Supplementary Information for:

Reactivity of Organogold Compounds with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}-$

A Gold-Boron Transmetalation via $\sigma-\mathrm{B} / \pi-\mathrm{Au}-$ Species

Max M. Hansmann, ${ }^{\star \dagger}$ Frank Rominger, ${ }^{\dagger}$ Michael P. Boone, ${ }^{\ddagger \|}$ Douglas W. Stephan ${ }^{\star, \sharp, \|}$ and A. Stephen K. Hashmi ${ }^{*}{ }^{\dagger}$,
\dagger Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
\ddagger Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
${ }^{1}$ Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.

Table of Contents

General procedures S-2
Experimental Details S-3
NMR data S-21
Catalysis experiments S-66
X-ray data S-68
Computational details S-69
References S-77

General procedures

With the exception of the synthesis of starting materials, all reactions and manipulations were carried out under an atmosphere of dry, O_{2}-free nitrogen using standard double-manifold techniques with a rotary oil pump. An argon-filled glove box was used to manipulate solids including the storage of starting materials, room temperature reactions, product recovery and sample preparation for analysis. Molecular sieves $(4 \AA)$ were dried at $120^{\circ} \mathrm{C}$ for 24 h prior to use. All solvents (toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}$, pentane, hexane) were dried by employing a solvent purification system MB SPS-800, degassed and stored over molecular sieves under a nitrogen atmosphere. Deuterated solvents were dried over molecular sieves before use. Chemicals were purchased from commercial suppliers and used as received. $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ was prepared based on a slightly modified synthesis reported in the literature. ${ }^{[1]}$ The IPr* ligand was prepared according to the literature procedure. ${ }^{[2]}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}{ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Avance III, Avance 400, Avance-III-300, Avance DRX-300, Avance 500 or Avance 600. Chemical shifts are expressed as parts per million (ppm, δ) downfield of tetramethylsilane (TMS) and are referenced to d_{8}-toluene, d_{6}-benzene, d_{8}-THF, $\mathrm{CDCl}_{3}(7.26 / 77.16$ $\mathrm{ppm})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(5.32 / 53.80 \mathrm{ppm})$ as internal standards. NMR spectra were referenced to CFCl_{3} $\left({ }^{19} \mathrm{~F}\right)$ or 1,2-difluorobenzene (-139 ppm) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} / \mathrm{CDCl}_{3}\left({ }^{11} \mathrm{~B}\right)$. The description of signals include: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet and $\mathrm{br} .=$ broad. All coupling constants are absolute values and J values are expressed in Hertz (Hz). Mass spectra (MS and HRMS) were determined in the chemistry department of the University Heidelberg under the direction of Dr. J. Gross. FAB (+) spectra were obtained using a JEOL JMS-700 spectrometer. For the FAB-matrix, 3nitrobenzyl alcohol (NBA) or o-nitrophenyl octyl ether (NPOE) was used. For ESI (+) spectra, a ApexQe FT-ICR-MS spectrometer was used. Infrared Spectroscopy (IR) was processed on an FT-IR (IF528), IR (283) or FT-IR Vektor 22.

Experimental Details

(1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-imidazol-2-yl)(prop-1-yn-1-yl)gold (1)

(Idipp) $\mathrm{AuCl}(400 \mathrm{mg}, 0.64 \mathrm{mmol})$ was dissolved in THF $(15 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. At this temperature 1-propynylmagnesium bromide ($3.9 \mathrm{~mL}, 1.93 \mathrm{mmol}, 3.0$ eq., 0.5 M in THF) was added, stirred for 2 h and then warmed up to room temperature and stirred for additional 12 h . Aqueous saturated NaHCO_{3} solution $(10 \mathrm{~mL})$ was added and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 30 mL). The combined organic phases were dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane affords the product as white solid (382 mg , $94 \%)$. The spectral data is in accordance with literature data. ${ }^{[3]}$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H})$, 7.17 (s, 2H), 2.55 (sept., $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 12H); ${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=191.7$ (s), 146.3 (s), 134.9 (s), 130.9 (s),

(1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-imidazol-2-yl)(phenylethynyl)gold (2)

(Idipp) $\mathrm{AuCl}(100 \mathrm{mg}, 0.0161 \mathrm{mmol})$ and phenyl acetylene $(17 \mathrm{mg}, 0.170 \mathrm{mmol})$ were placed in a Schlenk bomb along with $\mathrm{EtOH}(20 \mathrm{~mL})$ and to this $\mathrm{NaOMe}(9 \mathrm{mg}, 0.170 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ was added. The reaction was heated to $80^{\circ} \mathrm{C}$ for 1 h and upon cooling to room temperature the solvent was removed in vacuo. The resulting residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and filtered through Celite.

The resulting solution was then evaporated to dryness affording the colorless product (99 mg , $0.144 \mathrm{mmol}, 85 \%)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): 7.50(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 4 \mathrm{H})$, 7.06-6.95 (m, 3H), 2.51 (sept., $J=7 \mathrm{~Hz}, 4 \mathrm{H}), 1.29(\mathrm{~d},, J=7 \mathrm{~Hz}, 12 \mathrm{H}), 1.15(\mathrm{~d}, J=7 \mathrm{~Hz}, 12 \mathrm{H})$.

(1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene)(p-tolylethynyl)gold (3)

To a solution of (Idipp) $\mathrm{AuCl}(434 \mathrm{mg}, 0.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ was added $\mathrm{NEt}_{3}(2 \mathrm{ml})$ followed by 4-ethynyltoluene ($133 \mu 1,1.05 \mathrm{mmol}, 1.5$ equiv.). The solution was stirred at room temperature in the dark for 3 d . The solvent was removed under reduced pressure and the remaining solid purified by column chromatography (basic aluminum oxide; PE:EA $10: 1$ to $5: 1$) to afford 3 as colorless solid ($442 \mathrm{mg}, 0.63 \mathrm{mmol}, 90 \%$).
$\mathbf{R}_{\mathbf{f}}=0.40$ (petroleum ether : ethyl acetate $=5: 1$); $\mathbf{I R}$ (thin film) $\nu_{\max }=3139 \mathrm{~cm}^{-1}, 3081,3031,2959$, $2922,2867,2118,1595,1559,1505,1469,1459,1415,1386,1365,1349,1327,1287,1211,1181$, $1150,1123,1104,1084,1061,1044,814,{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=7.59(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~s}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.60 (sept., $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=191.2$ (s), 146.4 (s), 136.2 (s), 134.8 (s), 132.1 (s), 131.1 (s), 129.1 (s), 124.7 (s), 124.0 (s), 123.7 (s), 103.6 (s), 29.3 (s), 24.9 (s), 24.2 (s), 21.5 (s); EA (elemental analysis) calcd (\%) for $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{AuN}_{2}$: C 61.71, H 6.19, N 4.00\%; Obs. C 61.50, H 6.37, N 3.99\%; HRMS-FAB $(+)(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{AuN}_{2}, 700.3092$; found, 700.3100 .
(1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-imidazol-2-yl)(ferrocenylethynyl)gold (4)

To a solution of ethynylferrocene ($67.6 \mathrm{mg}, 0.32 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ was added at $-78^{\circ} \mathrm{C} n \mathrm{BuLi}$ $(140 \mu \mathrm{l}, 0.35 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane). The solution was stirred at this temperature for 1 h and then (Idipp) $\mathrm{AuCl}(200 \mathrm{mg}, 0.32 \mathrm{mmol})$ was added as solid. The solution turns bright yellow upon addition and was warmed up to room temperature over 12 h . A saturated solution of $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ was added, the phases separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{ml})$. The combined organic phases were dried over MgSO_{4}, filtered and concentrated to afford an orange solid, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane to give 4 ($232 \mathrm{mg}, 0.29 \mathrm{mmol}, 91 \%$).

IR (thin film) $v_{\max }=3124 \mathrm{~cm}^{-1}, 2964,2869,1594,1553,1470,1414,1385,1364,1329,1262,1214$, 1182, 1104, 1061, 1022, 946, 924, 864, 807, 759; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=$ $7.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 5 \mathrm{H})$, $3.99(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.59$ (sept., $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 12 \mathrm{H}), 1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 12H); ${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=191.3$ (s, NHC), 146.4 (s), 134.9 (s), 131.1 (s), 126.3 (s), 124.7 (s), 123.9 (s), 100.7 (s), 71.5 (s), 70.1 (s), 67.8 (s), 29.3 (s), 24.9 (s), 24.2 (s); HRMS-FAB $(+)(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{AuFeN}_{2}, 794.2598$; found, 794.2586.

IPrAu-tris(perfluorophenyl)(prop-1-yn-1-yl)borate (5)

To (Idipp)Au-C $\equiv \mathrm{C}-\mathrm{Me}(53.5 \mathrm{mg}, 0.086 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(43.9 \mathrm{mg}$, 0.086 mmol) and stirred for 5 min . Slow diffusion of pentane into this solution at $-20^{\circ} \mathrm{C}$ afforded the product as colorless crystals. Pentane was removed via syringe and the remaining solvent evaporated under reduced pressure to give pure 5 as colorless crystals ($73.4 \mathrm{mg}, 75 \%$).

IR (thin film) $v_{\max }=2966 \mathrm{~cm}^{-1}, 2875,1644,1514,1456,1421,1387,1367,1353,1330,1275,1185$, 1087, 1062, 1013, 971, 804, 760, 745, 703, ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=7.56$ (t, J $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 2.49(\mathrm{sept} ., J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=$ $181.5(\mathrm{~s}, \mathrm{NHC}), 148.4\left(\mathrm{dm}, J_{\mathrm{CF}}=241.9 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}\right), 146.1(\mathrm{~s}, \mathrm{NHC}), 139.2\left(\mathrm{dm}, J_{\mathrm{CF}}=246.4 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}\right)$, $137.0\left(\mathrm{dm}, J_{\mathrm{CF}}=248.8 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}\right), 133.8(\mathrm{~s}, \mathrm{NHC}), 131.7(\mathrm{~s}, \mathrm{NHC}), 124.8(\mathrm{~s}, \mathrm{NHC}), 124.8(\mathrm{~s}, \mathrm{NHC})$, 122.0 (brs, C-B), 101.0 ($\mathrm{q}, J_{\mathrm{C}-\mathrm{B}}=63.3 \mathrm{~Hz}, \mathrm{C}-\mathrm{B}$), 98.1 (s$), 29.3(\mathrm{~s}, \mathrm{NHC}), 24.4(\mathrm{~s}, \mathrm{NHC}), 24.1(\mathrm{~s}$, NHC), $7.4(\mathrm{~s}) ;{ }^{19} \mathbf{F}$ NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=-132.4\left(\mathrm{~d}, J_{\mathrm{FF}}=22.3 \mathrm{~Hz}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, $-161.2\left(\mathrm{t}, J_{\mathrm{FF}}=20.6 \mathrm{~Hz}\right),-165.85\left(\mathrm{~m}, 6 \mathrm{~F}, \mathrm{~m}-\mathrm{C}_{6} \mathrm{~F}_{5}\right) ;{ }^{11} \mathbf{B} \mathbf{N M R}\left(95 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-$
20.1 (s); EA (elemental analysis) calcd (\%) for $\mathrm{C}_{48} \mathrm{H}_{39} \mathrm{AuBF}_{15} \mathrm{~N}_{2}$: C 50.72, H 3.46, N 2.46\%; Obs. C 50.38, H 3.56, N 2.25\%; HRMS-FAB (+) (m/z): calcd for $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}\right], \mathrm{C}_{42} \mathrm{H}_{39} \mathrm{AuBF}_{10} \mathrm{~N}_{2}, 969.2712$; found, 969.2722.

