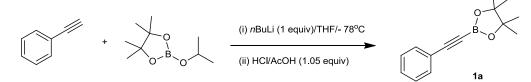
Carboxylic Acid-Catalyzed Highly Efficient and Selective Hydroboration of Alkynes with Pinacolborane

Hon Eong Ho,[†] Naoki Asao,[†] Yoshinori Yamamoto^{†,‡} and Tienan Jin*,[†]

[†] WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

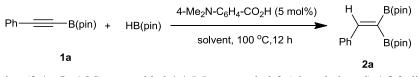
[‡] State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China

*E-mail: tjin@m.tohoku.ac.jp


Content

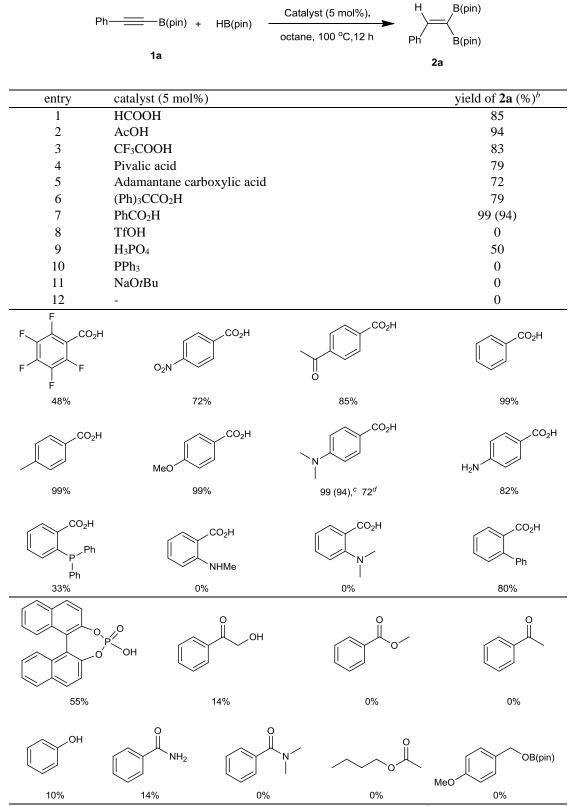
General Information and Materials	S2
Representative procedures for synthesis of 1, 2, and 3	S2
Optimization of catalysts: Tables S1 and S2	S2
Scheme S1	S4
Analytical data of 1	S4
Analytical data of 2 and 3	S7
Analytical data of 4 and 5	S13
NMR spectra of 1, 2, 3, 4, and 5	S15

General Information. GC-MS analysis was performed on an Agilent 6890N GC interfaced to an Agilent 5973 mass-selective detector (30 m x 0.25 mm capillary column, HP-5MS). ¹H NMR and ¹³C NMR spectra were recorded on JEOL JNM AL 400 (400 MHz) spectrometer. ¹H NMR spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shift of CDCl₃ at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, dt = doublet of triplets, m = multiplet, and br = broadened), and coupling constants (Hz). ¹³C NMR spectra were recorded on JEOL JNM AL 400 (100.5 MHz) spectrometers with complete proton decoupling, and chemical shift reported in ppm (δ) relative to the central line of triplet for CDCl₃ at 77 ppm. ¹¹B NMR spectra were recorded on JEOL JNM AL 700 (225MHz) spectrometers. High-resolution mass spectra were obtained on a Bruker Daltonics Solarix 9.4T spectrometer and JEOL JMS-T100GCV. Column chromatography was carried out employing silica gel 60 N (spherical, neutral, 40~63 µm, Merck Chemicals). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm precoated plate Kieselgel 60 F254 (Merck). Kugelrohr distillation was performed under vacuum by using Sibata Glass Tube Oven (GTO-250RS).


Materials. Pinacolborane (4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (Aldrich), carboxylic acids (Tokyo Chemical Industry), alkynes were purchased and used as received. The structures of new compounds are determined by using ¹H, ¹³C, ¹³B NMR, and HRMS. The corresponding products, **2a**, **2e**, **3i**, and **3k** of the internal alkynes were determined unambiguously by the reported authentic compounds and the references are shown. Alkynes **1** were prepared following the reported literature from the terminal alkynes precursors.¹ Internal alkynes **3i** and **3l** were prepared by Sonogashira coupling reaction.

General procedure for synthesis of 1-alkynyldioxaborolanes, 1

Synthesis of 4,4,5,5-tetramethyl-2-(phenylethynyl)-1,3,2-dioxaborolane (1a). To a solution of phenylacetylene (0.62 mL, 6 mmol) in THF (0.4 M, 15 mL) in a 50 mL of Schlenk tube -78 °C under an Ar atmosphere was added *n*-BuLi (3.75 mL, 1.6 M hexane solution, 6 mmol). The reaction mixture was stirred for 1 h at -78 °C. A THF solution (0.4 M, 13 mL) of 4,4,5,5-tetramethyl-2-(1-methylethoxy)-1,3,2-dioxaborolane [(*i*-PrO)B(pin), 5 mmol] was added to the lithiated reaction mixture at -78 °C. After being stirred for 2 h at -78 °C, the reaction mixture was quenched with 1.0 M HCl/Et₂O solution (5.25 mL, 5.25 mmol), and the mixture was warmed to room temperature with additional 1 h stirring. Filtration and evaporation afforded pale yellow oil. Bulb to bulb distillation gave 1a in 98% yield (1.12 g) as a white solid.


Representative procedure for carboxylic acid-catalyzed hydroboration of alkynes

To an octane solution (0.4 mL, 1 M) were added 4,4,5,5-tetramethyl-2-(phenylethynyl)-1,3,2-dioxaborolane (**1a**, 91.2 mg, 0.4 mmol), and 4-(dimethylamino)benzoic acid (3.3 mg, 5 mol%), and pinacol borane (0.29 mL, 2.0 mmol) under an Ar atmosphere. The reaction was stirred at 100 °C for 12 h. After cooling to room temperature, the reaction mixture was concentrated under vacuum. The low-boiling point impurities were removed by Kugelrohr distillation and the residue was further purified by passing through a short silica column chromatography using hexane/ethyl acetate (10/1) as eluents to afford **2a** in 94% (134 mg) as pale yellow oil.

¹ Brown, H. C.; Bhat, N. G.; Srebnik, M.; Tetrahedron Lett. 1998, 29, 2631.

Table S1. Optimization of various organocatalysts^a

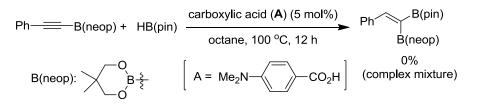
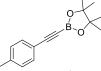

^{*a*} Reaction condition: **1a** (0.4 mmol), HB(pin) (2 mmol), octane (1 M), 100 °C, 12 h. ^{*b*} Yield determined by using CH₂Br₂ as internal standard. Isolated yield is shown in parenthesis. ^{*c*} 8 h. ^{*d*} 3 mol% of catalyst loading.

Table S2. Screening of solvents.^a

	4-Me ₂ N-C ₆ H ₄ -CO ₂ H (5 mol%)	H B(pin)	
Ph <u> </u>		solvent, 100 ^o C,12 h	Ph B(pin)
	1a		2a
entry	solvent		yield of $2a (\%)^b$
1	octane		99 (94)
2	decane		85
3	cyclooctane		80
4	toluene		37
5	1,4-dioxane		38
6	DCE		33
7	ethyl acetate		40
8	acetonitrile		20
<u>9</u>	THF		40

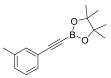
^{*a*} Reaction condition: **1a** (0.4 mmol), HBPin (5 equiv), 4-(dimethylamino)benzoic acid (5 mol %), solvent (1 M), 100 °C, 12 h. ^{*b*} Yield determined by using CH_2Br_2 as internal standard. Isolated yield is shown in parenthesis.

Scheme S1. Reaction of 5,5-dimethyl-2-(phenylethynyl)-1,3,2-dioxaborinane with HB(pin) under the standard conditions.


Analytical data of alkynes 1.

4,4,5,5-Tetramethyl-2-(phenylethynyl)-1,3,2-dioxaborolane (1a)²

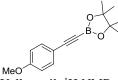
White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.51 (m, 2H), 7.38-7.28 (m, 3H), 1.32 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 132.4, 129.3, 128.1, 121.7, 84.4, 24.7. The carbon signals of triple bond were not observed due to low intensity.


4,4,5,5-Tetramethyl-2-(p-tolylethynyl)-1,3,2-dioxaborolane (1b)

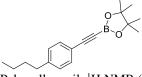
White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 2.35 (s, 3H), 1.32(s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 132.4, 128.9, 118.7, 84.3, 24.7, 21.6 (The carbon signals of triple bond were not observed due to low intensity); HRMS (ESI): calcd for C₁₅H₁₉BO₂ [M+Na]: 265.1370; found 265.1369.

4,4,5,5-Tetramethyl-2-(*m*-tolylethynyl)-1,3,2-dioxaborolane (1c)

² Takaya, J.; Kirai, N.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133, 12980.


Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.31 (m, 2H), 7.20-7.15 (m, 2H), 2.30 (s, 3H), 1.31 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 132.9, 130.1, 129.5, 128.0, 121.5, 101.9, 84.3, 24.7 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₁₅H₁₉BO₂ [M+H]: 243.1550; found, 243.1550.

4,4,5,5-Tetramethyl-2-(o-tolylethynyl)-1,3,2-dioxaborolane (1d)


Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.6 Hz, 1H), 7.27-7.23 (m, 1H), 7.19-7.10 (m, 2H), 2.48 (s, 3H), 1.33 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 132.9, 129.3, 129.2, 125.3, 121.6, 100.5, 84.2, 24.7, 20.7 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₁₅H₁₉BO₂ [M+H]: 243.1550; found, 243.1550.

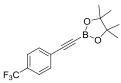
2-((4-Methoxyphenyl)ethynyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1e)³

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 9.0 Hz, 2H), 6.82 (d, J = 9.0 Hz, 2H), 3.80 (s, 3H), 1.31 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 134.1, 113.8(8), 113.8(1), 102.1, 84.2, 55.2, 24.7 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₁₅H₁₉BO₃ [M+H]: 259.1500; found, 259.1499.

2-((4-Butylphenyl)ethynyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1f)

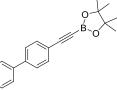
Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 2.59 (t, J = 7.6 Hz, 2H), 1.61-1.53 (m, 2H), 1.38-1.27 (m, 14H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 132.4, 131.9, 128.3, 118.8,102.1, 84.3, 35.6, 33.2, 24.7, 24.6, 22.3, 13.9 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₁₈H₂₅BO₂ [M+H]: 285.2020, found: 285.2020.

2-((4-Fluorophenyl)ethynyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1g)

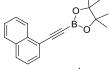


White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.44 (m, 2H), 6.99-6.94 (m, 2H), 1.27 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, $J^1 = 249.1$ Hz), 134.3 (d, $J^3 = 9.1$ Hz), 117.8 (d, $J^4 = 3.3$), 115.5 (d, $J^2 = 22.3$), 100.4, 84.3, 24.6 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₁₄H₁₆BFO₂ [M+H]: 247.1300, found: 247.1299.

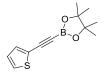
4,4,5,5-Tetramethyl-2-((4-(trifluoromethyl)phenyl)ethynyl)-1,3,2-dioxaborolane (1h)⁴


³ Coapes, R. B.; Souza, F. E. S.; Thomas, R. L.; Hall, J. J.; Marder, T. B. Chem. Commun. 2003, 614.

⁴ Nishihara, Y.; Miyasaka, M.; Okamoto, M.; Takahashi, H.; Inoue, E.; Tanemura, K.; Takagi, K. J. Am. Chem. Soc. 2007, *129*, 12634.


