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Results for the DC model

Figure 1: DC potential: As in Fig. 2 of the main text, but for water clusters of 6 (a), 10
(b), 16 (c), and 20 (d) molecules.
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Figure 2: DC potential: Energy deviation from the reference DC value as a function of
the cut-off radius r (left) and as a function of the average number of interacting molecules
〈Ni〉 (right) for clusters of 6 (blue circles), 8 (orange squares), 10 (green pluses), 16 (red
triangles), and 20 (purple crosses) DC water molecules. The deviations are within 5% when
the cut-off radius coincides with the first coordination shell (r ∼ 3 Å). We take the absolute
value of the energy deviations for the artificial minimum-energy configurations–at r between
two consecutive coordination shells.

Minimum-energy configurations with the cut-off at the

first coordination shell for the DC model

In Fig.3, we show that, when we include many-body effects until the first coordination shell,

the minimum energy configurations are more similar to the results in the DC limit rather

than the TIP4P-like limit.

Figure 3: DC potential: The lowest-energy configuration for a cluster with 6 (a), 8 (b), 10 (c),
16 (d), and 20 (e) water molecules calculated for our model with the cut-off corresponding
to the 1rst coordination shell (r ∼ 3 Å).
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Results for the MB-pol potential

Figure 4: MB-pol potential: Average number of interacting molecules 〈Ni〉 as a function of
the cut-off radius r (left) and energy deviation from the reference DC value as a function
of 〈Ni〉 (right) for clusters of 6 (blue circles), 8 (orange squares), 10 (green pluses), 16 (red
triangles), and 20 (purple crosses) MB-pol water molecules. The deviations are within 5%
when the cut-off radius coincides with the first coordination shell (r ∼ 3 Å). We take the
absolute value of the energy deviations for the artificial minimum-energy configurations–at
r between two consecutive coordination shells.

Among the available many-body models, MB-pol1–3 has been shown to correctly perform the

many-body analyses of small clusters.4,5 Here we use the MBX calculator6 to produce the

results in Fig. 4. Due to the expensive computational cost, we adopt the minimum-energy

configurations for the DC potential as a starting point for the MB-pol analysis.

Results for the KJ potential

The many-body KJ potential7 is a rigid and four-site model similar to the DC potential. In

both models, the polarizable site M is located on the bisector of the H-O-H bond angle. The

most crucial difference between the two models is the sites associated with the dispersion

force: the oxygen atom for the DC model and the M site for the KJ potential. Due to the

expensive computational cost, we computed only two cluster sizes for the KJ potential: 8

and 20 molecules (Fig. 5).
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Figure 5: KJ potential: As in Fig. 4 but for the KJ water model for clusters of 8 (orange
squares) and 20 (purple crosses).
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