IPrAu- tris(perfluorophenyl)(phenylethynyl)borate (6)

$\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(21 \mathrm{mg}, 0.041 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to (Idipp)Au-C $\equiv \mathrm{C}-\mathrm{Ph}(28 \mathrm{mg}$, $0.041 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred overnight yielding a yellow solution. The reaction was then pumped dried in vacuo and the resulting residue dissolved in toluene (8 mL). To this was added hexanes (10 mL) and upon cooling to $-35^{\circ} \mathrm{C}$, x-ray quality yellow crystals were obtained (42 mg , $0.035 \mathrm{mmol}, 85 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=7.54\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, J_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right), 7.30\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}, J_{\mathrm{HH}}=\right.$ 7.7 Hz), 7.26-7.19 (m, 6H, Ar), $7.13\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}, J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 6.65\left(\mathrm{~d}, 2 \mathrm{H}, o-\mathrm{Ph}\right.$ acetylene, $\mathrm{J}_{\mathrm{HH}}=$ $7.4 \mathrm{~Hz}), 2.45$ (septet, $\left.4 \mathrm{H}, \mathrm{CH}-i \operatorname{Pr},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right), 1.14\left(\mathrm{~d}, 12 \mathrm{H},-\mathrm{CH}_{3},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right), 1.04(\mathrm{~d}, 12 \mathrm{H},-$ $\left.\mathrm{CH}_{3},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right) .{ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-19.51(\mathrm{~s}) .{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}(376 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-131.75\left(\mathrm{~d}, 2 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5},{ }^{3} J_{\mathrm{FF}}=23.3 \mathrm{~Hz}\right),-161.25\left(\mathrm{t}, 1 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5},{ }^{3} J_{\mathrm{FF}}=20.6\right.$ $\mathrm{Hz}),-165.75\left(\mathrm{dt}, 2 \mathrm{~F}, m-\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{t}^{-} J_{\mathrm{FF}}=22.9 \mathrm{~Hz}, \mathrm{~d}^{3} J_{\mathrm{FF}}=6.6 \mathrm{~Hz}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, 298 K , partial): $\delta[\mathrm{ppm}]=180.09(\mathrm{~s}$, carbene $), 147.77\left(\mathrm{br}, \mathrm{C}_{6} \mathrm{~F}_{5}\right), 145.35(\mathrm{~s}, \mathrm{Ar}), 138.90\left(\mathrm{br}, \mathrm{C}_{6} \mathrm{~F}_{5}\right)$, 137.19 (br, $\mathrm{C}_{6} \mathrm{~F}_{5}$), 136.31 (br, $\mathrm{C}_{6} \mathrm{~F}_{5}$), 133.22 (s, Ar), 131.50 (s, Ar), 131.06 (s, Ar), 129.63 ($\mathrm{s}, \mathrm{Ar)}$, 128.70 (s, Ar), 124.33 (s, Ar), 124.26 (s, Ar), 121.56 ($\mathrm{s}, \mathrm{Ar)}$,99.70 (alkyne C, found via HMBC), $28.72(\mathrm{~s}, i \operatorname{Pr}), 23.79(\mathrm{~s}, i \operatorname{Pr}), 23.31(\mathrm{~s}, i \operatorname{Pr})$. The B-C and some C-F carbons were not observed. EA Anal. Calcd. for $\mathrm{C}_{53} \mathrm{H}_{41} \mathrm{AuBF}_{15} \mathrm{~N}_{2}$: C, 53.11; H, 3.45 ; N, 2.34 \%. Found: C, 53.50; H, 3.98; N, 2.08 \%.

IPrAu- tris(perfluorophenyl)(p-tolylethynyl)borate (7)

$\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(37.0 \mathrm{mg}, 0.072 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added to (Idipp)Au-C=C-tol $(50.0 \mathrm{mg}$, $0.071 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and stirred for 30 min . Slow diffusion of pentane into this solution at $-20^{\circ} \mathrm{C}$ afforded the product 7 as colorless crystals ($63.0 \mathrm{mg}, 72 \%$).

IR (thin film) $v_{\max }=3208.9 \mathrm{~cm}^{-1}, 2968,1739,1643,1603,1514,1459,1387,1367,1331,1278,1216$, 1083, 1062, 977, 932, 888, 820, 805, 758, 703; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=7.53$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.44$ (sept., $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{19} \mathbf{F}$ NMR ($\left.470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-131.8\left(\mathrm{~d}, J_{\mathrm{FF}}=22.8 \mathrm{~Hz}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-161.3\left(\mathrm{t}, J_{\mathrm{FF}}=\right.$ $20.9 \mathrm{~Hz}, 3 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5}$), -165.8 (m, 6F, m-C $\mathrm{C}_{6} \mathrm{~F}_{5}$); ${ }^{11} \mathbf{B}$ NMR ($95 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=-19.5$ (s); ${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=180.6(\mathrm{~s}, \mathrm{NHC}), 148.5\left(\mathrm{dm}, J_{\mathrm{CF}}=242.2 \mathrm{~Hz}\right.$, C-F), $145.9(\mathrm{~s}, \mathrm{NHC}), 140.9(\mathrm{~s}), 139.4\left(\mathrm{dm}, J_{\mathrm{CF}}=246.1 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}\right), 137.0\left(\mathrm{dm}, J_{\mathrm{CF}}=250.6 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}\right)$, 133.8 (s, NHC), 132.1 (s), 131.6 (s, NHC), 130.0 (s), 124.9 (s, NHC), 124.8 (s, NHC), 118.9 (s), 29.3 (s, NHC), 24.4 (s, NHC), 23.9 (s, NHC), 21.8 (s); EA (elemental analysis) calcd (\%) for $\mathrm{C}_{54} \mathrm{H}_{43} \mathrm{AuBF}_{15} \mathrm{~N}_{2}$: C 53.48, H 3.57, N 2.31\%; Obs. C 53.52, H 3.67, H 2.19\%; HRMS-FAB (+) (m/z): calcd for $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}\right] \mathrm{C}_{48} \mathrm{H}_{43} \mathrm{AuBF}_{10} \mathrm{~N}_{2}, 1045.3025$; found, 1045.3019.

IPrAu-tris(perfluorophenyl)(ferrocenylethynyl)borate (8)

To (Idipp)Au-C $=$ C-ferrocene ($31.2 \mathrm{mg}, 0.039 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ $(20.1 \mathrm{mg}, 0.039 \mathrm{mmol})$ and stirred for 5 min . Pentane (3 mL) was added and the product precipitated as orange crystals. The solution was stored at $-20^{\circ} \mathrm{C}$ for 1 h followed by removal of the solvent via
syringe and evaporation of the remaining solvent under vacuum afforded the product as orange crystals ($43.2 \mathrm{mg}, 84 \%$).

IR (thin film) $v_{\max }=3132.4 \mathrm{~cm}^{-1}, 2969,2058,1643,1599,1512,1460,1386,1331,1278,1216,1086$, $1063,1041,1025,978,950,887,826,805,770,759,740,{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta$ $[\mathrm{ppm}]=7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.92$ ($\mathrm{s}, 5 \mathrm{H}$), $3.71(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ (sept., $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 12 \mathrm{H}) ;{ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=-131.2\left(\mathrm{~d}, J_{\mathrm{FF}}=21.8 \mathrm{~Hz}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, $161.7\left(\mathrm{t}, J_{\mathrm{FF}}=20.8 \mathrm{~Hz}, 3 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-165.7\left(\mathrm{~m}, 6 \mathrm{~F}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right) ;{ }^{11} \mathbf{B} \mathbf{N M R}\left(95 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right):-$ 19.5 (s) ${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=180.5(\mathrm{~s}, \mathrm{NHC}), 148.4\left(\mathrm{dm}, J_{\mathrm{CF}}=\right.$ $243.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 145.8(\mathrm{~s}, \mathrm{NHC}), 139.3\left(\mathrm{dm}, J_{\mathrm{CF}}=248.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}\right), 137.1\left(\mathrm{dm}, J_{\mathrm{CF}}=248.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}\right)$, 134.0 (s, NHC), 131.5 (s, NHC), 124.8 (s, NHC), 124.8 (s, NHC), 122.3 (brs., C-B), 102.4 (s), 72.0 (s), 70.2 (s), 70.0 (s), 64.3 (s), 29.3 (s), 24.4 (s), 24.1 (s). One of the C-B could not be observed; HRMS-FAB $(+)(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{57} \mathrm{H}_{46} \mathrm{AuBF}_{15} \mathrm{FeN}_{2}, 1307.2529$; found, 1307.2557.

Tris-tert-butylphosphine (p-tolylethynyl)gold (9)

To a solution of 1-ethynyl-4-methylbenzene ($105 \mu \mathrm{~L}, 0.83 \mathrm{mmol}, 1.2$ equiv.) in THF (5 mL) was added at $-78{ }^{\circ} \mathrm{C} n \mathrm{BuLi}(330 \mu \mathrm{~L}, 0.83 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes; 1.2 equiv.). The solution was stirred at this temperature for 1 h and then transferred via cannula to a solution of ${ }^{t} \mathrm{Bu}_{3} \mathrm{PAuCl}(300.0 \mathrm{mg}, 0.69$ mmol) dissolved in THF (8 mL) at $-78^{\circ} \mathrm{C}$. The solution was warmed up and then further stirred for 2 h at room temperature. A saturated solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, the phases seperated and the aqueous phases extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude material was recrystalized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane to afford a slightly greenish solid ($185 \mathrm{mg}, 0.360 \mathrm{mmol}, 52 \%$).

IR (thin film) $v_{\max }=2991.1 \mathrm{~cm}^{-1}, 2953,2911,2870,2115,1505,1481,1472,1442,1392,1368,1215$, $1202,1171,1105,1024,932,811 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=7.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.52\left(\mathrm{~d}, J_{\mathrm{HP}}=13.3 \mathrm{~Hz}, 27 \mathrm{H}\right) ;{ }^{31} \mathbf{P}$ NMR $(243 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=91.4(\mathrm{~s}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=136.4(\mathrm{~s})$, $134.5\left(\mathrm{~d}, J_{\mathrm{CF}}=127.5 \mathrm{~Hz}\right), 132.4(\mathrm{~s}), 128.7(\mathrm{~s}), 122.2(\mathrm{~s}), 103.5\left(\mathrm{~d}, J_{\mathrm{CF}}=23.7 \mathrm{~Hz}\right), 39.2\left(\mathrm{~d}, J_{\mathrm{CF}}=17.9\right.$ Hz), $32.54\left(\mathrm{~d}, J_{\mathrm{CF}}=3.6 \mathrm{~Hz}\right.$), $21.5(\mathrm{~s})$; EA (elemental analysis) calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{AuP}: \mathrm{C} 49.03$, H
6.66 \%; Obs. C 48.66, H 6.33 \%. HRMS-FAB (+) (m/z): calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{21} \mathrm{H}_{35} \mathrm{AuP}, 515.2142$; found, 515.2151.

${ }^{t}$ Bu-JohnPhos (prop-1-yn-1-yl)gold (10)

${ }^{t} \mathrm{Bu}-\mathrm{JohnPhosAuCl}(600 \mathrm{mg}, 1.13 \mathrm{mmol})$ was dissolved in THF (10 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. 1Propynylmagnesium bromide ($2.71 \mathrm{~mL}, 1.36 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF) was added and the resulting mixture stirred at room temperature for 5 h . The reaction was quenched with aqueous saturated NaHCO_{3} solution, extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude product was washed several times with $\mathrm{Et}_{2} \mathrm{O}$ to yield the desired complex 10 ($490 \mathrm{mg}, 917 \mu \mathrm{~mol}, 81 \%$).

