Support Information

Ternary Bulk Heterojunction Photovoltaic Cells Composed of Small Molecule Donor Additive as Cascade Material

Lei Ye,^{a†} Hai-Hua Xu,^{b†} Hui Yu,^b Wang-Ying Xu,^a Hao Li,^a Han Wang,^a Ni Zhao,*^b Jian-Bin Xu*^a

^a Department of Electronic Engineering, Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.

^b Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.

[†] L. Ye and H. H. Xu contributed equally to this work.

* Corresponding author at: Department of Electronic Engineering, Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China. Fax: +852-2609-8297; Tel: +852-2609-8297; E-mail address:

nzhao@ee.cuhk.edu.hk

jbxu@ee.cuhk.edu.hk

Figure S1. Transfer characteristic of DTDCTB Bottom-gated field-effect transistors using dielectric layer of SiO₂.

Figure S2. Atomic force microscopy (AFM) images of (a) P3HT: PC₆₁BM (1: 1), (b) P3HT: DTDCTB: PC₆₁BM (0.9: 0.1: 1), (c) P3HT: DTDCTB: PC₆₁BM (0.8: 0.2: 1), (d) P3HT: DTDCTB: PC₆₁BM (0.7: 0.3: 1), and (e) P3HT: DTDCTB: PC₆₁BM (0.6: 0.4: 1).

Figure S3. *J-V* characteristics of the ternary devices of P3HT/DTDCTB/PC₆₁BM with various weight ratios and binary device of P3HT/PC₆₁BM fabricated without DIO as solvent additive.

Figure S4. *J-V* characteristic of the binary blend device of DTDCTB/PC₆₁BM fabricated as the same process of the device of P3HT/PC₆₁BM.

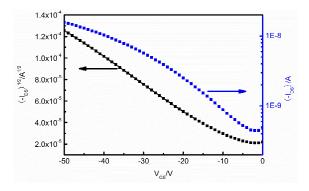
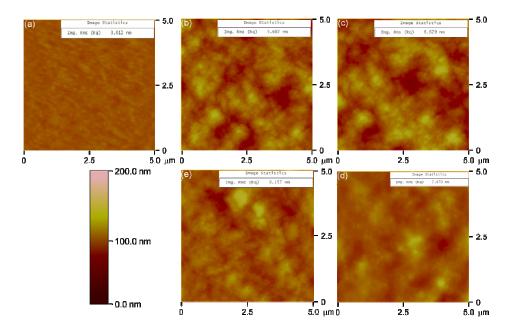



Figure S1 Transfer characteristics of DTDCTB TFT using dielectric layer of SiO₂. $(V_{DS}$ =-50 V, W=1 mm, and L=150 μ m.)

To fabricate the FET device based DTDCTB, a heavily n-doped silicon wafer with a 300 nm thickness SiO₂ was chosen as the substrate. The substrate was firstly cleaned ultrasonically in acetone and isopropyl alcohol (IPA) for 10 minutes, respectively. A thin film of DTDCTB was stun cast on the top of SiO₂, then evaporated under a high vacuum. Finally, gold source-drain electrodes with a thickness of 40 nm were evaporated with a shadow mask to get a channel length of $L = 150 \,\mu\text{m}$ and channel width of $W = 1 \,\text{mm}$.

As shown as figure S1, the bottom-gate field-effect transistor of DTDCTB is investigated, and the hole mobility in extracted saturation regime is $1.18 \times 10^{-4} \text{ V}^{-1} \text{ s}^{-1}$.

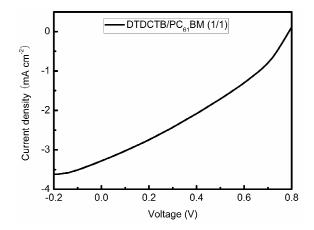

Figure S2 Atomic force microscopy (AFM) images of (a) P3HT: PC₆₁BM (1: 1), (b) P3HT: DTDCTB: PC₆₁BM (0.9: 0.1: 1), (c) P3HT: DTDCTB: PC₆₁BM (0.8: 0.2: 1), (d) P3HT: DTDCTB: PC₆₁BM (0.7: 0.3: 1), and (e) P3HT: DTDCTB: PC₆₁BM (0.6: 0.4: 1)

Figure S3. (a) *J-V* characteristic of the ternary device of P3HT/DTDCTB/PC₆₁BM with various weight ratios fabricated without DIO as solvent additive. (b) *J-V* characteristic of the binary device of P3HT/PC₆₁BM (1: 1) fabricated without DIO as solvent additive.

The ternary P3HT/DTDCTB/PC₆₁BM and binary P3HT/PC₆₁BM solar cells were fabricated following the methods reported previously for P3HT-based solar cells with solvent additives. ¹⁻⁵ In these solar cells, the DIO solvent additive helps to control the morphology and nanoscale phase separation of the donor/acceptor interpenetrating network in the active layer. ^{4, 5}

As shown in Figure S3, the devices without DIO solvent additive demonstrate low performances.

Figure S4. *J-V* characteristic of the binary blend device of DTDCTB/PC₆₁BM fabricated as the same process of the device of P3HT/PC₆₁BM.

The binary blend device of DTDCTB/PC₆₁BM demonstrated a PCE of 0.85%, with an open circuit voltage (V_{OC}) of 0.78 V, a short circuit current (J_{SC}) of 3.28 mA/cm² and FF of 0.33.

References

- Salim, T.; Wong, L. H.; Bräuer, B.; Kukreja, R.; Foo, Y. L.; Bao, Z. N.; Lam, Y. M. Solvent additives and their effects on blend morphologies of bulk heterojunctions. *J. Mater. Chem.* 2011, *21*, 242-250.
- (2) Chen, H. Y.; Yang, H. C.; Yang, G. W.; Sista, S.; Zadoyan, R.; Li, G.; Yang, Y. Fast-Grown Interpenetrating Network in Poly(3-hexylthiophene): Methanofullerenes Solar Cells Processed with Additive. J. Phys. Chem. C 2009, 113, 7946-7953.
- (3) Sun, Y. P.; Cui, C. H.; Wang, H. Q.; Li Y. F. Efficiency Enhancement of Polymer

Solar Cells Based on Poly(3-hexylthiophene)/Indene-C70 Bisadduct via Methylthiophene Additive. *Adv. Energy Mater.* **2011**, *1*, 1058-1061.

- (4) Guo, X.; Cui, C. H.; Zhang, M. J.; Huo, L. J.; Huang Y.; Hou, J. H.; Li, Y. F. High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C₇₀ bisadduct with solvent additive. *Energy Environ. Sci.* 2012, *5*, 7943-7949.
- (5) Chang, L. L.; Lademann, H. W. A.; Bonekamp, J. B.; Meerholz, K.; Moulé, A. J. Effect of Trace Solvent on the Morphology of P3HT:PCBM Bulk Heterojunction Solar Cells. *Adv. Funct. Mater.* 2011, *21*, 1779-1787.