White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 1.33 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 132.6, 130.9 (q, J^2 = 32.2 Hz), 125.7, 125.1 (q, J^3 = 4.1 Hz), 123.7 (q, J^1 = 270.6 Hz), 99.7, 84.6, 24.7 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₁₅H₁₆BFO₃ [M+H]: 297.1268, found: 297.1267.

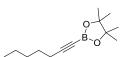
2-(Biphenyl-4-ylethynyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1i)


Brown solid. ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.53 (m, 6H), 7.46-7.42 (m, 2H), 7.38-7.34 (m, 1H), 1.34 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 142.0. 140.0, 132.9, 132.4, 128.7, 127.7, 126.9(8), 126.9(0), 120.5, 101.68, 84.4, 24.7 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₂₀H₂₁BO₂ [M+H]: 305.1707, found: 305.1707.

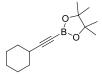
4,4,5,5-Tetramethyl-2-(naphthalen-1-ylethynyl)-1,3,2-dioxaborolane (1j)

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.0 Hz, 1H), 7.85 (t, J = 9.2 Hz, 2H), 7.79 (dd, J = 7.2, 1.2 Hz, 1H), 7.59-7.49 (m, 2H), 7.41 (dd, J = 8.0, 7.2 Hz, 1H), 1.37 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 133.4, 132.8, 132.0, 129.8, 128.1. 126.9, 126.4, 126.2, 124.9, 119.4, 99.6, 84.4, 24.7 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₁₈H₁₉BO₂ [M+H]: 279.1550, found: 279.1550.

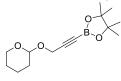
4,4,5,5-Tetramethyl-2-(thiophen-2-ylethynyl)-1,3,2-dioxaborolane (1k)


Brown solid. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 3.6 Hz, 1H), 7.30 (d, J = 5.2 Hz, 1H), 6.97 (dd, J = 5.2, 3.6 Hz, 1H), 1.32 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 134.4, 128.8, 126.9, 121.7, 84.5, 24.7 (The carbon signals of triple bond were not observed due to low intensity); HRMS (APCI): calcd for C₁₂H₁₅BO₂S [M+H]: 235.0958, found: 235.0957.

2-(Cyclohexenylethynyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11)


Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.29-6.27 (m, 1H), 2.13-2.05 (m, 4H), 1.61-1.53 (m, 4H), 1.26 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 119.9, 104.0, 84.0, 28.5, 25.7, 24.6, 22.0, 21.3 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₁₄H₂₁BO₂ [M+H]: 233.1707, found: 233.1706.

2-(Hept-1-ynyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1m)


Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 2.24 (t, J = 7.2 Hz, 2H), 1.58-1.49 (m, 2H), 1.38-1.28 (m, 4H), 1.26 (s, 12H), 0.88 (t, J=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 105.2, 83.9, 31.0, 27.8, 24.7, 22.2, 19.5, 13.9 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₁₃H₂₃BO₂ [M+H]: 223.1863, found: 223.1863.

2-(Cyclohexylethynyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1n)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 2.44-2.39 (m, 1H), 1.83-1.79 (m, 2H), 1.74-1.67 (m, 2H), 1.56-1.39 (m, 3H), 1.28-1.26 (m, 14H); ¹³C NMR (100 MHz, CDCl₃) δ 83.9, 32.0, 29.7, 25.7, 24.8, 24.7 (The carbon signals of triple bond were not observed due to low intensity); HRMS (APCI): calcd for C₁₄H₂₁BO₂ [M+H]: 235.1863, found: 235.1863.

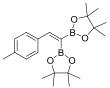
4,4,5,5-Tetramethyl-2-(3-(tetrahydro-2*H*-pyran-2-yloxy)prop-1-ynyl)-1,3,2-dioxaborolane (10)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 4.81 (t, J = 3.2 Hz, 1H), 4.28 (d, J = 3.2 Hz, 2H), 3.83-3.77 (m 1H), 3.54-3.48 (m, 1H), 1.84-1.70 (m, 2H), 1.69-1.48 (m, 2H), 1.26 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 98.9, 96.5, 84.3, 61.8, 54.1, 30.1, 25.3, 24.6, 18.9 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₁₄H₂₃BO₄ [M+Na]: 289.1581, found: 289.1581.

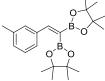
1,7-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,6-diyne (1p)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 2.39 (t, J = 6.8 Hz, 4H), 1.76 (m, 2H), 1.26 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 103.4, 84.0, 26.6, 24.7, 18.7 (The carbon signal attached to B was not observed due to low intensity); HRMS (APCI): calcd for C₂₂H₂₈B₂O₄ [M+H]: 345.2403, found: 345.2402.

Analytical data of products 2 and 3


$\textbf{2,2'-(2-Phenylethene-1,1-diyl)} bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2a)^5$

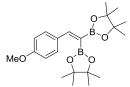
Colorless oil (134 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 1H), 7.48-7.46 (m, 2H), 7.30-7.23 (m, 3H), 1.30 (s, 12H), 1.26 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 139.4, 128.3, 128.0, 127.9, 83.5, 83.1, 24.9, 24.6 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 32.17, 30.62; HRMS (ESI): calcd for C₂₀H₃₀B₂O₄ [M+Na]: 379.2222, found: 379.2221.


2,2'-(2-*p*-Tolylethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2b)

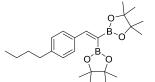
⁵ Takaya, J.; Kirai, N.; Iwasawa, N. J. Am. Chem. Soc. **2011**, 133, 12980.

Colorless oil (130.3 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 2.33 (s, 3H), 1.32 (s, 12H), 1.27 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 138.3, 136.7, 128.7, 128.1, 83.5, 83.0, 24.9, 24.7, 21.3 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 32.35, 30.79; HRMS (ESI) calcd for C₂₁H₃₂B₂O₄ [M+Na]: 393.2378, found: 393.2378.

2,2'-(2-*m*-Tolylethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2c)


Colorless oil (124.4 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.33 (s, 1H), 7.27 (d, J = 7.6 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 2.32 (s, 3H), 1.32 (s, 12H), 1.28 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 139.4, 137.4, 129.1, 128.3, 127.9, 125.4, 83.4, 83.0, 24.8, 24.6, 21.3 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 32.67, 30.64; HRMS (ESI): calcd for C₂₁H₃₂B₂O₄ [M+Na]: 393.2378, found: 393.2378.

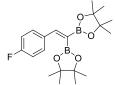
2,2'-(2-o-Tolylethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2d)


Colorless oil (125.9 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.45 (d, J = 7.2 Hz, 1H), 7.18-7.08 (m 3H), 2.35 (s, 3H), 1.28 (s, 12H), 1.24 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 139.0, 136.1, 129.6, 128.1, 127.5, 125.3, 83.3, 83.0, 24.8, 24.5, 19.7 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR 32.09, 30.53; (CDCl₃, 225 MHz, rt) δ HRMS (ESI): calcd for C₂₁H₃₂B₂O₄ [M+Na]:393. 2378, found: 393.2378.

2,2'-(2-(4-Methoxyphenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2e)⁶

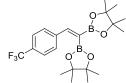
Pale yellow oil (128.2 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.44 (d, J = 8.4 Hz, 2H), 6.81 (d, J = 8.4 Hz, 2H), 3.79 (s, 3H), 1.32 (s, 12H), 1.27 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 154.6, 132.3, 129.6, 113.4, 83.4, 82.9, 55.2, 24.8, 24.7 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 32.48, 30.89; HRMS (ESI): calcd for C₂₁H₃₂B₂O₅ [M+Na]: 409.2328, found: 409.2327.

2,2'-(2-(4-Butylphenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2f)

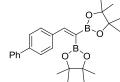


Pale yellow oil (135.2 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 2.58 (t, J = 7.6 Hz, 2H), 1.62-1.54 (m, 2H), 1.33-1.31 (s, 14H), 1.27 (s, 12H), 0.91 (t, J = 7.6

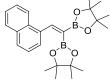
⁶ Coapes, R. B.; Souza, F. E. S.; Thomas, R. L.; Hall, J. J.; Marder, T. B. Chem. Commun. 2003, 614.


Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 143.3, 136.8, 128.0, 127.8, 83.4, 83.0, 35.4, 33.4, 24.8, 24.6, 22.3, 13.9 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 32.59, 31.11; HRMS (ESI): calcd for C₂₄H₃₈B₂O₄ [M+Na]: 435.2848, found: 435.2847.

2,2'-(2-(4-Fluorophenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2g)


Pale yellow oil (136.2 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.49-7.44 (m, 2H), 6.99-6.95 (m, 2H), 1.30 (s, 12H), 1.27 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, $J^1 = 246.7$ Hz), 153.6, 135.7 (d, $J^4 = 3.3$ Hz), 129.7 (d, $J^3 = 8.3$ Hz), 114.9 (d, $J^2 = 21.5$ Hz), 83.6, 83.2, 24.8, 24.6 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 30.84; HRMS (ESI): calcd for C₂₀H₂₉B₂FO₄ [M+Na]: 397.2128, found: 397.2128.

2,2'-(2-(4-(Trifluoromethyl)phenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2h)


Pale yellow oil (140.8 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 1H), 7.59-7.53 (m, 4H), 1.31 (s, 12H), 1.28 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 142.8, 129.9 (q, $J^2 = 32.2$ Hz), 128.5, 125.0 (q, $J^3 = 4.0$ Hz), 124.0 (q, $J^1 = 276$ Hz), 83.8, 83.4, 24.9, 24.6 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 31.54; HRMS (ESI): calcd for C₂₀H₂₉B₂FO₄ [M+Na]:447.2096, found: 447.2096.

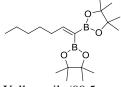
2,2'-(2-(Biphenyl-4-yl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2i)

Yellow oil (155.6 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.62-7.54 (m, 6H), 7.43 (t, *J* = 7.2 Hz, 2H), 7.36-7.32 (m, 1H), 1.35 (s, 12H), 1.30 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 141.0, 138.4, 132.4, 128.6, 128.5, 127.2, 126.9, 126.7, 83.6, 83.1, 24.9, 24.7. The carbon signal attached to B was not observed due to low intensity; ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 30.71; HRMS (ESI): calcd for C₂₆H₃₄B₂O₄ [M+Na]: 307.1863, found: 307.1863.

2,2'-(2-(Naphthalen-1-yl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2j)

White solid. (123.5 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.12 (d, J = 7.2 Hz, 1H), 7.83-7.76 (m, 2H), 7.62 (d, J = 7.2 Hz, 1H), 7.50-7.40 (m, 2H), 7.37 (t, J = 7.6 Hz, 1H), 1.32 (s, 12H), 1.17 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 137.7, 133.2, 131.2, 128.5, 128.0, 125.8, 125.7, 125.4, 125.0, 124.8, 83.4, 83.2, 25.0, 24.5 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 32.09; HRMS (ESI): calcd for C₂₄H₃₂B₂O₄ [M+Na]: 429.2378, found: 429.2378.

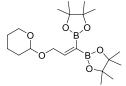
2,2'-(2-(Thiophen-2-yl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2k)


Pale yellow oil (76.8 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.27-7.26 (m, 1H), 7.19-7.18 (m, 1H), 6.96 (dd, J = 5.2, 3.6 Hz, 1H), 1.37 (s, 12H), 1.26 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 144.2, 129.2, 127.1, 127.0, 83.6, 83.1, 24.8, 24.5. The carbon signal attached to B was not observed due to low intensity; ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 31.22; HRMS (ESI): calcd for C₁₈H₂₈B₂O₄S [M+Na]: 385.1786, found: 385.1786.