IR (ATR): $v_{\max }=3060 \mathrm{~cm}^{-1}, 2987,2960,2910,2857,1746,1573,1467,1440,1430,1387,1364$, $1238,1175,1130,1083,1070,1027,1008,989,961,939,906,840,812,774,754,697,617$; ${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=7.85-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.26(\mathrm{~m}$, $1 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=150.67\left(\mathrm{~d}, J_{\mathrm{CP}}=15.3 \mathrm{~Hz}\right), 143.02\left(\mathrm{~d}, J_{\mathrm{CP}}=6.1 \mathrm{~Hz}\right), 135.11\left(\mathrm{~d}, J_{\mathrm{CP}}=1.1 \mathrm{~Hz}\right)$, $133.36\left(\mathrm{~d}, J_{\mathrm{CP}}=7.4 \mathrm{~Hz}\right), 130.52\left(\mathrm{~d}, J_{\mathrm{CP}}=2.2 \mathrm{~Hz}\right), 129.68(\mathrm{~s}), 129.08(\mathrm{~s}), 128.04(\mathrm{~s}), 127.92\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $38.6 \mathrm{~Hz}), 127.02\left(\mathrm{~d}, J_{\mathrm{CP}}=5.9 \mathrm{~Hz}\right), 121.88\left(\mathrm{~d}, J_{\mathrm{CP}}=133.0 \mathrm{~Hz}\right), 97.03\left(\mathrm{~d}, J_{\mathrm{CP}}=24.0 \mathrm{~Hz}\right), 37.78\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ 22.2 Hz), $31.22(\mathrm{~s}), 31.15(\mathrm{~s}), 4.72\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=64.47 \mathrm{ppm}$; MS $(\mathrm{FAB}(+)): m / z=535[\mathrm{M}+\mathrm{H}]^{+}(48), 534[\mathrm{M}]^{+}(45), 495$ (100); HRMS-FAB (+): m/z: calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{AuP}\right]^{+}, 534.1751$; found, 534.1768.

Tris-tertbutylphosphinegold-tris(perfluorophenyl)(p-tolylethynyl)borate (11)

$\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(22.1 \mathrm{mg}, 0.043 \mathrm{mmol})$ was added to ${ }^{t} \mathrm{Bu}_{3} \mathrm{PAu}-\mathrm{C} \equiv \mathrm{C}$-tol $(22.2 \mathrm{mg}, 0.043 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ and stirred for 30 min . Slow diffusion of pentane into this solution at $-20^{\circ} \mathrm{C}$ afforded the product as colorless crystals ($35.2 \mathrm{mg}, 79 \%$).

IR (thin film) $v_{\max }=2953.9 \mathrm{~cm}^{-1}, 2059,1642,1513,1459,1396,1374,1280,1170,1088,1023,978$, 940, $921,903,821,798,771,762,742 ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=7.42(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.377(\mathrm{~s}, 3 \mathrm{H}), 1.32\left(\mathrm{~d}, J_{\mathrm{PH}}=14.3 \mathrm{~Hz}, 27 \mathrm{H}\right) ;{ }^{19}$ F NMR (470 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-131.6\left(\mathrm{~d}, J_{\mathrm{FF}}=21.7 \mathrm{~Hz}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-161.2\left(\mathrm{t}, J_{\mathrm{FF}}=20.4 \mathrm{~Hz}, 3 \mathrm{~F}, p-\right.$ $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right),-165.9\left(\mathrm{~m}, 6 \mathrm{~F}, \mathrm{~m}-\mathrm{C}_{6} \mathrm{~F}_{5}\right) ;{ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=96.5(\mathrm{~s}) ;{ }^{11} \mathbf{B} \mathbf{N M R}$ (96 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-19.5(\mathrm{~s}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=$ $148.7\left(\mathrm{dm}, J_{\mathrm{CF}}=239.8 \mathrm{~Hz}\right), 142.0(\mathrm{~s}), 139.7\left(\mathrm{dm}, J_{\mathrm{CF}}=248.7 \mathrm{~Hz}\right), 137.4\left(\mathrm{dm}, J_{\mathrm{CF}}=248.7 \mathrm{~Hz}\right), 132.5$ (s), $130.2(\mathrm{~s}), 122.1$ (brs, C-B), $118.8(\mathrm{~s}), 111.4\left(\mathrm{q}, J_{\mathrm{CB}}=56 \mathrm{~Hz}, \mathrm{C}-\mathrm{B}\right), 104.5(\mathrm{brs}), 40.1\left(\mathrm{~d}, J_{\mathrm{CP}}=18.9\right.$ Hz), 32.2 (s), 21.9 (s); EA (elemental analysis) calcd (\%) for $\mathrm{C}_{39} \mathrm{H}_{34} \mathrm{AuBF}_{15} \mathrm{P}$: C 45.64, H 3.34%; Obs. C 45.25, H 3.61 \%; HRMS-ESI (-) (m/z): calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{7} \mathrm{BF}_{15}\right]^{-}$, 627.0401; found, 627.0401.

${ }^{t}$ Bu-JohnPhos gold-tris(perfluorophenyl)(prop-1-yn-1-yl)borate (12)

$\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(35.2 \mathrm{mg}, 0.069 \mathrm{mmol})$ was added to ${ }^{t} \mathrm{Bu}-J o h n P h o s A u-\mathrm{C} \equiv \mathrm{C}-\mathrm{Me}(36.7 \mathrm{mg}, 0.069 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ and stirred for 30 min . Slow diffusion of pentane into this solution at $20^{\circ} \mathrm{C}$ afforded the product as colorless crystals ($63.0 \mathrm{mg}, 88 \%$).

IR (thin film) $v_{\max }=2970.6 \mathrm{~cm}^{-1}, 1643,1514,1456,1392,1370,1278,1174,1087,1010,973,868$, $794,767,746,702,679 ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=7.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.57-7.50 (m, 2H), 7.40-7.36 (m, 1H), 7.33-7.29 (m, 2H), 7.22-7.18 (m, 1H), $7.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.02(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=-131.4(\mathrm{~d}$, $\left.J_{\mathrm{FF}}=22.0 \mathrm{~Hz}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-161.5\left(\mathrm{t}, J_{\mathrm{FF}}=20.0 \mathrm{~Hz}, 3 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-166.2\left(\mathrm{~m}, 6 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}$ ($243 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=63.9(\mathrm{~s}) ;{ }^{11} \mathbf{B} \mathbf{N M R}\left(96 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-19.8$ (s); ${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=149.8\left(\mathrm{~d}, J_{\mathrm{CP}}=12.9 \mathrm{~Hz}\right), 148.6\left(\mathrm{dm}, J_{\mathrm{CF}}=\right.$ $240.5 \mathrm{~Hz}), 142.8\left(\mathrm{~d}, J_{\mathrm{CP}}=6.3 \mathrm{~Hz}\right), 139.5\left(\mathrm{dm}, J_{\mathrm{CF}}=247.4 \mathrm{~Hz}\right), 137.3\left(\mathrm{dm}, J_{\mathrm{CF}}=245.5 \mathrm{~Hz}\right), 134.5(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right), 134.2\left(\mathrm{~d}, J_{\mathrm{CP}}=7.8 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.1 \mathrm{~Hz}\right), 130.0(\mathrm{~s}), 129.3(\mathrm{~s}), 128.4(\mathrm{~s}), 127.9(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right), 124.5\left(\mathrm{~d}, J_{\mathrm{CP}}=45.4 \mathrm{~Hz}\right), 122.0(\mathrm{brs}, \mathrm{C}-\mathrm{B}), 106.1(\mathrm{q}, J=60.9 \mathrm{~Hz}, \mathrm{C}-\mathrm{B}), 101.3$ (brs), 38.7 $\left(\mathrm{d}, J_{\mathrm{CP}}=23.9 \mathrm{~Hz}\right), 31.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.6 \mathrm{~Hz}\right), 9.33(\mathrm{~s}) ;$ EA (elemental analysis) calcd (\%) for $\mathrm{C}_{41} \mathrm{H}_{30} \mathrm{AuBF}_{15} \mathrm{P}:$ C 47.06, H 2.89%; Obs. C 46.76, H 2.99%; HRMS-ESI (-) (m/z): calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{3} \mathrm{BF}_{15}\right]^{-}, 551.0088$; found, 551.0086.

Compound $\left[\mathrm{IPrAuPPh}_{3}\right]\left[\mathrm{Ph}-\mathrm{C}=\mathrm{C}-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ (13)

(Idipp) $\mathrm{Au}-\left[\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right](25 \mathrm{mg}, 0.021 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to $\mathrm{PPh}_{3}(5.5 \mathrm{mg}$, $0.021 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred overnight going from yellow to colorless. To the resulting solution was then was added hexanes (10 mL) and upon cooling to $-35^{\circ} \mathrm{C}$, x -ray quality white crystals were obtained ($28 \mathrm{mg}, 0.019 \mathrm{mmol}, 90 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=7.66-7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.43-$ $7.28(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}), 7.20-7.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.05-6.96(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 2.56$ (sept., $4 \mathrm{H}, \mathrm{CH}-i P r,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6$ $\mathrm{Hz}), 1.26\left(\mathrm{~d}, 12 \mathrm{H},-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right), 1.19\left(\mathrm{~d}, 12 \mathrm{H},-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right) .{ }^{11} \mathbf{B} \mathbf{N M R}(128 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-20.87(\mathrm{~s}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=-132.67(\mathrm{~d}$, $\left.2 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5},{ }^{3} J_{\mathrm{FF}}=23.9 \mathrm{~Hz}\right),-163.92\left(\mathrm{t}, 1 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5},{ }^{3} J_{\mathrm{FF}}=20.3 \mathrm{~Hz}\right),-167.38\left(\mathrm{t}, 2 \mathrm{~F}, m-\mathrm{C}_{6} \mathrm{~F}_{5},{ }^{3} J_{\mathrm{FF}}=21.7\right.$ Hz). ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=39.91\left(\mathrm{~s}, \mathrm{PPh}_{3}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(101 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$, partial): $\delta[\mathrm{ppm}]=189.32$ (s , carbene), 146.25 (s, Ar), 134.05 ($\mathrm{d}, \mathrm{Ar}, J_{\mathrm{PC}}=13.8 \mathrm{~Hz}$), $133.50(\mathrm{~s}, \mathrm{Ar}), 132.62\left(\mathrm{~d}, \mathrm{Ar}, J_{\mathrm{PC}}=2.6 \mathrm{~Hz}\right), 131.66(\mathrm{~s}, \mathrm{Ar}), 131.50(\mathrm{~s}, \mathrm{Ar}), 129.80\left(\mathrm{~d}, \mathrm{Ar}, J_{\mathrm{PC}}=11.7\right.$ $\mathrm{Hz}), 128.17(\mathrm{~s}, \mathrm{Ar}), 128.12(\mathrm{~s}, \operatorname{Ar}), 127.58(\mathrm{~s}, \mathrm{Ar}), 126.02(\mathrm{~s}, \mathrm{Ar}), 125.00(\mathrm{~s}, \mathrm{Ar}), 124.98\left(\mathrm{~d}, \mathrm{Ar}, J_{\mathrm{PC}}=\right.$ 3.4 Hz), 68.14 (s, alkyne), 29.30 (s, $i \mathrm{Pr}$), 24.86 ($\mathrm{s}, i \mathrm{Pr}$), 24.04 ($\mathrm{s}, i \mathrm{Pr}$). Anal. Calcd. for $\mathrm{C}_{71} \mathrm{H}_{56} \mathrm{AuBF}_{15} \mathrm{~N}_{2} \mathrm{P}: \mathrm{C}, 58.37 ; \mathrm{H}, 3.86$; N, 1.92 \%. Found: C, 58.44; H, 4.02; N, 2.08 \%.

