles were rinsed in DMC solvent and thoroughly dried in vacuum 

chamber before SEM and XPS tests. 

Calculation and simulation 

DFT calculations were performed were optimized by using the DMol3 code.1, 2 The all-

electron PBE functional, along with a DND basis set, was used for all the geometry 

optimizations. The geometric structures of all molecules have been optimized. Based 

on the optimized structure, the lowest unoccupied molecular orbital and highest 

occupied molecular orbital energy of the corresponding electrolyte molecules, AZ and 

NSF molecules were calculated. 
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Figure S1. FTIR spectra of the pure (a) AZ and (b) NSF powders. 

 

 

 

Figure S2. XPS spectra of the fresh Si and Si@AN11 electrodes: (a) F 1s spectra, (d) 

N 1s spectra, (c) S 2p spectra. 

 

 

 

Figure S3. Initial three CV curves of Si and Si@AN11 anodes at 0.05 mV s-1 
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Figure S4. Rate capability for Si@AN41 and Si@AN14 anodes 

 

 

 

Figure S5. The equivalent circuit used for fitting the impedance spectra. 

 

 

 

 

Figure S6. Nyquist plots and partially enlarged curves of Si and Si@AN11 anodes after 

the rate test. 
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Table S1. The corresponding resistance values of Si and Si@AN11 anodes after the 

rate test. 

 

 

 

 

Figure S7. GITT profiles of the naked Si and Si@AN11 anodes. 

 

 

 
Figure S8. C 1s spectra of the fresh and as-formed AN11 electrodes. 
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Figure S9. S2p spectrum of the Si@AN11 anode after 500cycles. 

 

 

 

 

 

 

 

 

 
Figure S10. N 1s spectrum of the Si@AN11 anode after 500cycles. 
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Figure S11. SEM images of the fresh (a) Si and (b) Si@AN11 electrodes. 

 

 

 

 

 

Figure S12. SEM image of NCM523 powders. 
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