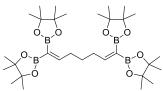
2,2'-(2-Cyclohexenylethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (21)

Colorless oil (89.3 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 1H), 6.00-5.98 (m, 1H), 2.20-2.12 (m, 4H), 1.66-1.53 (m, 4H), 1.30 (s, 12H), 1.22 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 138.6, 134.9, 83.3, 82.7, 26.2, 25.8, 24.8, 24.7, 22.3, 22.0 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 32.49; HRMS (ESI): calcd for C₂₀H₃₄B₂O₄ [M+Na]: 383.2535, found: 383.2535.

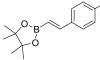
2,2'-(Hept-1-ene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2m)


Yellow oil. (99.5 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 6.92 (t, J = 7.2 Hz, 1H), 2.24 (dt, J = 7.2, 7.2 Hz, 2H), 1.44-1.36 (m, 2H), 1.28-1.22 (m, 28H), 0.86 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 83.0, 82.7, 35.4, 31.5, 28.7, 24.8, 24.7, 22.5, 14.0 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR 34.08, 31.47; (CDCl₃, 225 MHz, rt) δ HRMS (ESI): calcd for C₁₉H₃₆B₂O₄ [M+Na]: 373.2691, found: 373.2691.

2,2'-(2-Cyclohexylethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2n)


Colorless oil (128.9 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 6.74 (d, *J* = 8.8 Hz, 1H), 2.30-2.21 (m, 1H), 1.73-1.70 (m, 4H), 1.29 (s, 12H), 1.22-1.08 (m, 16H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 83.0, 82.7, 44.1, 32.6, 25.9, 25.8, 24.8, 24.6 (The carbon signal attached to B was not observed due to low intensity); ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 31.56; HRMS (ESI): calcd for C₂₀H₃₆B₂O₄ [M+Na]: 385.2691, found: 385.2691.

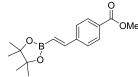
2,2'-(3-(Tetrahydro-2*H*-pyran-2-yloxy)prop-1-ene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (20)


Colorless oil (118.3 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.00 (dd, J = 6.0, 5.2 Hz, 1H), 4.63 (t, J = 3.6 Hz, 1H), 4.38 (dd, J = 14.0, 5.2 Hz, 1H), 4.21, (dd, J = 14.0, 6.0 Hz, 1H), 3.87-3.82 (m 1H), 3.51-3.45 (m, 1H), 1.88-1.77 (m, 1H), 1.74-1.65 (m, 1H), 1.63-1.48 (m, 4H), 1.28 (s, 12H), 1.24 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 97.7, 83.2, 83.0, 68.2, 61.9, 30.5, 25.5, 24.8, 24.7, 19.3; ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 30.87; HRMS (ESI): calcd for C₂₀H₃₆B₂O₆ [M+Na]: 417.2590, found: 417.2589.

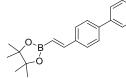
1,1,7,7-Tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,6-diene (2p)

Colorless oil (156.1 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 6.90 (t, *J* = 7.2 Hz, 2H), 2.28-2.23 (m, 4H), 1.56-1.49 (m, 2H), 1.25 (s, 24H), 1.20 (s, 24H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 82.9, 82.6, 35.0, 31.5, 28.5, 24.8, 24.7; ¹¹B NMR (CDCl₃, 225 MHz, rt) δ 31.16; HRMS (ESI): calcd for C₃₁H₅₆B₄O₈ [M+Na]:623.4239, found: 623.4239.

(E)-2-(4-Methoxystyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3a)⁷


White solid (93.6 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 18.4 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 6.01 (d, J = 18.4 Hz, 1H), 3.79 (s, 3H), 1.30 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 148.9, 130.2, 128.3, 113.8, 83.1, 55.2, 24.8. The carbon signal attached to B was not observed due to low intensity.

(E)-2-(4-Fluorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3b)⁸


Colorless oil (69.5 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.42 (m, 2H), 7.35 (d, J = 18.4 Hz, 1H), 7.04-6.98 (m, 2H), 6.07 (d, J = 18.4 Hz, 1H), 1.30 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, J = 247.0 Hz), 148.2, 133.5 (d, J = 2.5 Hz), 128.5 (d, J = 8.2 Hz), 115.4 (d, J = 21.4 Hz), 83.1, 24.8. The carbon signal attached to B was not observed due to low intensity.

(E)-Methyl 4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzoate (3c)⁹

White solid (86.4 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.98 (m, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 18.4 Hz, 1H), 6.27 (s, J = 18.4, 1H), 3.90 (s, 3H), 1.31 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 147.9, 141.5, 130.0, 129.8, 126.8, 83.5, 52.1, 24.8. The carbon signal attached to B was not observed due to low intensity; HRMS (APCI): calcd for C₁₆H₂₁BO₄ [M+H]: 289.1605, found: 289.1605.

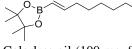
(*E*)-2-(2-(Biphenyl-4-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3d)

Yellow solid (96.8 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.56 (m, 6H), 7.46-7.41 (m, 3H), 7.36-7.34 (m, 1H), 6.21 (d, J = 18.4 Hz, 1H), 1.33 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 141.5, 140.4, 136.4, 128.7, 127.4, 127.3, 127.1, 126.9, 83.6, 24.8. The carbon signal attached to B was not observed due to low intensity; HRMS (APCI): calcd for C₂₀H₂₃BO₂ [M+H]: 307.1863, found: 307.1863.

(E)-2-(2-Cyclohexenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3e)¹⁰

⁷ Stewart, S. K.; Whiting, A. J. Organomet. Chem. 1994, 482, 293.

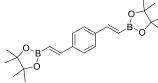
⁸ Wen, K.; Chen, J.; Gao, F.; Bhadury, P. S.; Fan, E.; Sun, Z. Org. Biomol. Chem. 2013, 11, 6350.


⁹ Haberberger, M. and Enthaler, S. Chem. Asian J. 2013, 8, 50

¹⁰ Shade, R. E.; Hyde, A. M.; Olsen, J.-C.; Merlic, C. J. Am. Chem. Soc. 2010, 132, 1202.

Colorless oil (46.8 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, J = 18.4 Hz, 1H), 5.97-5.95 (m, 1H), 5.42 (d, J = 18.4 Hz, 1H), 2.14 (br, 4H), 1.69-1.55 (m, 4H), 1.27 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 137.0, 134.1, 82.9, 26.2, 24.8, 23.7, 22.4, 22.3. The carbon signal attached to B was not observed due to low intensity.

(*E*)-2-(Dodec-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f)¹¹


Colorless oil (100 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 6.65 (dt, J = 18.0, 6.4 Hz, 1H), 5.41 (d, J = 18.0, 1.6 Hz, 1H), 2.16-2.11 (m, 2H), 1.42-1.26 (m, 28H), 0.87 (t, J = 6.8 Hz 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 82.9, 35.8, 31.9, 29.6(6), 29.6(2), 29.5, 29.3, 29.2(7), 29.2(6), 24.8, 22.7, 14.1. The carbon signal attached to B was not observed due to low intensity.

 $(E) \hbox{-} 2 \hbox{-} (2 \hbox{-} Cyclohexylvinyl) \hbox{-} 4,4,5,5 \hbox{-} tetramethyl \hbox{-} 1,3,2 \hbox{-} dioxaborolane (3g)^{12}$

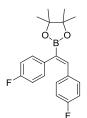
Colorless oil (51.0 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 6.55 (dd, J = 18.4, 6.0 Hz, 1H), 5.37 (d, J = 18.4 Hz, 1H), 2.06-1.99 (m, 1H), 1.75-1.62 (m, 6H), 1.27 (s, 12H), 1.19-1.05 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 82.9, 43.2, 31.9, 26.1, 25.9, 24.8. The carbon signal attached to B was not observed due to low intensity. HRMS (ESI): calcd for [M+H]: 237.1913, found: 237.1913.

1,4-Bis((*E*)-2-(**4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl**)vinyl)benzene (**3h**)¹³

White solid (122.3 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 4H), 7.36 (d, J = 18.4 Hz, 2H), 6.16 (d, J = 18.4 Hz, 2H), 1.31 (s, 24H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 137.8, 127.2, 119.6, 83.8, 24.8. The carbon signal attached to B was not observed due to low intensity.

(Z)-2-(1,2-Diphenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i)¹⁴

Pale yellow solid (118.8 mg, 97%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 1H), 7.28-7.03 (m, 10H), 1.31 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 140.2, 136.8, 129.8, 128.7, 128.1, 127.7, 127.4, 126.1, 83.7, 24.8. The carbon signal attached to B was not observed due to low intensity.


(Z)-2-(1,2-Bis(4-fluorophenyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3j)

¹¹ Quigley, B. L.; Grubbs, R. H. Chem. Sci. 2014, 5, 501.

¹² Haberberger, M. and Enthaler, S. Chem. Asian J. 2013, 8, 50

¹³Lee, T.; Baik, C.; Jung, I.; Song, K. H.; Kim, S.; Kim, D.; Kang, S. O.; Ko, J. Organometallics. 2004, 23, 4569.

¹⁴ Grirrane, A.; Corma, A.; Garcia, H. Chem. Eur. J. 2011, 17, 2467.

White solid (110.9 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (s, 1H), 7.13-6.95 (m, 6H), 6.83 (t, J = 8.4 Hz, 2H), 1.32 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 161.8 (d, J = 246.7 Hz), 161.5 (d, J = 243.4 Hz), 142.1, 135.7 (d, J = 3.3 Hz), 132.7 (d, J = 3.3 Hz), 131.4 (d, J = 8.3 Hz), 130.2 (d, J = 8.2 Hz), 115.2 (d, J = 20.7 Hz), 114.8 (d, J = 20.7 Hz), 83.8, 24.8; HRMS (APCI): calcd for C₂₀H₂₁BF₂O₂ [M+H]: 343.1675, found: 343.1675.

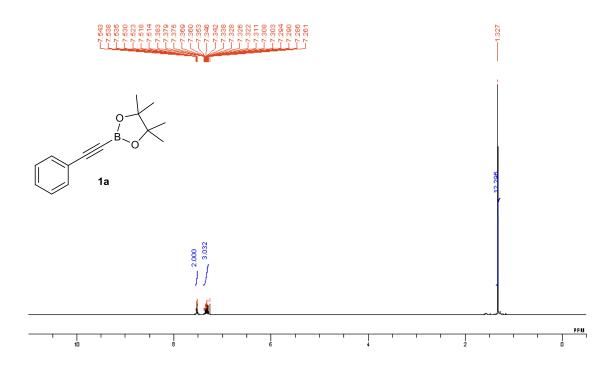
(Z)-2-(1,2-Di(thiophen-2-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3k)¹⁵

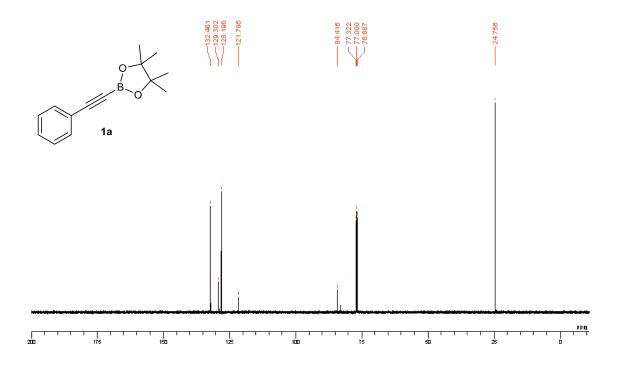
Yellow oil (99.2 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.38 (dd, J = 5.2, 1.2 Hz, 1H), 7.21-7.19 (m, 1H), 7.12-7.11 (m, 1H), 7.08 (dd, J = 5.2, 3.2 Hz, 1H), 6.93-6.90 (m, 2H), 1.31 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 139.8, 139.1, 131.4, 128.7, 127.3, 126.0, 125.7, 83.8, 24.7; HRMS (APCI): calcd for C₁₄H₁₆BO₂S₂ [M+H]: 319.0992, found: 319.0991.