Compound (14)

To a solution of (Idipp)Au-C $=\mathrm{C}-p$ tol ($34.3 \mathrm{mg}, 0.047 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{D}_{6}(1 \mathrm{~mL})$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ $(24.2 \mathrm{mg}, 0.047 \mathrm{mmol})$. The solution was stirred for 10 min at room temperature and then (Idipp)Au$\mathrm{C} \equiv \mathrm{C}-\mathrm{Me}(30.5 \mathrm{mg}, 0.047 \mathrm{mmol})$ added. The solution was layered with pentane to afford the desired product as colorless solid ($63.2 \mathrm{mg}, 72 \%$).

IR (thin film) $v_{\max }=2965.3 \mathrm{~cm}^{-1}, 2929,2872,1642,1595,1555,1510,1459,1419,1386,1366,1329$, 1273, 1215, 1182, 1087, 975, 951, 803; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=7.57(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 6.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 4 \mathrm{H}), 2.36$ (sept., $J=6.9 \mathrm{~Hz}, 8 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 24 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 24 \mathrm{H}) ;{ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-131.1\left(\mathrm{~d}, J_{\mathrm{FF}}=21.7 \mathrm{~Hz}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-163.8\left(\mathrm{t}, J_{\mathrm{FF}}=20.9 \mathrm{~Hz}, 3 \mathrm{~F}\right.$, $\left.p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-166.9\left(\mathrm{~m}, 6 \mathrm{~F}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right) ;{ }^{11} \mathbf{B}$ NMR (160 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-19.9(\mathrm{~s}) ;{ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=183.0(\mathrm{~s}), 149.4\left(\mathrm{dm}, J_{\mathrm{CF}}=239 \mathrm{~Hz}\right), 145.6(\mathrm{~s}), 138.9(\mathrm{dm}$, $\left.J_{\mathrm{CF}}=250 \mathrm{~Hz}\right), 137.3\left(\mathrm{dm}, J_{\mathrm{CF}}=245 \mathrm{~Hz}\right), 133.9(\mathrm{~s}), 132.0(\mathrm{~s}), 131.2(\mathrm{~s}), 128.8(\mathrm{~s}), 128.4(\mathrm{~s}), 128.0(\mathrm{~s})$,
 to boron could not be observed; EA (elemental analysis) calcd (\%) for $\mathrm{C}_{84} \mathrm{H}_{82} \mathrm{Au}_{2} \mathrm{BF}_{15} \mathrm{~N}_{4}$: C 54.91, H 4.50%; N 3.05 Obs. C 54.43, H 4.64, N 2.84%; HRMS-ESI $(+)(\mathrm{m} / \mathrm{z})$: calcd for $\left[\mathrm{C}_{57} \mathrm{H}_{75} \mathrm{Au}_{2} \mathrm{~N}_{4}\right]^{+}$, 1209.5323; found, 1209.5333; HRMS-ESI (-) $(\mathrm{m} / \mathrm{z})$: calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{7} \mathrm{BF}_{15}\right]^{-}, 627.0401$; found, 627.0399.

Compound (15)

To a solution of $t \mathrm{Bu}_{3} \mathrm{PAu}-\mathrm{C} \equiv \mathrm{C}-\mathrm{ptol}(19.2 \mathrm{mg}, 0.037 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ $(19.1 \mathrm{mg}, 0.037 \mathrm{mmol})$. The solution was stirred for 10 min at room temperature and then (Idipp)Au$\mathrm{C} \equiv \mathrm{C}-\mathrm{Me}(24.0 \mathrm{mg}, 0.037 \mathrm{mmol})$ added. The solution was concentrated under reduced pressure and layered with pentane to afford the desired product as colorless solid ($45.6 \mathrm{mg}, 73 \%$).

IR (thin film) $v_{\max }=2965.0 \mathrm{~cm}^{-1}, 2928,2873,1643,1510,1460,1366,1329,1273,1173,1087,1075$, 804759,$744 ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.54$ (sept., $J=6.9 \mathrm{~Hz}$, $4 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.36\left(\mathrm{~d}, J_{\mathrm{PH}}=14.3 \mathrm{~Hz}, 27 \mathrm{H}\right), 1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.23(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 12 \mathrm{H}) ;{ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=-132.6\left(\mathrm{~d}, J_{\mathrm{FF}}=24.0 \mathrm{~Hz}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, $164.0\left(\mathrm{t}, J_{\mathrm{FF}}=20.1 \mathrm{~Hz}, 3 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-167.4\left(\mathrm{~m}, 6 \mathrm{~F}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right) ;{ }^{11} \mathbf{B} \mathbf{N M R}\left(96 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta$ $[\mathrm{ppm}]=-20.8(\mathrm{~s}) ;{ }^{31} \mathbf{P}$ NMR ($\left.121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=93.6(\mathrm{~s}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathrm{H}\right\}(100$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=183.7(\mathrm{~d}, J=109 \mathrm{~Hz}), 148.9\left(\mathrm{dm}, J_{\mathrm{CF}}=241 \mathrm{~Hz}\right), 146.3(\mathrm{~s}), 138.8$ (dm, $J=240 \mathrm{~Hz}), 137.1(\mathrm{dm}, J=225 \mathrm{~Hz}), 136.0(\mathrm{~s}), 134.3(\mathrm{~s}), 131.5(\mathrm{~s}), 131.4$ (s), 129.1 (s), 124.9 (s), $124.8(\mathrm{~s}), 124.7(\mathrm{~s}), 40.0\left(\mathrm{~d}, J_{\mathrm{CP}}=19 \mathrm{~Hz}\right), 32.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4 \mathrm{~Hz}\right), 29.4(\mathrm{~s}), 25.2(\mathrm{~s}), 24.1(\mathrm{~s}), 21.6(\mathrm{~s})$, 7.4 (s). Carbons attached to boron could not be observed; HRMS-ESI $(+)(\mathrm{m} / \mathrm{z})$: calcd for [$\left.\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{Au}_{2} \mathrm{~N}_{2} \mathrm{P}\right]^{+}$, 1023.4295; found,1023.4283; HRMS-ESI (-) (m/z): calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{7} \mathrm{BF}_{15}\right]$, 627.0401; found, 627.0400.

Compound (16)

According to the literature procedure, ${ }^{[3]}$ (Idipp)AuCl ($249 \mathrm{mg}, 0.400 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ and $\mathrm{AgNTf}_{2}(155 \mathrm{mg}, 0.400 \mathrm{mmol})$ added. The solution was stirred for 30 min in the dark and then (Idipp)Au-C=C-Me ($250 \mathrm{mg}, 0.400 \mathrm{mmol}$) added. The solution was stirred for an additional 1 h , then filtered through Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the solvent removed under reduced pressure and the remaining solid recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane to give a colorless solid ($260.6 \mathrm{mg}, 54 \%$). The spectral data is in accordance with the literature reports. ${ }^{[3]}$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=7.50(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.22$ (s, 4H), 2.43 (sept., $J=6.8 \mathrm{~Hz}, 8 \mathrm{H}$), 1.62 ($\mathrm{s}, 3 \mathrm{H}), 1.19$ (d, $J=6.9 \mathrm{~Hz}, 24 \mathrm{H}$), 1.09 (d, $J=6.9 \mathrm{~Hz}, 24 \mathrm{H})$; ${ }^{19}$ F NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=-78.7(\mathrm{~s}) ;{ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right):$ $\delta[\mathrm{ppm}]=183.0(\mathrm{~s}), 145.6(\mathrm{~s}), 133.8(\mathrm{~s}), 130.9(\mathrm{~s}), 124.4(\mathrm{~s}), 124.2(\mathrm{~s}), 121.8(\mathrm{~s}), 118.6(\mathrm{~s}), 115.1(\mathrm{~s})$, 110.3 (s), 28.8 (s), 24.7 (s$), 24.0(\mathrm{~s}), 6.9$ (s$).$

(1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene)(4-fluorofluorophenyl)gold

 (17)

According to the literature procedure, ${ }^{4}$ (Idipp)AuCl ($200 \mathrm{mg}, 0.322 \mathrm{mmol}$), 4-fluorophenyl boronic acid ($45.1 \mathrm{mg}, 0.322 \mathrm{mmol}$), powdered $\mathrm{KOH}(36.1 \mathrm{mg}, 0.644 \mathrm{mmol}, 2.0$ equiv.) were dispensed in toluene (3.2 mL). The dark solution was stirred at room temperature for 6 h . The solution was filtered through Celite with toluene and the solvent evaporated. The remaining solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane to give the desired compound $\mathbf{1 7}$ as colorless solid ($145 \mathrm{mg}, 97 \%$).

IR (thin film) $v_{\max }=3126.1 \mathrm{~cm}^{-1}, 2968,2963,2927,2868,1571,1477,1414,1385,1365,1349,1328$, 1257, 1207, 1180, 1156, 1104, 1075, 1060, 1019, 973, 939, 804, 760 ; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $298 \mathrm{~K}): 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~m}, 2 \mathrm{H})$, 2.66 (sept., $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}$), 1.39 (d, $J=6.9 \mathrm{~Hz}, 12 \mathrm{H}$), $1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{19}$ F NMR (243 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right):-119.1(\mathrm{~s}) ;{ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): 196.6$ (s), 164.3 (s$), 161.0(\mathrm{~d}$, $J_{\mathrm{CF}}=241 \mathrm{~Hz}$), 145.9 (s), 140.9 (s), 134.7 (s$), 130.3(\mathrm{~s}), 124.1(\mathrm{~s}), 122.9(\mathrm{~s}), 113.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CF}}=17.1 \mathrm{~Hz}\right)$, 28.9 (s), 24.7 (s), 24.1 (s); EA (elemental analysis) calcd (\%) for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{AuFN}_{2}$: C 58.23, H5.92, N
4.12%; Obs. C 58.12, H 5.99, N 3.98%; HRMS-ESI $(+)(\mathrm{m} / \mathrm{z})$: calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{33} \mathrm{H}_{41} \mathrm{AuFN}_{2}$, 681.2919; found, 681.2926.

(1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene)phenylgold (18)

To a solution of (Idipp) $\mathrm{AuCl}(502 \mathrm{mg}, 0.808 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$ phenyl lithium $\left(493 \mu \mathrm{~L}, 0.887 \mathrm{mmol}, 1.8 \mathrm{M}\right.$ in $\left.\mathrm{Bu}_{2} \mathrm{O}\right)$. The solution was stirred at this temperature for 2 h , then stirred an additional 1 h at room temperature. A saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, the phases seperated and the aqeuos phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The remaining solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a pad of basic aluminium oxide. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane afforded the desired compound as white solid ($453 \mathrm{mg}, 85 \%$).

IR (thin film) $v_{\max }=3154.5 \mathrm{~cm}^{-1}, 3126,3051,2963,2927,2868,1594,1572,1554,1471,1412,1384$, $1364,1347,1330,1273,1256,1214,1181,1119,1106,1083,1060,1025,947 ;{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H})$, 7.02-6.97 (m, 2H), 6.85-6.80 (m, 1H), 2.68 (sept., $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}), 1.24(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): 197.3$ (s), 169.9 (s), 145.9 (s), 140.7 (s),
 $(+)(\mathrm{m} / \mathrm{z})$: calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{Au}, 663.3014$; found, 663.3026.

Compound (19)

To a solution of (Idipp)(4-fluorofluorophenyl)gold (17) (34.3 mg, 0.050 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(12.9 \mathrm{mg}, 0.025 \mathrm{mmol})$ and stirred for 7 h at room temperature. The solvent was removed under reduced pressure, pentane $(1 \mathrm{~mL})$ added and the pentane removed under reduced vacuum to afford the desired compound 19 as colorless solid ($44.9 \mathrm{mg}, 95 \%$).

