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SUPPLEMENTAL MATERIAL – 

 

 

Dependence of mobile fraction on pH. 

We found that the mobile fraction varied with solution pH (Figure 2). However, the reason remains unclear. In previous 

studies, electrostatic and van der Waals forces, or an electrostatic force alone, have reasonably explained vesicle 

fusion.
1-5

 The Debye screening length (2 nm) estimated for the ionic strength used here (Table 1) was similar to typical 

bilayer-surface separation,
6-8

 suggesting that the electrostatic effect was strong. As described in the paper, TR-labeled 

DOTAP vesicles are positively charged in all of the solutions. In contrast, the glass surface is negatively charged. The 

overall surface charge decreases with pH due to titratable silanol groups and is at a minimum at pH 3.0;
9-10

 thus, the 

electrostatic interaction between the vesicles and surface is weaker at lower pH, which may account for the unfavorable 

fusion at pH 4.0–7.2. However, this interpretation fails to explain the recovery of the mobile fraction in the acidic region. 

Covalent bond formation will not explain this recovery because the vesicles and surface do not have suitable functional 

groups available for chemical interactions. Furthermore, no reactions have been reported for similar systems consisting 

of phosphatidylcholine (PC) vesicles and glass or fused silica at pH 3.
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