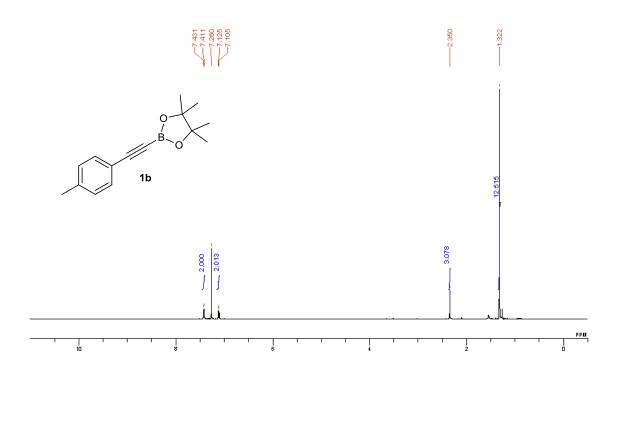
(Z)-2-(1,4-Dimethoxybut-2-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3l)

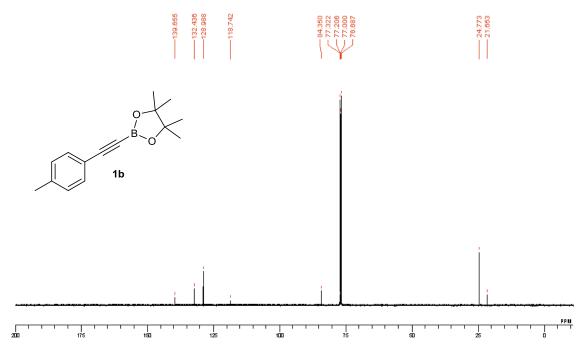
Colorless oil (58.1 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 6.58 (t, J = 5.6 Hz, 1H), 4.14 (d, J = 5.6 Hz, 2H), 4.02 (s, 2H), 3.34 (s, 3H), 3.28 (s, 3H), 1.24 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 83.4, 69.6, 68.9, 58.3, 57.8, 24.7. The carbon signal attached to B was not observed due to low intensity; HRMS (ESI): calcd for C₁₂H₂₃BO₄ [M+Na]: 265.1581, found: 265.1580.

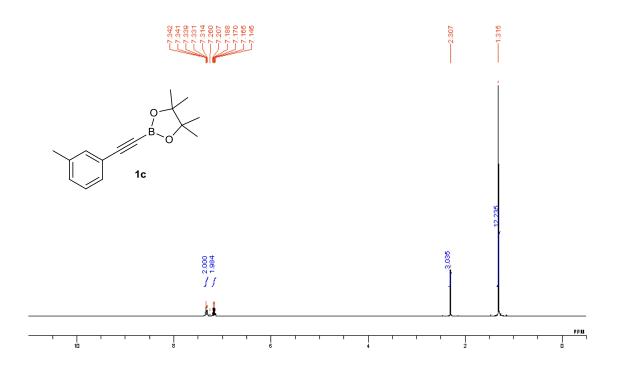
Analytical data of compounds 4 and 5

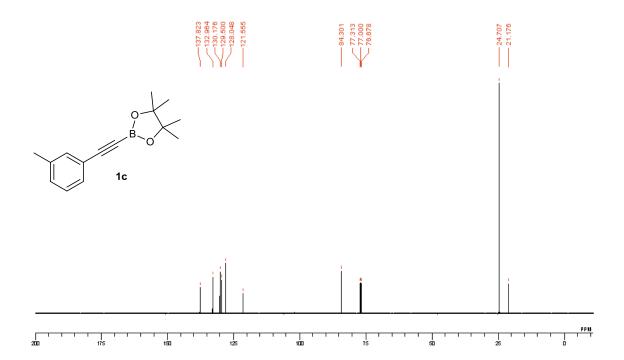

9-Benzylidene-9*H*-fluorene (4)¹⁶

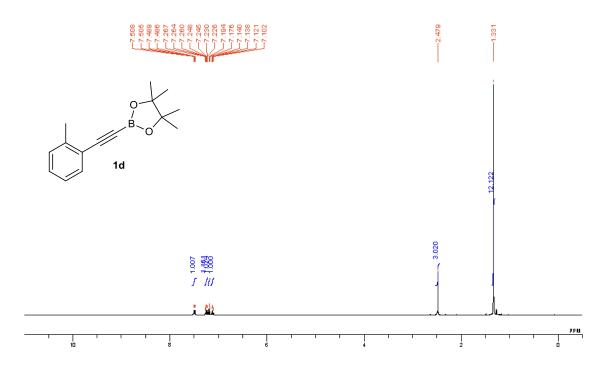


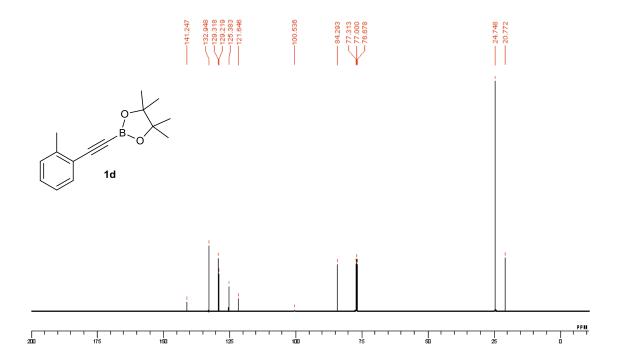

White solid (74 mg, 97%). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.6 Hz, 1H), 7.73-7.70 (m, 3H), 7.60-7.54 (m, 3H), 7.48-7.44 (m, 2H), 7.48-7.45 (m, 2H), 7.41-7.29 (m, 4H), 7.07-7.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 139.3, 139.0, 136.8, 136.4, 136.3, 129.1, 128.4, 128.1, 127.9, 127.1, 126.9, 126.5, 124.3, 120.1, 119.6, 119.5.

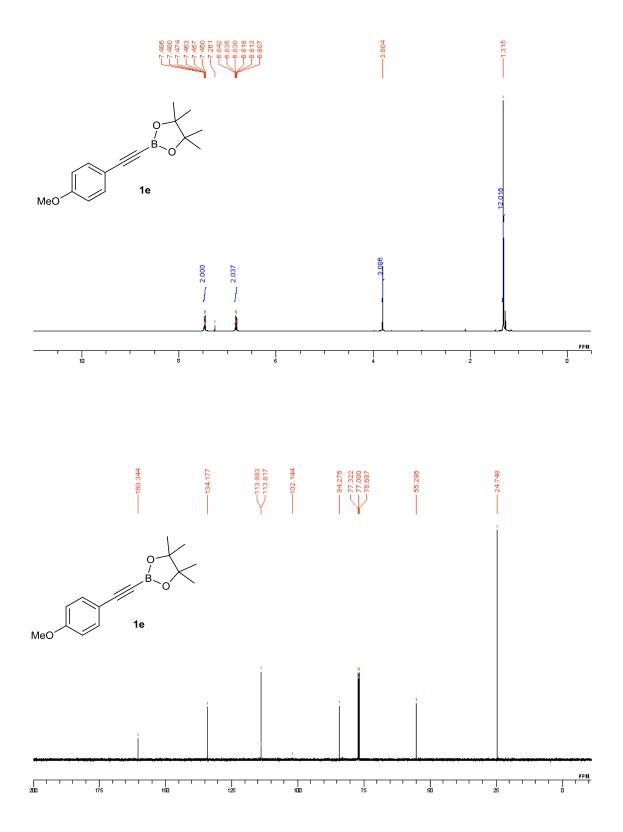

¹⁵ Sundararaju, B. and Fürstner, A. Angew. Chem. Int. Ed. 2013. 52, 14050

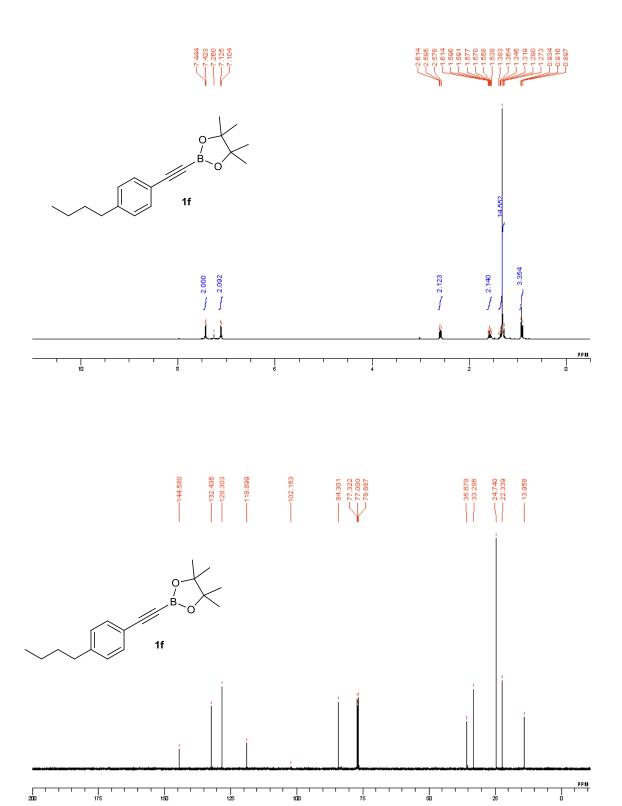

¹⁶ Chernyak, N.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 5636.