IR (thin film) $v_{\max }=2966.2 \mathrm{~cm}^{-1}, 2873,1642,1590,1573,1511,1458,1419,1386,1365,1329,1272$, 1220, 1183, 1160, 1082, 1018, 976, 880, 804, 756; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): 7.49 (t, $J=$ $7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.16(\mathrm{~s}, 4 \mathrm{H}), 6.72(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~m}$, 2 H), 2.31 (sept., $J=6.8 \mathrm{~Hz}, 8 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 24 \mathrm{H}), 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 24 \mathrm{H}) ;{ }^{19}$ F NMR (470 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right):-104.8(\mathrm{~s}, 1 \mathrm{~F}),-122.4(\mathrm{~s}, 1 \mathrm{~F}),-130.5\left(\mathrm{~d}, J=21.1 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{~F}_{5}, 6 \mathrm{~F}\right),-164.6(\mathrm{t}, J=$ $\left.20.2 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{~F}_{5}, 4 \mathrm{~F}\right),-167.4\left(\mathrm{~m}, m-\mathrm{C}_{6} \mathrm{~F}_{5}, 6 \mathrm{~F}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): 184.6$ (s), $167.3\left(\mathrm{~d}, J_{\mathrm{CF}}=255 \mathrm{~Hz}\right), 160.9\left(\mathrm{~d}, J_{\mathrm{CF}}=239 \mathrm{~Hz}\right), 149.3\left(\mathrm{~d}, J_{\mathrm{CF}}=8.2 \mathrm{~Hz}\right), 148.4(\mathrm{dm}, J=242 \mathrm{~Hz})$, $146.0(\mathrm{~s}), 138.6\left(\mathrm{dm}, J_{\mathrm{CF}}=230 \mathrm{~Hz}\right), 137.1\left(\mathrm{dm}, J_{\mathrm{CF}}=242 \mathrm{~Hz}\right), 134.5\left(\mathrm{~d}, J_{\mathrm{CF}}=6.2 \mathrm{~Hz}\right), 134.2(\mathrm{~s})$, 131.1 (s), 124.7 (s), 124.3 (s), $115.3\left(\mathrm{~d}, J_{\mathrm{CF}}=19.9 \mathrm{~Hz}\right), 112.6\left(\mathrm{~d}, J_{\mathrm{CF}}=19.0 \mathrm{~Hz}\right), 29.1(\mathrm{~s}), 24.4(\mathrm{~s})$, 24.2 (s); C-atoms attached to boron and the gem-diaurated fragment could not be observed; HRMSESI $(+)(\mathrm{m} / \mathrm{z})$: calcd for $\left[\mathrm{C}_{60} \mathrm{H}_{76} \mathrm{Au}_{2} \mathrm{FN}_{4}\right], 1265.5385$; found, 1265.5367 ; HRMS-ESI $(-)(\mathrm{m} / \mathrm{z})$: calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{4} \mathrm{BF}_{16}\right]^{-}, 607.0151$; found, 607.0145 .

Compound (20)

To a solution of (Idipp)AuPh ($39.6 \mathrm{mg}, 0.060 \mathrm{mmol}$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ $(15.3 \mathrm{mg}, 0.030 \mathrm{mmol})$. The solution was stirred for 4 h , the solvent removed under reduced pressure, pentane (1 mL) added and the pentane removed under reduced vacuum to afford the desired compound 20 as colorless solid ($34.8 \mathrm{mg}, 63 \%$).

IR (thin film) $v_{\max }=2965.6 \mathrm{~cm}^{-1}, 2872,1643,1511,1456,1420,1386,1365,1329,1272,1215,1181$, 1085, 975, 802, 757; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.35-7.29$ (m, $2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 8 \mathrm{H}), 7.15(\mathrm{~s}, 4 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), .2 .33$ (sept., $J=6.9 \mathrm{~Hz}, 8 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 24 \mathrm{H}), 0.85(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 24 \mathrm{H}) ;{ }^{19} \mathbf{F}$ NMR ($283 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $-130.2\left(\mathrm{~d}, J_{\mathrm{FF}}=21 \mathrm{~Hz}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-164.7\left(\mathrm{t}, J_{\mathrm{FF}}=\right.$ $20.6 \mathrm{~Hz}, 3 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5}$), $167.4\left(\mathrm{~m}, 6 \mathrm{~F}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$; ${ }^{\mathbf{1 1} \mathbf{B}} \mathbf{N M R}\left(96 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right):-12.8(\mathrm{~s}) ;{ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): 185.2(\mathrm{~s}), 148.5\left(\mathrm{dm}, J_{\mathrm{CF}}=234 \mathrm{~Hz}\right), 147.4(\mathrm{~s}), 146.0(\mathrm{~s}), 138.4(\mathrm{dm}$, $\left.J_{\mathrm{CF}}=240 \mathrm{~Hz}\right), 136.9\left(\mathrm{dm}, J_{\mathrm{CF}}=249 \mathrm{~Hz}\right), 136.3(\mathrm{~s}), 134.3(\mathrm{~s}), 133.9(\mathrm{~s}), 133.4(\mathrm{~s}), 131.1(\mathrm{~s}), 127.6(\mathrm{~s})$, 126.2 (s), 124.7 (s), 124.2 (s), 123.7 (s), 29.1 (s), 24.4 (s), 24.2 (s). Some carbons attached to boron could not be observed; HRMS-ESI (+) (m/z): calcd for $\left[\mathrm{C}_{60} \mathrm{H}_{77} \mathrm{Au}_{2} \mathrm{~N}_{4}\right]^{+}$, 1247.5479; found, 1247.5463; HRMS-ESI (-) (m/z): calcd for [$\left.\mathrm{C}_{24} \mathrm{H}_{5} \mathrm{BF}_{15}\right]^{-}, 589.0245$; found, 589.0242.

(1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene)(pentafluorophenyl)gold (21)

To a suspension of Mg turnings ($150 \mathrm{mg}, 6.17 \mathrm{mmol}$) in THF (10 mL) was added bromopentafluorobenzene ($770 \mu \mathrm{~L}, 6.17 \mathrm{mmol}$). Upon completion of the exothermic reaction the slightly greyish solution was stirred for an additional 1 h at room temperature. In a separate flask (Idipp) AuCl ($250 \mathrm{mg}, 0.40 \mathrm{mmol}$) was dissolved in THF (5 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. To this was added $780 \mu \mathrm{~L}$ of the freshly prepared Grignard solution. The solution was warmed up to room temperature and stirred for 2 h at room temperature. A saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, the phases separated and the organic phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The desired compound was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane to give a light sensitive/temperature sensitive greyish solid ($145 \mathrm{mg}, 0.19 \mathrm{mmol}, 48 \%$).

IR (thin film) $v_{\max }=3156.2 \mathrm{~cm}^{-1}, 3129,2962,2931,2873,1555,1500,1469,1451,1436,1419,1386$, 1366, 1354, 1331, 1256, 1216, 1182, 1102, 1061, 1051, 952, 807. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ K): $7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 2.62$ (sept., $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}$), 1.36 (d, $J=6.7 \mathrm{~Hz}, 12 \mathrm{H}$), $1.24(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{19} \mathbf{F}$ NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $-116.2(\mathrm{~m}, 2 \mathrm{~F}$, $\left.o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-161.2\left(\mathrm{t}, J_{\mathrm{FF}}=20.1 \mathrm{~Hz}, 1 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-163.9\left(\mathrm{~m}, 2 \mathrm{~F}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): 192.1 (s), 145.9 (s), 134.2 (s$), 130.6$ (s), 124.1 (s$), 123.1$ (s$), 29.0$ (s$), 24.5$ (s), 24.2 (s$)$. Some carbon attached to fluorine could not be observed; HRMS-FAB (+) (m/z): calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{AuF}_{5} \mathrm{~N}_{2}, 752.2464$; found, 752.2439.

(tris-terbutylphosphine)(pentafluorophenyl)gold (22)

To a suspension of Mg turnings ($150 \mathrm{mg}, 6.17 \mathrm{mmol}$) in THF (10 mL) was added bromopentafluorobenzene ($770 \mu \mathrm{~L}, 6.17 \mathrm{mmol}$). Upon completion of the exothermic reaction the slightly greyish
solution was stirred for an additional 1 h at room temperature. In a separate flask ${ }^{t} \mathrm{Bu}_{3} \mathrm{PAuCl}(100 \mathrm{mg}$, 0.23 mmol) was dissolved in THF (5 mL) and cooled to $-78^{\circ} \mathrm{C}$. To this was added $445 \mu \mathrm{~L}$ of the freshly prepared Grignard solution. The solution was warmed up to room temperature and stirred for 2 h at room temperature. A saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, the phases separated and the organic phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The desired compound was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane to give a colorless solid $(112 \mathrm{mg}, 0.20 \mathrm{mmol}$, 88\%).

IR (thin film) $v_{\max }=3002.8 \mathrm{~cm}^{-1}, 2952,1636,1501,1483,1452,1435,1394,1370,1352,1257,1172$, $1072,1061,1052,1024,950 ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $1.56\left(\mathrm{~d}, J_{\mathrm{HP}}=13.3 \mathrm{~Hz}, 27 \mathrm{H}\right) ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (470 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right):-116.7(\mathrm{~m}, 2 \mathrm{~F}),-159.4\left(\mathrm{t}, J_{F F}=20.0 \mathrm{~Hz}, 1 \mathrm{~F}\right),-162.6(\mathrm{~m}, 2 \mathrm{~F}) ;{ }^{31} \mathbf{P}$ NMR (243 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): 92.0(\mathrm{~m}) ;{ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): 148.6$ (ddm, $\left.J_{\mathrm{CF}}=225.9 \mathrm{~Hz}, J_{\mathrm{CP}}=23.6 \mathrm{~Hz}\right), 139.7(\mathrm{~m}), 139.1(\mathrm{~m}), 137.3\left(\mathrm{dm}, J_{\mathrm{CF}}=245.0\right), 39.5\left(\mathrm{~d}, J_{\mathrm{CP}}=17.0 \mathrm{~Hz}\right)$, $32.6\left(J_{\mathrm{CP}}=4.1 \mathrm{~Hz}\right)$; EA (elemental analysis) calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{AuF}_{5} \mathrm{P}$: C 38.17, H 4.81%; Obs. C 38.56, H 4.78%; HRMS-ESI (+) (m/z): calcd for $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}+\mathrm{P}(t \mathrm{Bu})_{3}\right]^{+} \mathrm{C}_{24} \mathrm{H}_{54} \mathrm{AuP}_{2}$ 601.3366; found, 601.3365.

Compound (24)

The compound was prepared according to the literature procedure. ${ }^{[5]}$ The spectral data is in accordance with the reported data. ${ }^{[5]}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): 7.57-7.52(m, 3H), 7.52-7.43(m, 12H), $7.29(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.10-7.06 (m, 2H), 7.02-6.98 (m, 1H), $5.16(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=13.8 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.00(\mathrm{dd}, J=13.8 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): 200.0(\mathrm{~d}$, $J=113 \mathrm{~Hz}), 176.4(\mathrm{~d}, J=10 \mathrm{~Hz}), 138.7(\mathrm{~s}), 134.8(\mathrm{~d}, J=14 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=2 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=2$ $\mathrm{Hz}), 130.7(\mathrm{~d}, J=52 \mathrm{~Hz}), 129.7(\mathrm{~d}, J=11 \mathrm{~Hz}), 129.4(\mathrm{~d}, J=235 \mathrm{~Hz}), 126.8(\mathrm{~s}), 91.2(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz})$, 41.7 (s), 14.7 (s); ${ }^{31} \mathbf{P}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): 43.7$ (s).

