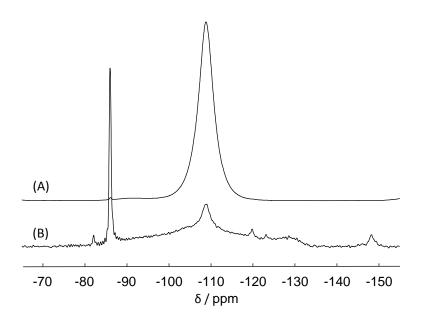
Solid Solutions CaF₂-YF₃ with Fluorite Structure Prepared on the Sol-Gel Route: Investigation by Multinuclear MAS NMR Spectroscopy

Thoralf Krahl^{*a,b*}, Gudrun Scholz^{*a*}, Erhard Kemnitz^{*a,b**}


^a Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, D-12489 Berlin, Germany

^b Nanofluor GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany,

^{*} Corresponding author, mail: erhard.kemnitz@chemie.hu-berlin.de

Table of	of Contents
----------	-------------

¹⁹ F MAS NMR spectra of 2 CaF ₂ -s	Figure S1
Cubic Lattice parameters from XRD	Table S1
Calculation of metal-fluoride distances	Table S2
Site occupation frequencies for cluster models	Table S3

Figure S1. ¹⁹F MAS NMR spectra of **2** CaF₂-s (Ca_{0.999}Sm_{0.001}F_{2.001}). (A) single pulse, (B) rs-echo L0=30.

Name	Lattice parameter
CaF ₂	<i>a</i> = 5.463 Å
CaF ₂ :Y05-s	<i>a</i> = 5.469 Å
CaF ₂ :Y10-s	<i>a</i> = 5.481 Å
CaF ₂ :Y20-s	<i>a</i> = 5.499 Å
CaF ₂ :Y40-s	<i>a</i> = 5.533 Å

Table S1. Cubic lattice parameters extracted from XRD in dependence of the Y-doping level.

Table S2. Calculation of the metal-fluoride distances needed for Figure 5.

Cubic lattice constant of CaF ₂	<i>a</i> ₀ = 5.463 Å	
Coordinates of the metal ions forming an octahedron	(0, 0.5, 0.5) (1, 0.5, 0.5) (0.5, 0, 0.5) (0.5, 1, 0.5) (0.5, 0.5, 0) (0.5, 0.5, 1)	
Coordinates of the defect fluoride ion (for $x = 0.5$, all of these fluorides are located in the middle of the octahedron)	24 <i>e</i> (<i>x</i> , 0.5, 0.5) 32 <i>f</i> (<i>x</i> , <i>x</i> , <i>x</i>) 48 <i>i</i> (<i>x</i> , <i>x</i> , 0.5)	
Calculation of d_{M-F} between F at (a_1, a_2, a_3) and M at (b_1, b_2, b_3)	$d_{\text{M-F}} = a_0 \left(\sum_{i=1}^3 (a_i - b_i)^2 \right)^{\frac{1}{2}}$	

Table S3. Site occupation frequencies (s.o.f.) needed for cubic $Ca_{1-x}Y_xF_{2+x}$ (x = 0...0.40) to fulfill the condition that all additional fluoride ions are located in well-defined clusters ($Fm\overline{3}m, Z = 4$). wyck: Wyckoff position (first number is the multiplicity), s.o.f.: site occupation frequency.

atom	wyck	<i>s.o.f.</i> 8:12:0	<i>s.o.f.</i> 8:12:1
Ca	4a	1 - x	1 - x
Y	4 <i>a</i>	x	x
Fn	8c	1 - x	$1 - \frac{4}{5}x$
F	32f	0	$\frac{1}{40}x$
F″	48 <i>i</i>	$\frac{1}{4}X$	$\frac{1}{5}x$