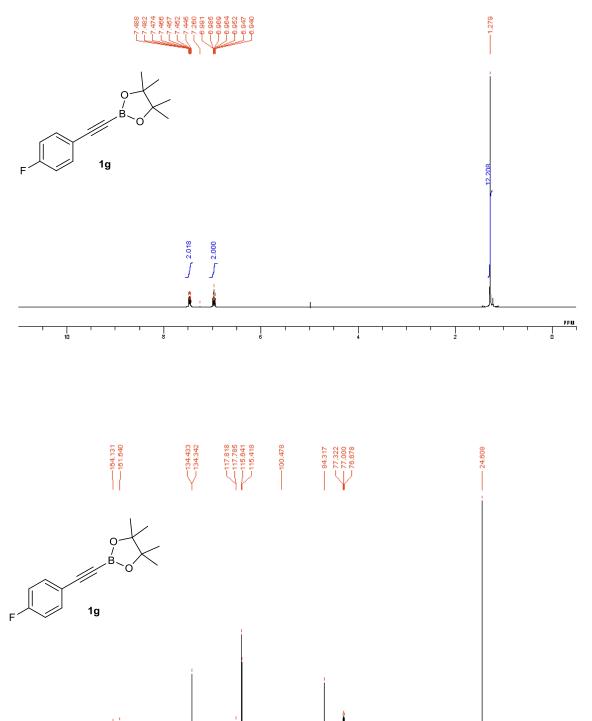


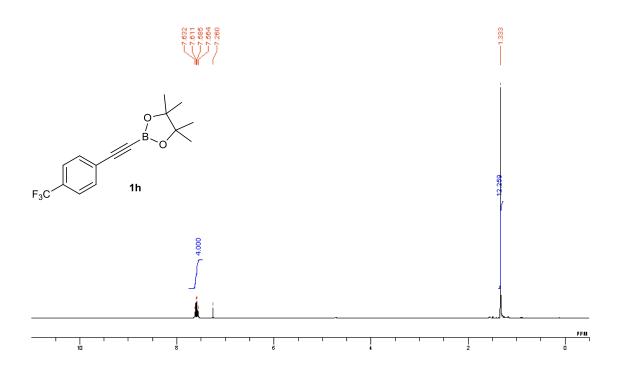


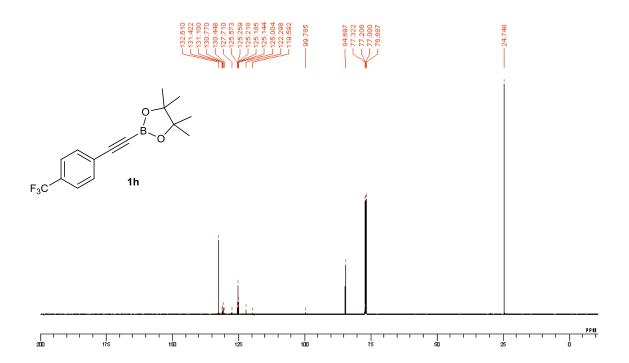


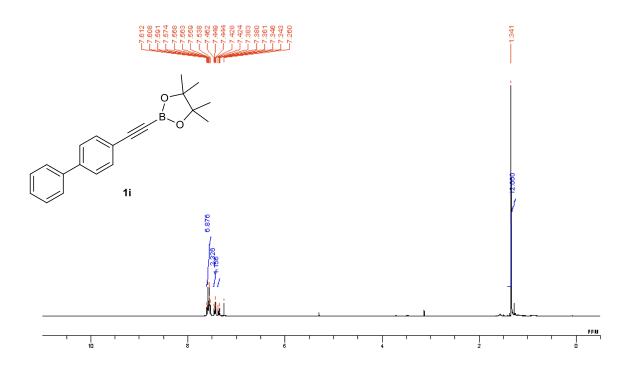


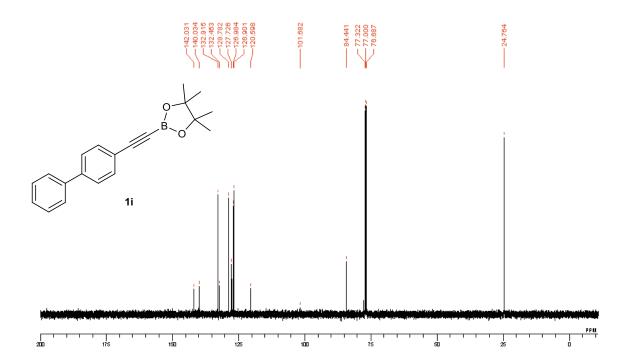


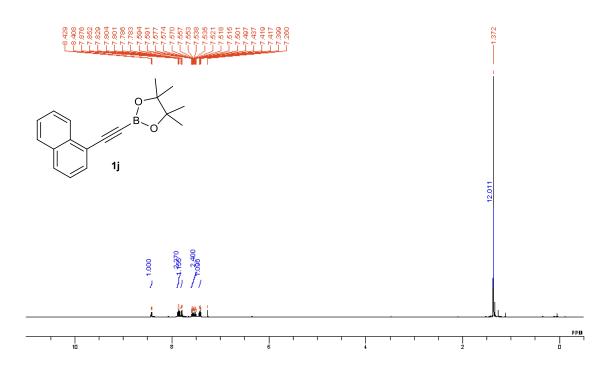


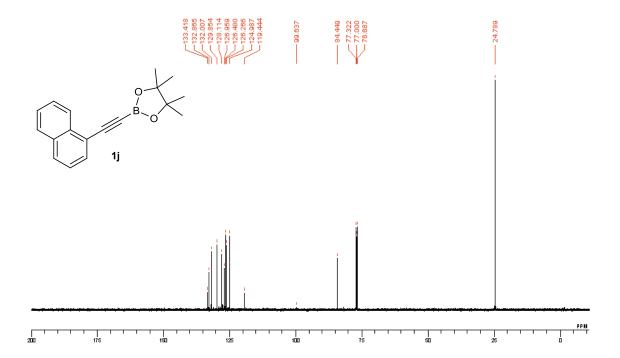


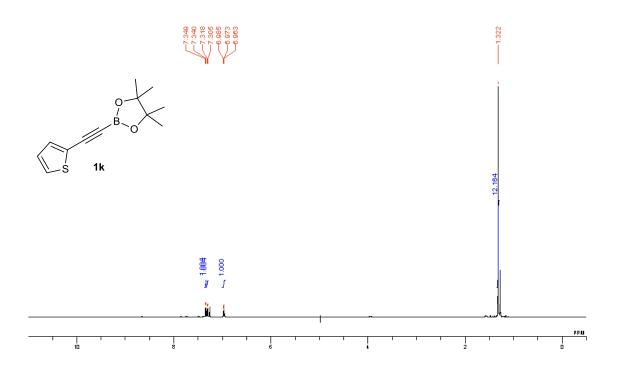


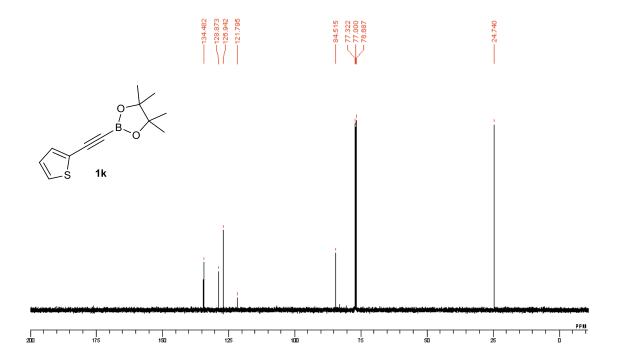


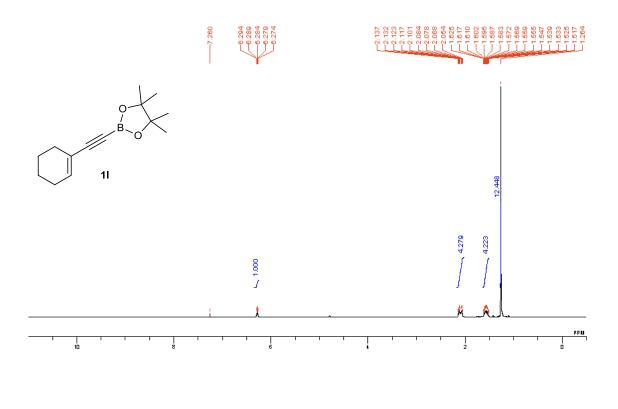

рания и праводини и пра Праводини и право

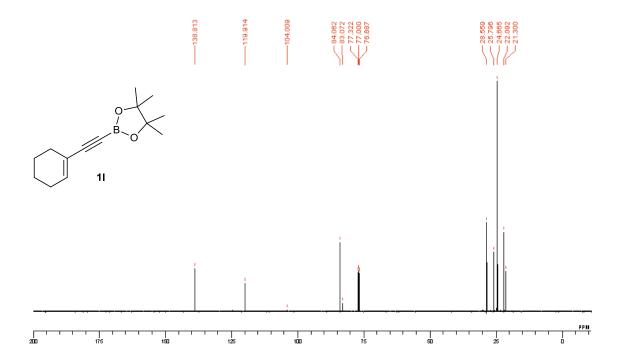

200

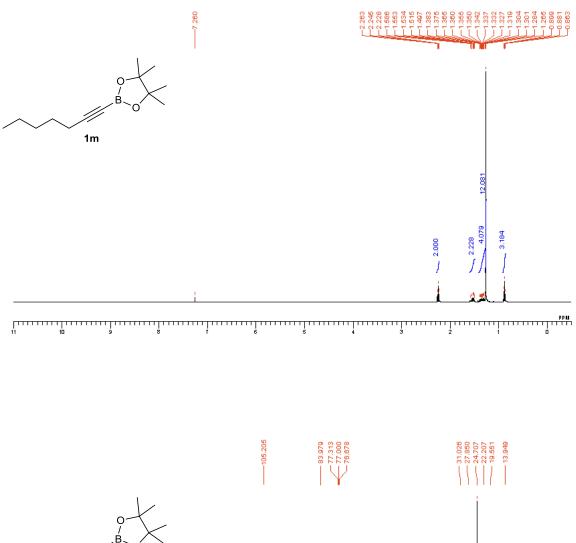


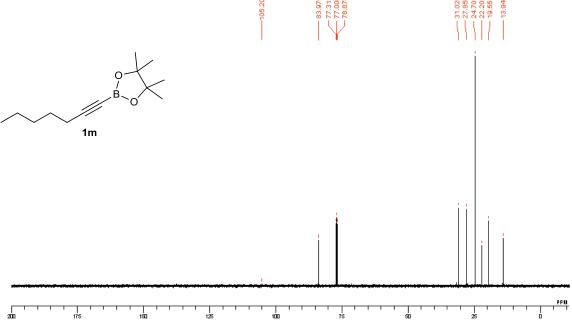


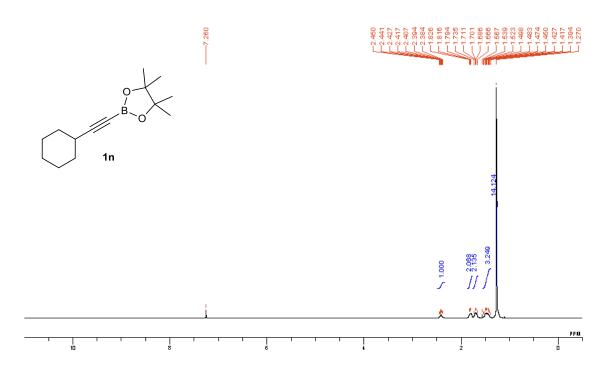