Compound (25)

To a solution of vinyl gold compound $24(15.7 \mathrm{mg}, 0.024 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(12.4 \mathrm{mg}, 0.024 \mathrm{mmol})$ and stirred for 15 min . The solvent was removed under reduced pressure, pentane $(0.5 \mathrm{~mL})$ added and the pentane removed under reduced vacuum to afford the desired compound 25 as colorless solid ($26.3 \mathrm{mg}, 94 \%$). Crystals suitable for X-ray diffraction were obtained by slow diffusion of pentane into a saturated solution of 25 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$.

IR (thin film) $v_{\max }=1648 \mathrm{~cm}^{-1}, 1608,1518,1466,1439,1381,1286,1179,1101,977,956,863,798$, 774, 747, 712, 692; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): 7.60-7.55 (m, 3H), 7.53-7.48 (m, 6H), 7.45$7.39(\mathrm{~m}, 6 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 5 \mathrm{H}), 5.66(\mathrm{t}, J=7.06 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathbf{F}$ NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $-135.2\left(\mathrm{~d}, J_{\mathrm{CF}}=21.4 \mathrm{~Hz}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-159.5\left(\mathrm{t}, J_{\mathrm{CF}}=20.2 \mathrm{~Hz}, 3 \mathrm{~F}\right.$, $p-\mathrm{C}_{6} \mathrm{~F}_{5}$), -165.6 (m, 6F, m- $\mathrm{C}_{6} \mathrm{~F}_{5}$); ${ }^{31} \mathbf{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): 42.53 (s); ${ }^{11} \mathbf{B}$ NMR (160 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): -0.53 (brs.); ${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): 216.3(\mathrm{~d}, J=111 \mathrm{~Hz}$), $183.8(\mathrm{~d}, J=10 \mathrm{~Hz}), 148.5\left(\mathrm{dm}, J_{\mathrm{CF}}=243 \mathrm{~Hz}\right), 140.1\left(\mathrm{dm}, J_{\mathrm{CF}}=247 \mathrm{~Hz}\right), 137.3\left(\mathrm{dm}, J_{\mathrm{CF}}=249 \mathrm{~Hz}\right)$, $136.2(\mathrm{~s}), 134.8(\mathrm{~d}, J=14 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=2 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=2 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=12 \mathrm{~Hz}), 129.8(\mathrm{~d}$, $J=54 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=58 \mathrm{~Hz}), 127.6(\mathrm{~s}), 119.0(\mathrm{brs}, \mathrm{C}-\mathrm{B}), 102.4(\mathrm{~s}), 39.3(\mathrm{~s}), 13.4(\mathrm{~s}) ;$ HRMS-FAB $(+)(\mathrm{m} / \mathrm{z})$: calcd for $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}\right]^{+} \mathrm{C}_{42} \mathrm{H}_{26} \mathrm{AuBF}_{10} \mathrm{O}_{2} \mathrm{P}, 991.1269$; found, 991.1292.

IPr*Au-CCPh (26)

To a solution of phenylacetylene ($43.1 \mu \mathrm{~L}, 0.392 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in THF (5 mL) was added at $-78^{\circ} \mathrm{C}$ $n \mathrm{BuLi}(160 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane, 1.5 eq .) and stirred for 1 h . To this solution was added at once $\mathrm{IPr}^{*} \mathrm{AuCl}$ ($300 \mathrm{mg}, 0.262 \mathrm{mmol}, 1$ eq.) as solid at $-78^{\circ} \mathrm{C}$ and the solution was warmed up to room temperature over 2 h . The solution was further stirred for 12 h and then aqueous sat. NaHCO_{3} (3 mL) added. The aqueos phase was extracted with THF ($2 \times 15 \mathrm{~mL}$), the combined organic phases dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude material was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane to give the disired compound as white solid ($254 \mathrm{mg}, 80 \%$).

IR (thin film) $v_{\max }=3059.2 \mathrm{~cm}^{-1}, 3026,2960,2117,1598,1493,1471,1446,1413,1369,1340,1262$, 1217, 1155, 1077, 1030, 945, 916, 884, 856, 806, $759 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): 7.48(\mathrm{~d}, ~ J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 18 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 17 \mathrm{H}), 6.96(\mathrm{~s}, 4 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 8 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H})$, $5.38(\mathrm{~s}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): 190.9$ (s), 143.3 (s), 143.3 (s),
 128.5 (s), 127.5 (s), 127.2 (s), 127.1 (s$), 126.3$ (s), 123.9 (s$), 104.2$ (s$), 51.8$ (s$), 22.1$ (s); HRMS-FAB $(+)(\mathrm{m} / \mathrm{z})$: calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{77} \mathrm{H}_{62} \mathrm{AuN}_{2}, 1211.4579$; found, 1211.4576.

IPr*Au-C $\equiv \mathbf{C - M e}$ (27)

To a solution of $\mathrm{IPr} * \mathrm{AuCl}(350 \mathrm{mg}, 0.306 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added at $-78{ }^{\circ} \mathrm{C}$ 1-propynylmagnesium bromide ($1.24 \mathrm{~mL}, 0.620 \mathrm{mmol}, 2.0 \mathrm{eq} ., 0.5 \mathrm{M}$ in THF), stirred for 2 h and then warmed up to room temperature and stirred for additional 12 h . Aqueous saturated NaHCO_{3} solution (5 mL) was added and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane affords the product as white solid ($318 \mathrm{mg}, 90 \%$).

IR (thin film) $v_{\max }=3060 \mathrm{~cm}^{-1}, 3026,2906,1600,1493,1471,1447,1414,1372,1341,1288,1261$, 1220, 1183, 1154, 1078, 1031, 1003, 953, 916, 884, 854, 832, 786; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ K): 7.29-7.13 (m, 34H), $6.93(\mathrm{~s}, 4 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 8 \mathrm{H}), 5.72(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~m}, 6 \mathrm{H})$, 2.01 (m, 3H); ${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): 191.8$ (s), 143.5 (s), 143.3 (s), 141.7 (s), 140.7 (s), 134.7 (s), 130.7 (s), 130.5 (s), 129.9 (s), 129.0 (s), 129.0 (s), 128.9 (s), 127.2 (s), 127.1 (s), $123.7(\mathrm{~s}), 116.2(\mathrm{~s}), 99.5(\mathrm{~s}), 51.8(\mathrm{~s}), 22.1(\mathrm{~s}), 5.2(\mathrm{~s}) ;$ HRMS-FAB (+) (m/z): calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{72} \mathrm{H}_{60} \mathrm{AuN}_{2}, 1149.4422$; found, 1149.4415 .

IPr*Au-C $\mathbf{6}_{5}$ (28)

To a solution of $\mathrm{IPr}^{*} \mathrm{Au}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Me}(50.0 \mathrm{mg}, 0.044 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ $(22.3 \mathrm{mg}, 0.044 \mathrm{mmol})$ and stirred for 4 h . Slow diffusion of pentane into this solution at $-20^{\circ} \mathrm{C}$ afforded single crystals ($22.3 \mathrm{mg}, 40 \%$).

IR (thin film) $v_{\max }=3061.2 \mathrm{~cm}^{-1}, 3027,1601,1495,1472,1452,1416,1311,1238,1030,982,953$, 790, 764; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): 7.25-7.22 (m, 8H), 7.19-7.14 (m, 24 H$), 6.91(\mathrm{~s}, 4 \mathrm{H})$, 6.89-6.86(m, 8H), $5.75(\mathrm{~s}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathrm{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$: 191.1 (s), 143.5 (s), 143.1 (s), 141.5 (s), 140.7 (s), 134.3 (s), 130.6 (s), 130.3 (s), 129.8 (s), 128.9 (s), 128.9 (s), 127.2 (s), 127.2 (s), 124.0 (s), 51.9 (s), 22.1 (s); ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $115.7\left(\mathrm{~m}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-161.6\left(\mathrm{t}, J_{\mathrm{FF}}=20.9 \mathrm{~Hz}, 3 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-164.2\left(\mathrm{~m}, 6 \mathrm{~F}, \mathrm{~m}-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$; HRMS-EI (+) $(\mathrm{m} / \mathrm{z})$: calcd for $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}\right]^{+} \mathrm{C}_{69} \mathrm{H}_{56} \mathrm{AuN}_{2}, 1109.4109$; found, 1109.4124.

NMR data
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of $\mathrm{IPrAu}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Me}(\mathbf{1})$

${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of $\mathrm{IPrAu}-\mathrm{C}=\mathrm{C}-\mathrm{Me}(\mathbf{1})$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (2)

11111

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (3)

${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (3)

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (4)

${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (4)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (5)

${ }^{19} \mathbf{F} \mathbf{N M R}\left(470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (5)

${ }^{11} \mathbf{B}$ NMR ($95 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (5)
${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (5)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (6)

$$
1 N_{1} 1
$$

${ }^{11} \mathbf{B} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (6)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (6)

${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (6)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, 298K) spectrum of (7)

${ }^{19} \mathbf{F}$ NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (7)

${ }^{11} \mathbf{B}$ NMR ($95 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (7)
$\stackrel{\stackrel{?}{\sigma}}{\stackrel{\sigma}{i}}$

${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (7)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (8)

${ }^{19} \mathbf{F}$ NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (8)

${ }^{11} \mathbf{B}$ NMR $\left(95 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (8)
$\stackrel{g}{\stackrel{\circ}{\square}}$
\qquad

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (9)

${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (9)

${ }^{31} \mathbf{P}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (9)
$\stackrel{\hat{1}}{\hat{i}}$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of (10)

${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (10)

${ }^{31} \mathbf{P} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (10)

${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (11)

${ }^{31} \mathbf{P}$ NMR (243 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (11)
哭

${ }^{11} \mathbf{B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (11)

${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (11)

${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (11)

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (12)

${ }^{\mathbf{1 1}} \mathbf{B} \mathbf{N M R}\left(96 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (12)

${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (12)

${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (12)
咅

${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (12)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (13)

${ }^{11} \mathbf{B}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (13)

${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (13)
$\stackrel{\stackrel{\rightharpoonup}{\sigma}}{\stackrel{1}{i}}$
${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, 298K) spectrum of (13)

${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (13)

絰

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, 298K) spectrum of (14)

${ }^{11} \mathbf{B}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$ spectrum of (14)
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of (14)

${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$ spectrum of (14)

[^0]${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (15)

${ }^{11} \mathbf{B}$ NMR ($96 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (15)
坒

${ }^{31} \mathbf{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (15)
㓣

	1	11	1	1	1	1	1	1	1	111	1	1	11	$1 \cdot$	$1 \cdot$, 1	11	11	- 1	1.1
50	130	110	90	70	50	30	10	-10	-30	$\stackrel{-50}{\mathrm{f} 1(\mathrm{ppm})}$	-70	-90	-110	-130	-150	-170	-190	-210	-230	-25

${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (15)

${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (15)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of (16)

													$\begin{aligned} & \text { TT } \\ & \stackrel{\circ}{\circ} \\ & \end{aligned}$		$\stackrel{\otimes}{\sim}$		
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\stackrel{4.5}{\mathrm{f} 1}(\mathrm{ppm})$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5

${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (16)

		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{19} \mathbf{F} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(283 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (16)
${ }^{1} \mathbf{H}$ NMR (300 MHz, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of (17)

${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (17)

${ }^{19} \mathbf{F} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(283 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (17)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of (18)

${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (18)

${ }^{\mathbf{1}} \mathbf{H}$ NMR (300 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, 298K) spectrum of (19)

${ }^{19} \mathbf{F} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(283 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (19)

${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (19)

${ }^{11} \mathbf{B} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(96 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (19) $\stackrel{\vdots}{\square}$

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of (20)

${ }^{19} \mathbf{F} \mathbf{N M R}\left\{{ }^{1} \mathbf{H}\right\}\left(283 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (20)