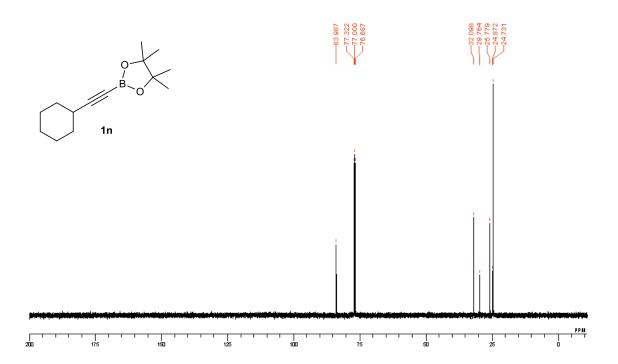


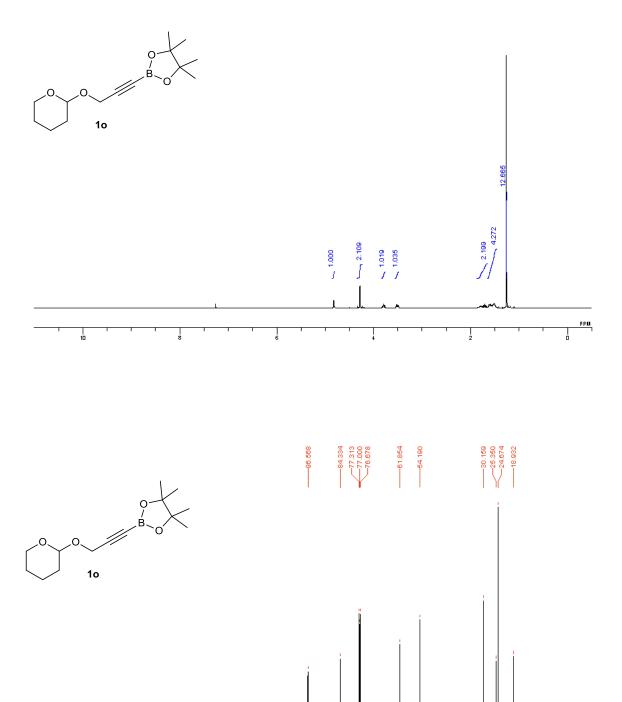


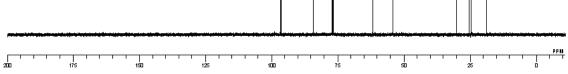


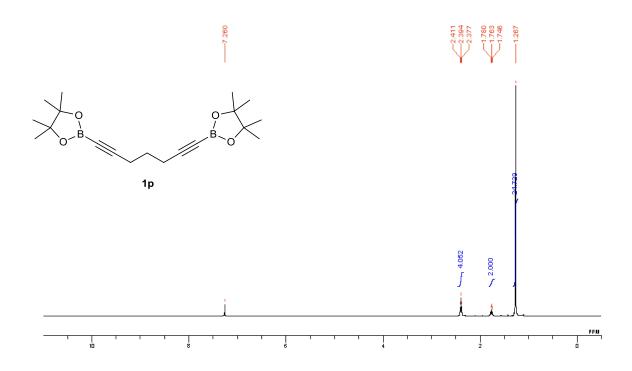


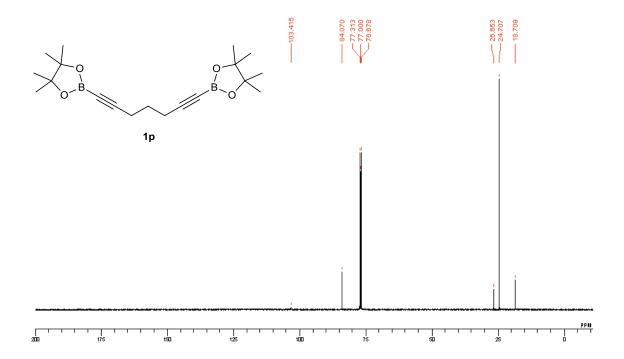


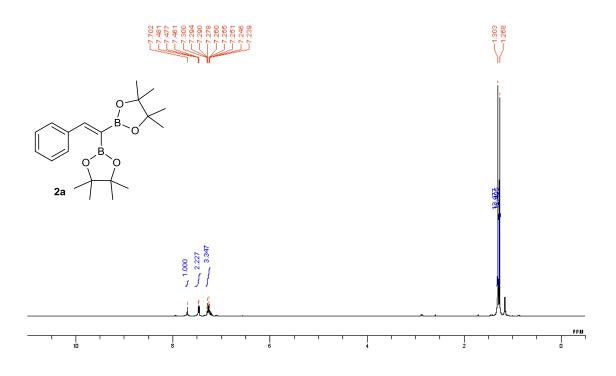


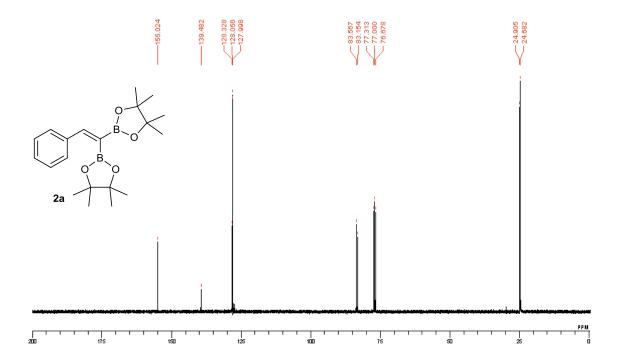


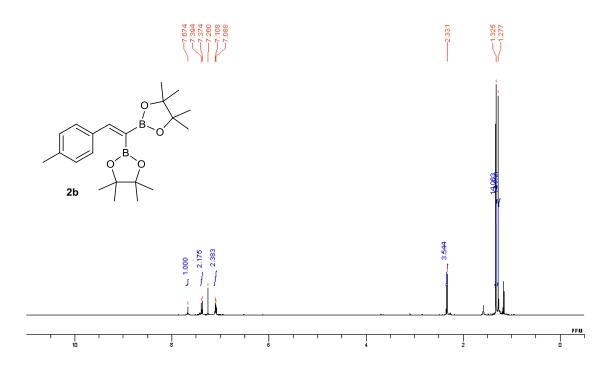


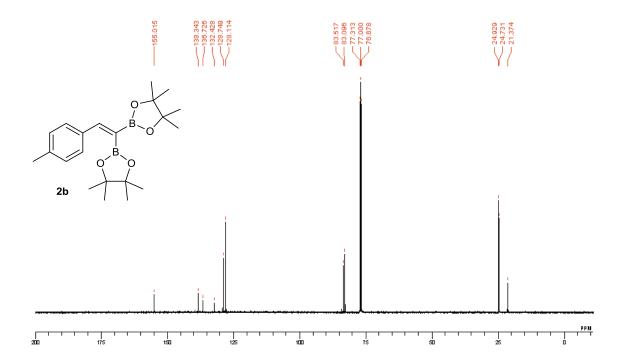


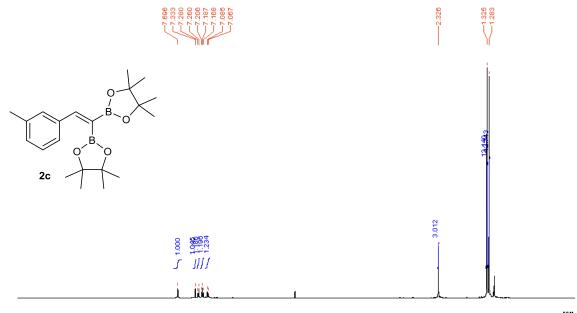


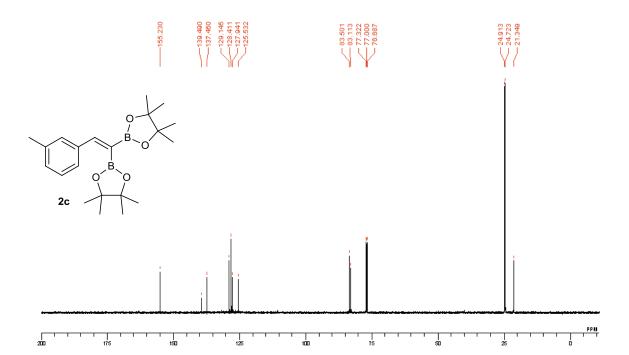


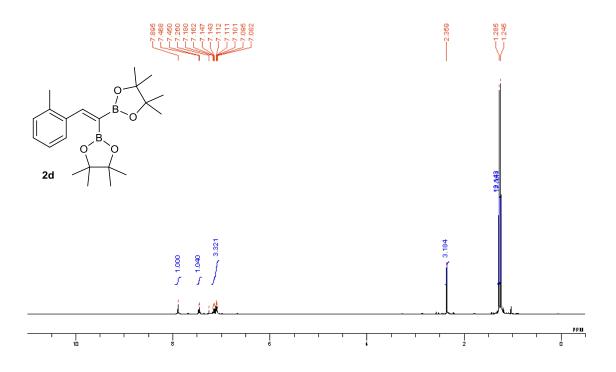


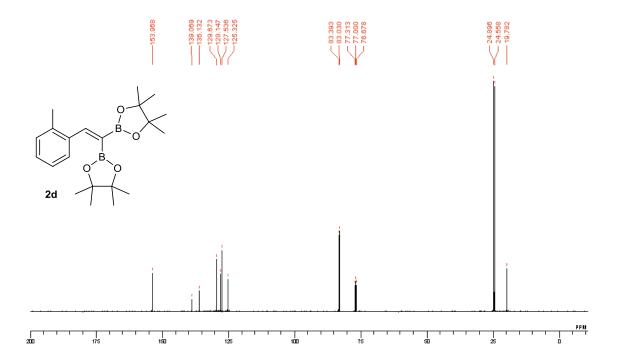


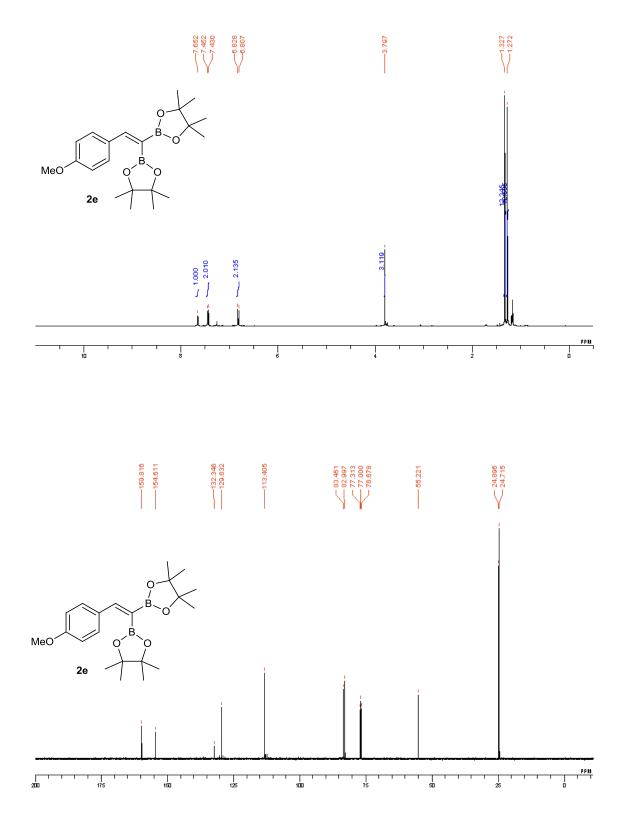


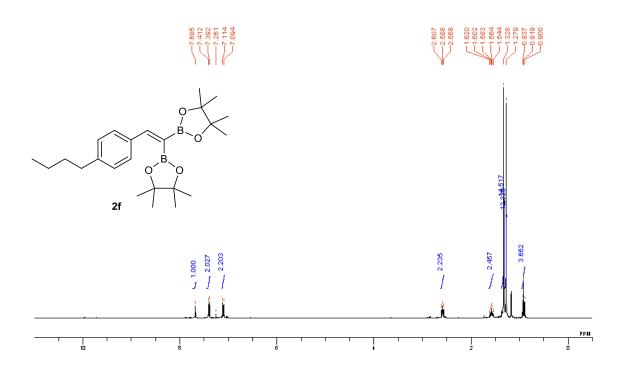


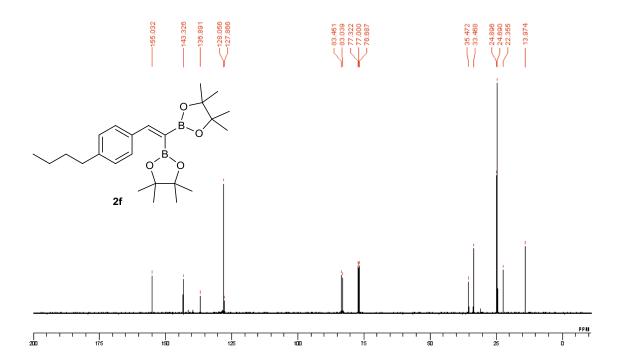


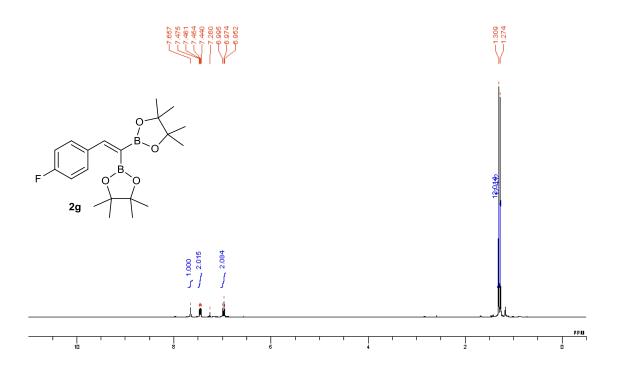


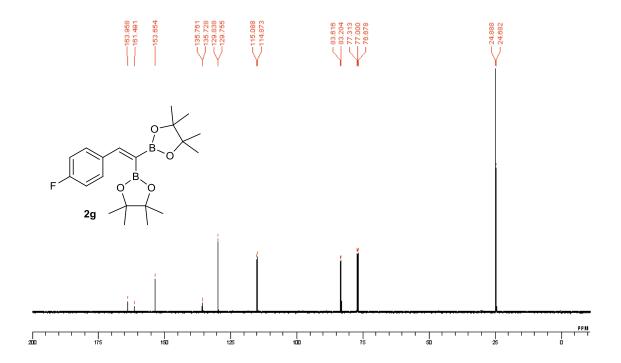


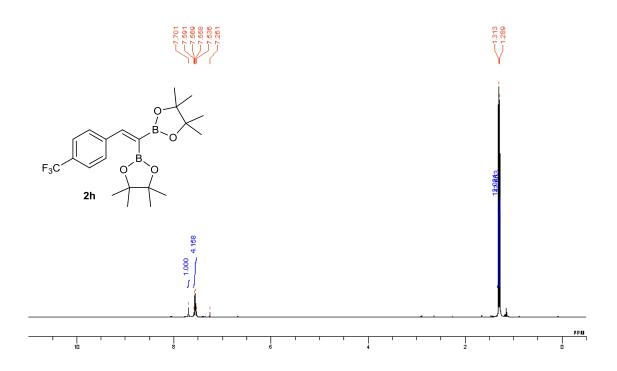


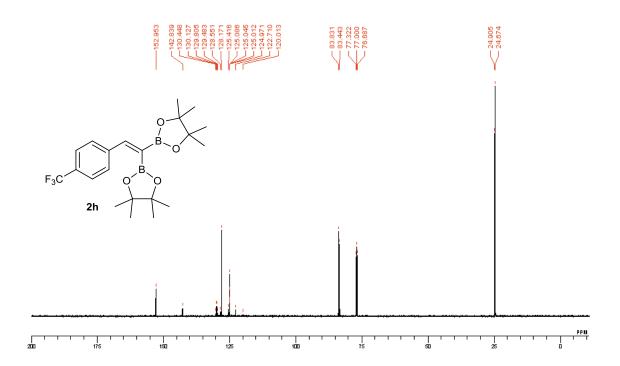


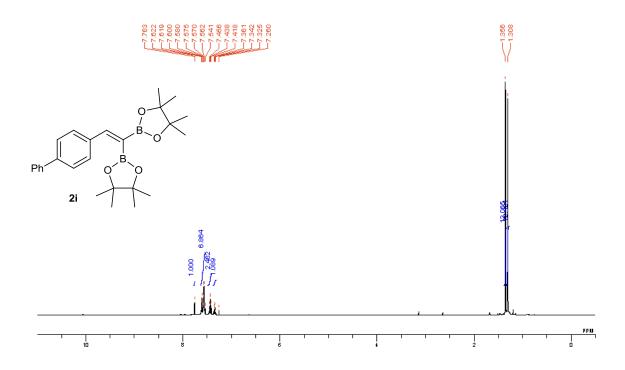


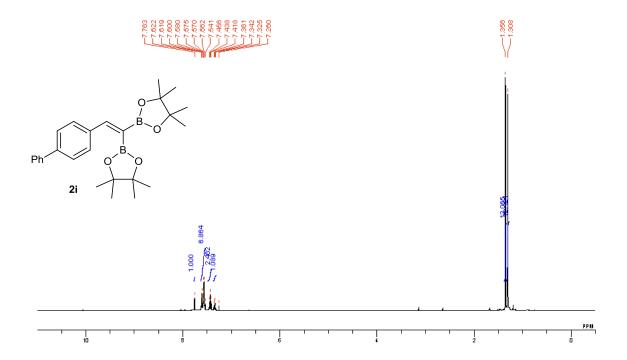


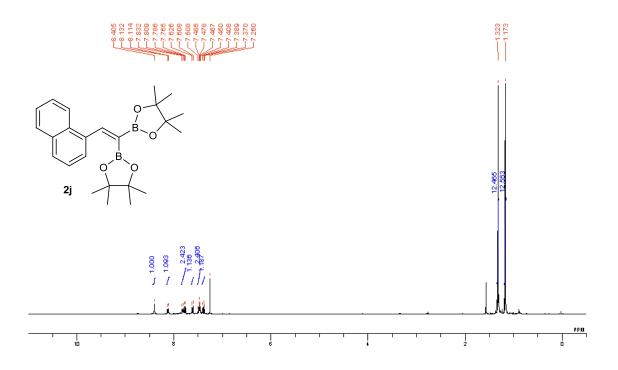


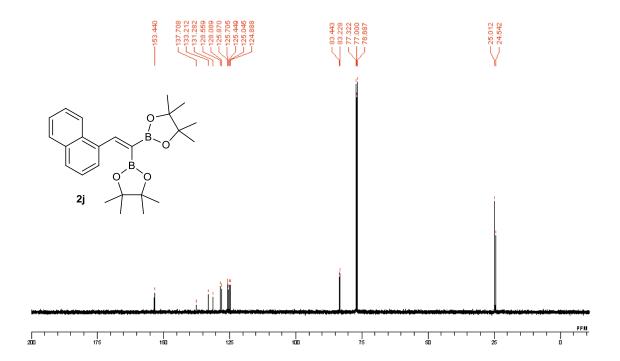

S34

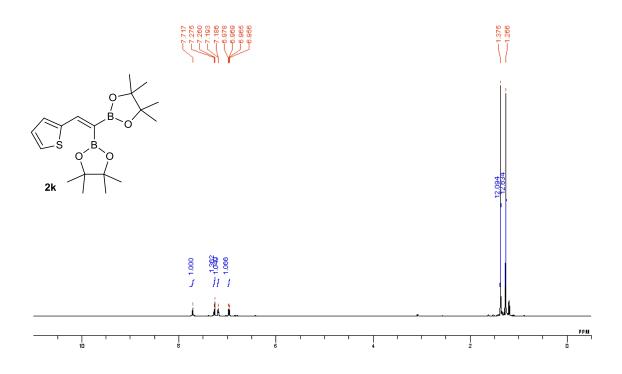


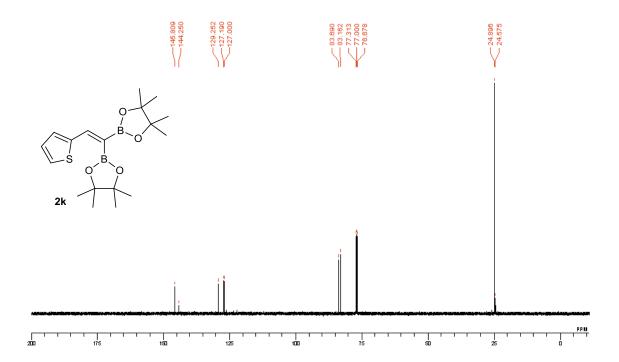


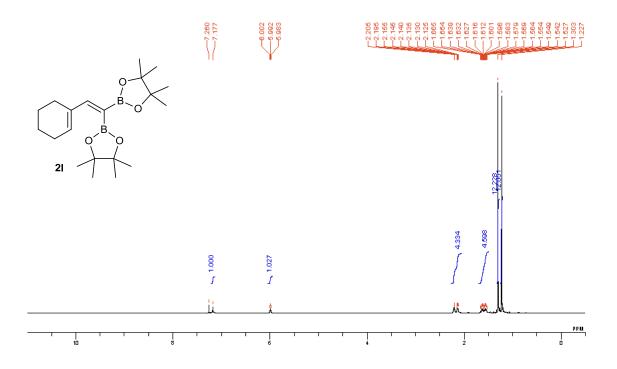


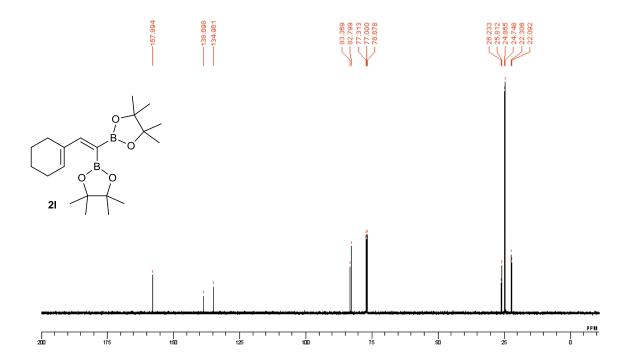


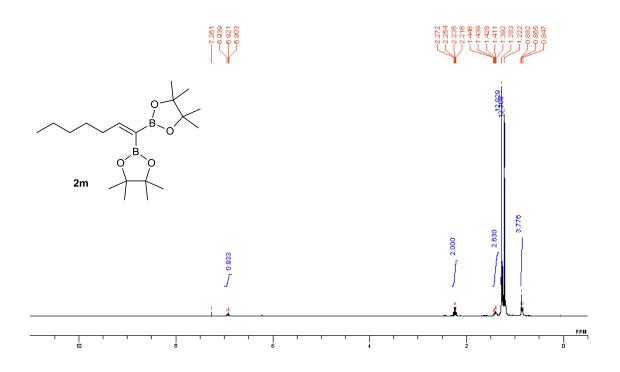


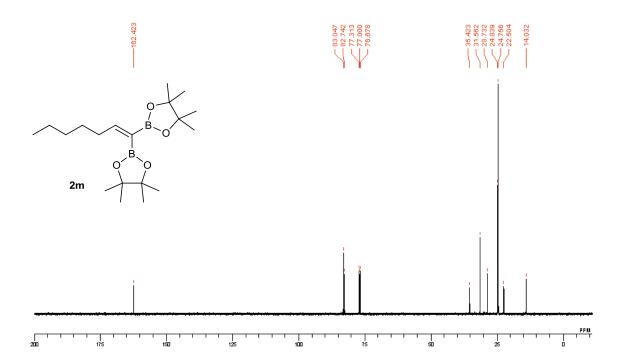


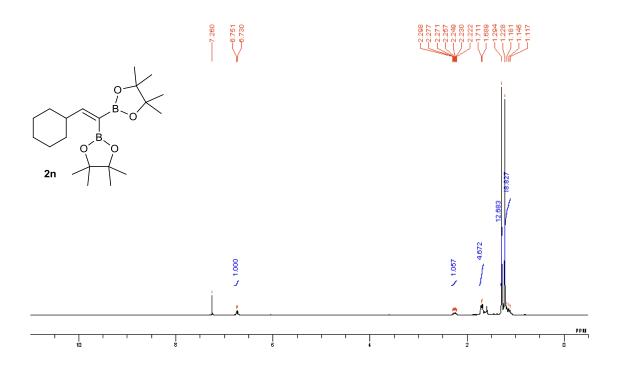


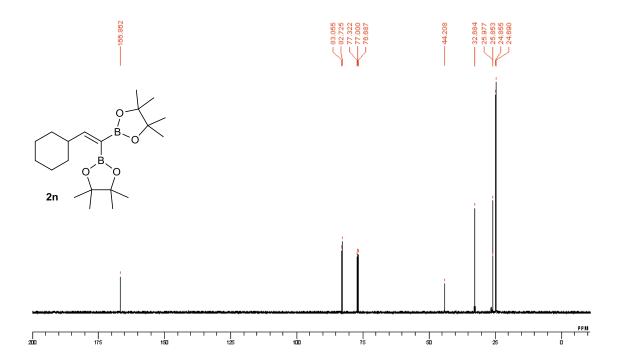


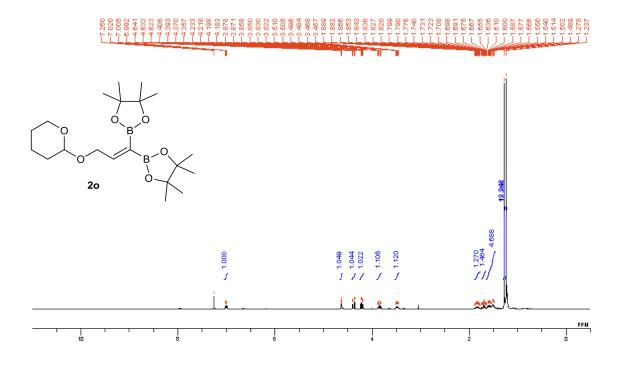


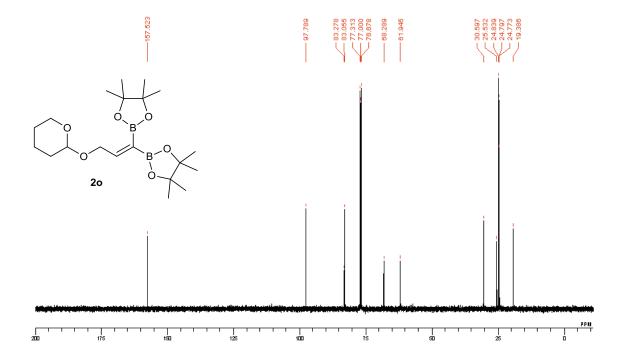


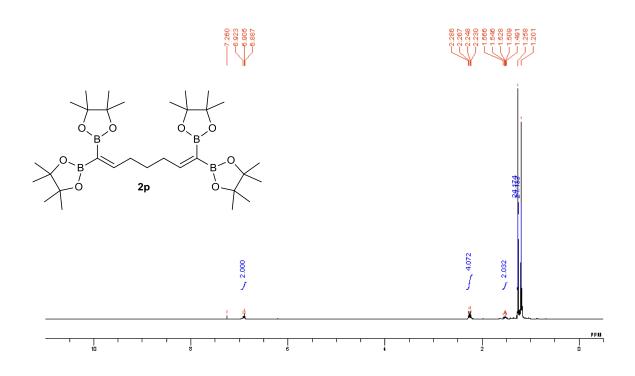


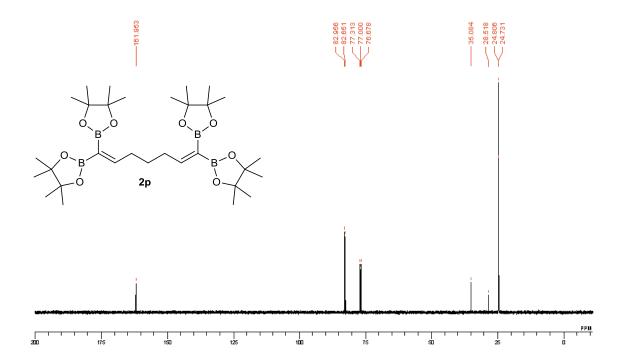


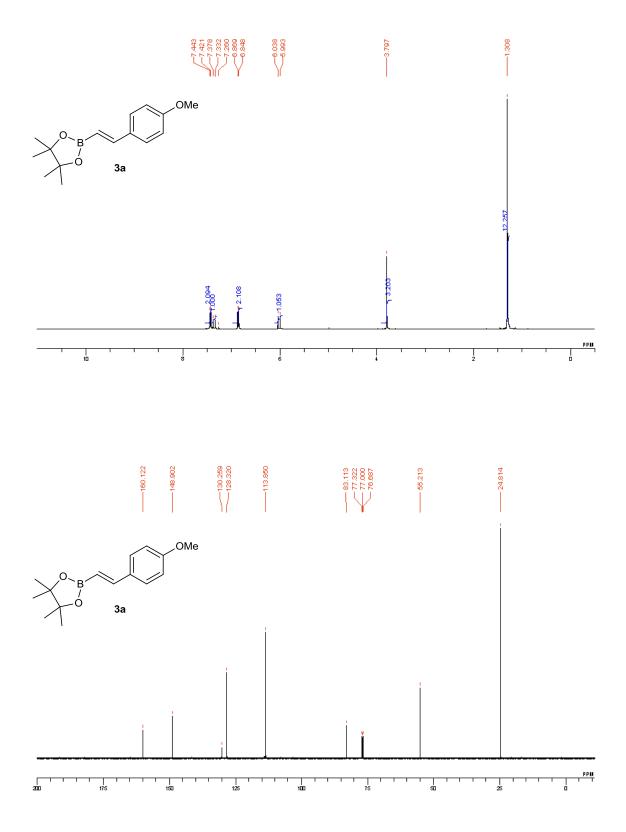


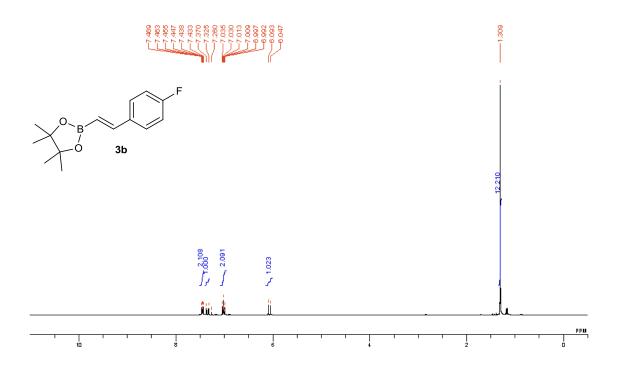


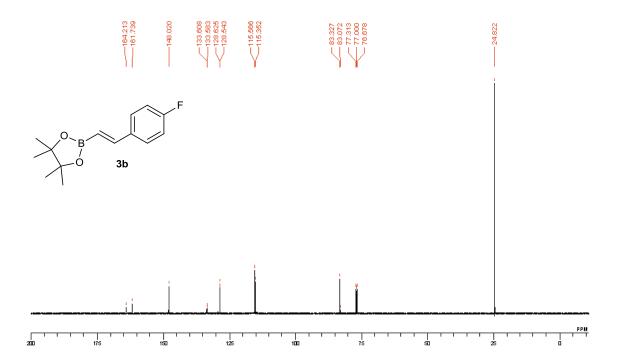


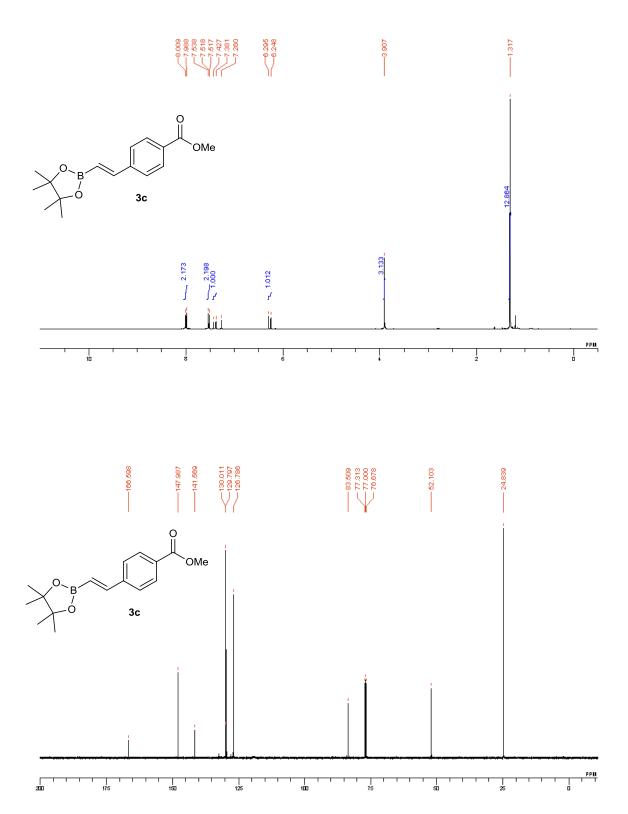




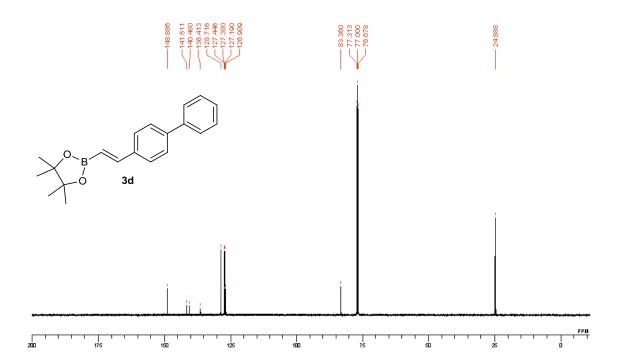


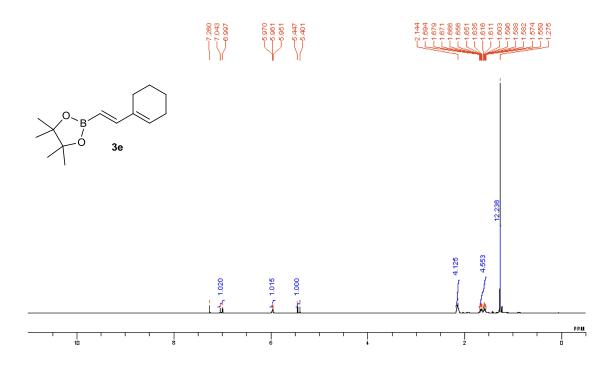


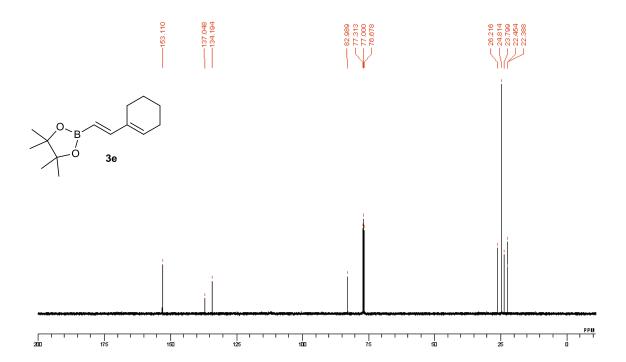


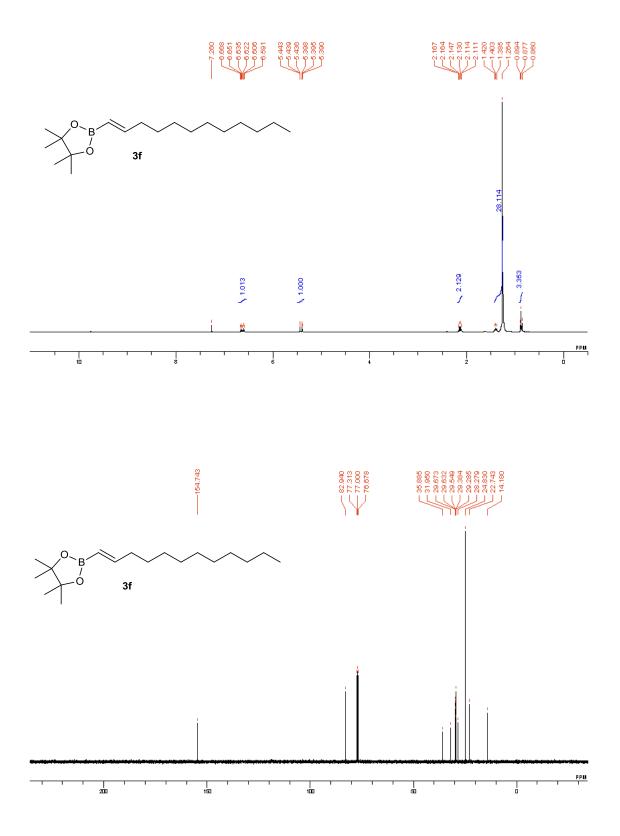











S48