${ }^{11} \mathbf{B}$ NMR $\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(96 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (20)
ì
${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{1} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (20)

${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of (21)

${ }^{19} \mathbf{F} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (21)

${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (21)

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of (22)

${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ spectrum of (22)

${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of (22)

${ }^{19} \mathbf{F}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) spectrum of (22)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (24)

${ }^{31} \mathbf{P}$ NMR (202 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (24)

```
会
```


${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (24)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (25)

${ }^{19} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (25)

${ }^{11} \mathbf{B}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (25)
$\stackrel{y}{i}$
${ }^{31} \mathbf{P}$ NMR (202 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of (25)
等

${ }^{13} \mathbf{C} \mathbf{N M R}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of (25)

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of $\mathrm{IPr} * \mathrm{Au}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}(\mathbf{2 6})$

${ }^{13} \mathbf{C}$ NMR $\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of $\mathrm{IPr} * \mathrm{Au}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}(\mathbf{2 6})$

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of $\mathrm{IPr} * \mathrm{Au}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Me}$ (27)

${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of $\mathrm{IPr}^{*} \mathrm{Au}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Me}$ (27)

${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of $\mathrm{IPr}^{*} \mathrm{AuC}_{6} \mathrm{~F}_{5}$ (28)

${ }^{19} \mathbf{F}$ NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) spectrum of $\mathrm{IPr}^{*} \mathrm{AuC}_{6} \mathrm{~F}_{5}$ (28)

Catalysis experiments

IPrAu-C $\equiv \mathrm{C}$-tol ($7.0 \mathrm{mg}, 0.01 \mathrm{mmol}$) was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(5.1 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ added. The solution was stirred for 5 min and then $100 \mu \mathrm{~L}$ of this solution ($0.5 \mathrm{~mol} \%$) was added to a substrate solution of 2-methyl-5-((prop-2-yn-1-yloxy)methyl)furan (0.2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.5 \mathrm{~mL})$ containing $1,3,5$-tristertbutylbenzene $(16.4 \mathrm{mg}, 0.067 \mathrm{mmol})$ as internal standard. ${ }^{1} \mathrm{H}$ NMR spectra were measured as indicated (see below).

$\operatorname{IPr} * \mathrm{Au}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}(12.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(5.1 \mathrm{mg}$, $0.01 \mathrm{mmol})$ added. The solution was stirred for 5 min and then $100 \mu \mathrm{~L}$ of this solution ($0.5 \mathrm{~mol} \%$) was added to a substrate solution of 2-methyl-5-((prop-2-yn-1-yloxy)methyl)furan (0.2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.5 \mathrm{~mL})$ containing $1,3,5$-tristertbutylbenzene $(16.4 \mathrm{mg}, 0.067 \mathrm{mmol})$ as internal standard. ${ }^{1} \mathrm{H}$ NMR spectra were measured as indicated (see below).

X-ray data

X-ray data (cif) can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

X-ray crystal structure analyses were measured on a Bruker Smart CCD or Bruker Smart APEX instrument using Mo-K α radiation. Diffraction intensities were corrected for Lorentz and polarization effects. An empirical absorption correction was applied using $\operatorname{SADABS}^{[6]}$ based on the Laue symmetry of reciprocal space. Heavy atom diffractions were solved by direct methods and refined against F^{2} with the full matrix least square algorithm using the SHELXL (Version 2014-3) software. ${ }^{[7]}$ Hydrogen atoms were either isotropically refined or calculated. The structures were solved and refined using the SHELXTL software package.

University of Toronto X-Ray Data

X-Ray Data Collection and Reduction

Crystals were coated in Paratone-N oil in the glovebox, mounted on a MiTegen Micromount and placed under an N_{2} stream, thus maintaining a dry, O_{2}-free environment for each crystal. The data were collected on a Kappa Bruker Apex II diffractometer. Data collection strategies were determined using Bruker Apex 2 software and optimized to provide $>99.5 \%$ complete data to a 2θ value of at least 55°. The data were collected at $150(\pm 2) \mathrm{K}$ for all. The data integration and absorption correction were performed with the Bruker Apex 2 software package. ${ }^{[8]}$

X-Ray Data Solution and Refinement

Non-hydrogen atomic scattering factors were taken from the literature tabulations. ${ }^{[9]}$ The heavy atom positions were determined using direct methods employing the SHELX-2013 direct methods routine. The remaining non-hydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out by using full-matrix least squares techniques on F , minimizing the function $\omega(\mathrm{Fo}-\mathrm{Fc}) 2$ where the weight ω is defined as $4 \mathrm{Fo} 2 / 2 \sigma$ (Fo2) and Fo and Fc are the observed and calculated structure factor amplitudes, respectively. In the final cycles of each refinement, all nonhydrogen atoms were assigned anisotropic temperature factors in the absence of disorder or insufficient data. In the latter cases atoms were treated isotropically. C-H atom positions were calculated and allowed to ride on the carbon to which they are bonded assuming a C-H bond length of $0.95 \AA$. H-atom temperature factors were fixed at 1.20 times the isotropic temperature factor of the Catom to which they are bonded. The H -atom contributions were calculated, but not refined. The locations of the largest peaks in the final difference Fourier map calculation as well as the magnitude of the residual electron densities in each case were of no chemical significance.

Computational details

Computational methods

All calculations were performed by employing the Gaussian09 program package. ${ }^{[10]}$ The theoretical approach is based on density functional theory (DFT), ${ }^{[11,12]}$ in combination with the hybrid B3LYP functional, ${ }^{[6]}$ together with a relativistic pseudopotential for Au. ${ }^{[13]}$ The pseudopotential basis set and the all-electron basis sets for the other light elements ($\mathrm{H}, \mathrm{C}, \mathrm{B}, \mathrm{F}$) were of cc-pVDZ quality for all systems. Geometries were fully optimized without symmetry restrictions. All intermediates were uniquely characterized by occurrence of none imaginary frequency. Gibbs free energies are calculated for standard temperature and pressure $(298.15 \mathrm{~K}, 1 \mathrm{~atm})$ and are corrected in respect to zero point energies which are calculated based on gas phase frequency calculations. 3D structures were generated with the program package CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org).

Preliminary theoretical studies of the $\sigma-B / \pi-A u$ alkynyl borate species at the B3LYP/cc-pVDZ level of theory indicate that the thermodynamics of a $\mathrm{C}_{6} \mathrm{~F}_{5}$-group transfer from boron to gold versus boron to carbon are very close in energy $\left(\Delta \mathrm{G}_{\mathrm{B}-\mathrm{Au}}=-12.3 \mathrm{kcal} / \mathrm{mol}\right.$ vs. $\left.\Delta \mathrm{G}_{\mathrm{B}-\mathrm{C}}=-12.0 \mathrm{kcal} / \mathrm{mol}\right)$ suggesting that a kinetic barrier precludes concerted $1,2-\mathrm{C}_{6} \mathrm{~F}_{5}$ boron to carbon shift.
$\mathrm{x}, \mathrm{y}, \mathrm{z}$-coordinates for optimized structures:

70

C	2.181786	2.883591	0.296546
C	1.393794	1.758447	0.569822
C	0.279293	2.032409	1.368689
C	-0.024358	3.286228	1.887671
C	0.798665	4.369303	1.596697

		4162168	
	4.23		
	5.57314	－0．1	
	3.6113	0.	
	． 950	． 34	
		－0．087	
	7.217		
	274	．66	－3．60
	．731	－0．2414	－3．0
	6139	． 0	
	． 1370		
	0.50164	． 590415	2.064049
	715923	． 19394	0.488716
	260	79883	
	0.5947		
	0007	． 3338	
	－0．253198	0.4724	－3．889799
	03	－1．0324	
	13787		
	1.19448	－2．1632	
	1.032404	－3．	
	7088	－3．4738	
	1.23681	－2．3066	
	1.560		
	173	－2．0800	． 410030
	， 81856	－4．50912	
	2473	588	
	6621	－2	
	－1．650891	－0．084804	
	－3．524293	－0．422119	－0．294541
	－4．091900	－1．6199	
	－5．403576	53075	
	－5．66417	－0．1199	
	－4．504	0.4973	
	－3．4421	－2．9064	
	．71743	78137	
	－2．11734	－4．6374	
	－2．242	－5．40	
	－2．974	． 92	
	．58037	6704	
	－4．387030	1.9231	
	－3．496	2.6484	
	3.41714	4.0344	． 402182
	4.22341	4.6824	
	． 11430	，	
	－5．199431	． 55	
	－2．618909	仿	
	－4．14939	－3．2771	
	．87605		
	－5．881073	1.970731	
	－6．017571	－2．29282	
	6.55069	退	
	74736	2113	
	0.718760	59379	－4．3
	－0．881527	347942	．
	1.530279	－5．00470	1.81040
	㖪． 75756		
	－3．068071	－5．528442	－2．1880
	－2．724301	4.599947	． 0267
	－4．158132	5.765816	
	．74233	．	

29

B	-0.022200	-0.029204	0.372899
C	-0.029211	-0.129794	1.878175
C	1.355496	-0.015266	-0.392033
C	-1.394764	0.059624	-0.396888
C	2.470845	-0.741854	0.058023
C	3.703592	-0.708975	-0.590352
C	3.860348	0.089378	-1.722552
C	2.784102	0.836334	-2.201936
C	1.561454	0.764982	-1.541530
F	2.374963	-1.539855	1.130760
F	4.734919	-1.432818	-0.139474
F	5.037067	0.138218	-2.347319
F	2.938503	1.608629	-3.283452
F	0.560032	1.513333	-2.036981
C	-1.596637	-0.572145	-1.634625
C	-2.815284	-0.555018	-2.305987
C	-3.890987	0.133482	-1.744799
C	-3.737705	0.786034	-0.522292
C	-2.509055	0.731958	0.132427
F	-0.594888	-1.258944	-2.212016
F	-2.966339	-1.187700	-3.475198
F	-5.063888	0.168469	-2.377850
F	-4.768299	1.455305	0.007849
F	-2.415307	1.392392	1.295350
C	-0.035931	-0.210242	3.099845
C	-0.050326	-0.304389	4.551639
H	0.968169	-0.340596	4.969906
H	-0.576091	0.560570	4.989192
H	-0.588010	-1.211906	4.873360

B	0.000332	0.000193	0.379602
C	0.021670	0.155715	1.942486
C	1.348003	-0.144185	-0.414133
C	-1.368969	-0.011172	-0.389907
C	-0.873265	0.997840	2.622856
C	-0.861800	1.156392	4.005148
C	0.059523	0.435429	4.765346
C	0.962264	-0.422958	4.137194
C	0.936794	-0.538574	2.750822
F	-1.773245	1.721449	1.935382
F	-1.719350	1.985219	4.609036
F	0.077327	0.566659	6.090396
F	1.837754	-1.119407	4.868994
F	1.820502	-1.385071	2.195221
C	1.474486	-0.995152	-1.524366
C	2.663037	-1.144909	-2.232211
C	3.781858	-0.405164	-1.848170
C	3.703579	0.462841	-0.758705
C	2.504929	0.569247	-0.060230
F	0.428839	-1.736568	-1.928358
F	2.743532	-1.982880	-3.270654
F	4.924365	-0.527565	-2.521260
F	4.774616	1.177060	-0.398384
F	2.478514	1.425501	0.975344
C	-1.528048	0.604175	-1.642392
C	-2.736078	0.615262	-2.332759
C	-3.842198	-0.030233	-1.779346
C	-3.731719	-0.666613	-0.542691
C	-2.513942	-0.637102	0.129664
F	-0.495286	1.247218	-2.213668
F	-2.847081	1.231640	-3.513761
F	-5.003247	-0.039304	-2.431501
F	-4.790709	-1.292417	-0.019311
F	-2.456939	-1.272567	1.312591
	-103		

70

C	-0.541324	-2.402405	-0.166125
C	0.039542	-1.415304	0.634884
C	-0.562270	-1.199357	1.874429
C	-1.705869	-1.871604	2.294839
C	-2.257078	-2.844246	1.463216
C	-1.664878	-3.124359	0.233166
B	1.342065	-0.613911	0.196649
C	2.631808	-0.882995	1.088198
C	3.371196	0.159180	1.658874

C	4.483098	-0.058082	2.470075
C	4.895548	-1.365946	2.723308
C	4.191486	-2.436227	2.172340
C	3.075677	-2.178031	1.378958
F	2.997760	1.436708	1.454765
F	5.154101	0.968660	3.0
F	5.963508	-1.	3.493713
F	4.592461	-3.	2.411248
F	2.427173	-3.	0.
F	-0.068048	-0.241604	2.694901
F	-2.292797	-1	7
F	-3.374825	-3.490969	1.832591
F	-2.199210	-4.064331	-0.560189
F	-0.016994	-2.684461	-1.369109
C	1.381265	0.3	4
C	0.250569	0.884897	-1.588283
C	2.746670	0.640869	-1.563310
Au	-1.650552	0.853193	20
C	3.587330	-0.373852	-2.036459
C	4.867849	-0.124659	-2.526525
C	5.348514	1.183546	-2.548763
C	4.545399	2.221531	-2.078864
C	3.269893	1.939470	-1.592689
F	3.162548	-1.651885	-2.015451
F	5.638121	-1.126595	-2.973688
F	6.575489	1.441509	-3.017098
F	5.006979	3.480284	-2.095584
F	2.532378	2.970116	-1.145397
C	0.363004	1.734807	-2.833504
H	0.232268	2.798486	-2.564979
H	1.321473	1.636340	-3.368908
H	-0.454641	1.494991	-3.531896
C	-3.561527	0.953647	-0.001537
N	-4.648580	0.184837	-0.309561
C	-5.755449	0.544335	0.454636
C	-5.358510	1.565108	1.256914
N	-4.017127	1.801338	0.968956
C	-3.236460	2.821052	1.619559
H	-5.893234	2.132400	2.010774
H	-6.714532	0.050122	0.345501
C	-4.676068	-0.857011	-1.301139
C	-3.617090	4.158838	1.476055
C	-2.878023	5.154766	2.119155
C	-1.763695	4.813196	2.891235
C	-1.392393	3.472316	3.026434
C	-2.130640	2.467071	2.396966
H	-4.475564	4.415239	0.852276
H	-3.168926	6.200957	2.005508
H	-1.182257	5.593608	3.386326
H	-0.523082	3.199054	3.627217
H	-1.849577	1.421538	2.512501
C	-4.959958	-2.167122	-0.905287
C	-5.006128	-3.177740	-1.868968
C	-4.768412	-2.878782	-3.213130
C	-4.479943	-1.565410	-3.596857
C	-4.435872	-0.546402	-2.642716
H	-5.107796	-2.398841	0.150721
H	-5.208734	-4.204745	-1.560837
H	-4.798754	-3.672363	-3.962387
H	-4.288855	-1.329099	-4.645414
H	-4.215912	0.482583	-2.928399

70

C	4.666609	-2.326704	-2.024356
C	5.184901	-1.054917	-1.762992
C	5.712480	-0.270117	-2.792898
C	5.721815	-0.766860	-4.098685
C	5.200188	-2.034448	-4.371735
C	4.672144	-2.809752	-3.334882
N	5.200379	-0.546619	-0.418579
C	4.104208	-0.399897	0.384696
N	4.608248	0.112438	1.547617
C	5.988145	0.278581	1.469115
C	6.360911	-0.132861	0.230383
Au	2.120725	-0.817579	-0.058747
C	0.137486	-1.238235	-0.425279
C	-0.165868	-2.684425	-0.722185
C	3.835292	0.457626	2.710712
C	4.180392	-0.095124	3.947848
C	3.443661	0.253521	5.082885
C	2.366277	1.138052	4.978169
C	2.027006	1.683289	3.736270
C	2.766514	1.351127	2.598733
C	-0.849735	-0.267881	-0.375323
B	-2.374188	-0.463233	-0.326070
C	-3.343838	0.784827	-0.534187
C	-3.315499	1.569553	-1.691567
C	-4.175019	2.646523	-1.896973
C	-5.100998	2.975967	-0.907377
C	-5.161778	2.224518	0.265557
C	-4.294870	1.145284	0.426231
F	-2.443075	1.277551	-2.674766
F	-4.123544	3.364309	-3.027187
F	-5.928287	4.011174	-1.082797
F	-6.046660	2.546391	1.218677
F	-4.381740	0.448106	1.575748
C	-3.124236	-1.818985	0.027068
C	-2.867455	-2.550972	1.191682
C	-3.583733	-3.695473	1.534686
C	-4.593331	-4.150980	0.686820
C	-4.880315	-3.455689	-0.487071
C	-4.152537	-2.306043	-0.786920
F	-1.898995	-2.155327	2.036881
F	-4.450086	-1.664992	-1.935267
F	-5.844498	-3.896128	-1.306372
F	-5.281819	-5.253908	0.997905

F	-3.312541	-4.364316	2.663954
H	0.076779	-3.304583	0.159394
H	-1.199228	-2.891727	-1.031570
H	0.507225	-3.032249	-1.524179
H	6.566383	0.687120	2.290477
H	7.335362	-0.184816	-0.242596
H	5.005950	-0.806211	4.016533
H	3.706858	-0.180203	6.049655
H	1.786916	1.400974	5.865403
H	1.184817	2.370865	3.644837
H	2.518441	1.778605	1.627643
H	6.093158	0.729376	-2.574499
H	6.126887	-0.153230	-4.905638
H	5.202456	-2.417619	-5.394109
H	4.265549	-3.801217	-3.543454
H	4.267723	-2.927005	-1.206511
C	-0.374653	1.157264	-0.263161
C	0.291333	1.806592	-1.310877
C	0.745593	3.121444	-1.205055
C	0.534541	3.833992	-0.025431
C	-0.135356	3.221989	1.032611
C	-0.581331	1.909249	0.897842
F	0.524763	1.164055	-2.464097
F	1.388955	3.704653	-2.227280
F	0.971893	5.094558	0.090749
F	-0.318379	3.889426	2.187229
F	-1.212169	1.353989	1.950021

41

C	-3.414419	0.859078	2.889051
C	-2.484200	-0.069921	2.410271
C	-2.869838	-1.067948	1.510292
C	-4.197169	-1.124310	1.080043
C	-5.135489	-0.204674	1.556918
C	-4.742749	0.783717	2.463916
N	-1.124986	0.006126	2.868849
C	-0.014723	0.020935	2.068576
N	1.029675	0.129110	2.946549
C	0.576223	0.193611	4.261527
C	-0.777374	0.116341	4.212718
C	2.418106	0.210027	2.586993
C	2.978332	-0.734065	1.721219
C	4.330889	-0.637346	1.387539

C	5.121846	0.381164	1.926616
C	4.555168	1.314838	2.798933
C	3.199829	1.236905	3.127359
Au	0.064078	-0.063967	0.017018
C	0.143554	-0.157490	-2.037756
C	-1.003853	-0.260956	-2.824705
C	-0.975806	-0.325230	-4.217551
C	0.253518	-0.287215	-4.873792
C	1.428720	-0.187415	-4.130630
C	1.348900	-0.126120	-2.739668
F	-2.226723	-0.305735	-2.239442
F	-2.110056	-0.424117	-4.934747
F	0.305447	-0.347961	-6.213891
F	2.615498	-0.153266	-4.763935
F	2.523662	-0.033451	-2.067680
H	1.256581	0.252443	5.103661
H	-1.518688	0.094020	5.003599
H	-2.135744	-1.787806	1.149209
H	-4.495319	-1.894705	0.366797
H	-6.172058	-0.255018	1.217677
H	-5.468055	1.511664	2.832837
H	-3.094675	1.648801	3.571562
H	2.744168	1.982379	3.781852
H	5.164618	2.119091	3.215858
H	6.179065	0.450430	1.662822
H	4.765153	-1.365972	0.700778
H	2.358695	-1.531319	1.311454

	1.136536	-0.517085	1.914690
C	1.071955	0.230129	1.399184
C	0.0185137	0.874755	0.163373
C	0.1837		
C	1.379148	0.772564	-0.553604
C	2.446369	0.023143	-0.049959
C	2.321887	-0.622731	1.183241
N	-1.150903	0.308132	2.146987
C	-1.817823	1.461707	2.468336
N	-2.900141	1.026752	3.188240
C	-2.894569	-0.359673	3.322308
C	-1.795769	-0.811089	2.668196
C	-3.909729	1.865741	3.769184
C	-4.243086	1.693010	5.116940
C	-5.243127	2.484927	5.686174
C	-5.897888	3.450518	4.916529
C	-5.553226	3.619749	3.572349

C	-4.563649	2.825117	2.989721
Au	-1.286342	3.392420	2.029054
C	-0.767268	5.261942	1.610196
C	-0.447491	6.418224	1.348117
C	-0.063114	7.795350	1.041388
H	-1.433621	-1.818179	2.494640
H	-3.686885	-0.892499	3.835957
H	-4.294294	2.947475	1.940984
H	-6.058397	4.374143	2.966275
H	-6.673735	4.074110	5.365406
H	-5.499374	2.353954	6.739445
H	-3.706899	0.958227	5.720536
H	1.043945	-0.993859	2.892363
H	3.154694	-1.201230	1.588172
H	3.376627	-0.053974	-0.616501
H	1.470679	1.282140	-1.514639
H	-0.652868	1.452185	-0.226105
H	0.611108	7.846073	0.168458
H	-0.942334	8.423061	0.813053
H	0.463925	8.267670	1.888932

References

1. Frohn, H. -J. in "Efficient Preparations of Fluorine Compounds" (chapt. 10), 1. Ed., H. W. Roesky (Ed.), Wiley-VCH, Weinheim, 2013.
2. Berthon-Gelloz, G.; Siegler, M. A.; Spek, A. L.; Tinant, B.; Reek, J. N. H.; Markó, I. E. Dalton Trans., 2010, 39, 1444-1446.
3. Hashmi, A. S. K.; Lauterbach, T.; Nösel, P.; Vilhelmsen, M. H.; Rudolph, M.; Rominger, F. Chem. Eur. J., 2013, 19, 1058-1065.
4. Dupuy, S.; Crawford, L.; Bühl, M.; Slawin, A. M. Z.; Nolan, S. P. Adv. Synth. Catal., 2012, 354, 2380-2386.
5. Liu, L.-P.; Xu, B.; Mashuta, M. S.; Hammond, G. B. J. Am. Chem. Soc., 2008, 130, 1764217643.
6. Program SADABS 2012/1 for absorption correction; Sheldrick, G. M. Bruker Analytical X-ray-Division, Madison, Wisconsin 2012
7. Program SHELXL 2014-3 for structure refinement; Sheldrick, G.M. Acta Cryst. 2008, A64, 112-122.
8. Apex 2 Software Package; Bruker AXS Inc. 2013.
9. D. T. Cromer, J. T. W., Int. Tables X-Ray Crystallography. 1974; Vol. 4.
10. Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
11. Hohenberg, P.; Kohn, W. Phys. Rev., 1964, 136, B864.
12. Kohn, W.; Sham, L. J. Phys. Rev., 1965, 140, A1133.
13. Figgen, D.; Rauhut, G.; Dolg, M.; Stoll, H. Chem. Phys., 2005, 311, 227.

[^0]:

