data_liang2cult _audit_creation_date 2013-12-23 _audit_creation_method ; Olex2 1.2-beta (compiled May 9 2012 12:37:22, GUI svn.r4230) ; _publ_contact_author_address ? _publ_contact_author_email ? _publ_contact_author_name '' _publ_contact_author_phone ? _chemical_name_common ? _chemical_name_systematic ; ? ; _chemical_formula_moiety 'C11 H12 O4' _chemical_formula_sum 'C11 H12 O4' _chemical_formula_weight 208.21 _chemical_melting_point ? loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0492 0.0322 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Triclinic _symmetry_space_group_name_H-M P-1 _space_group_IT_number 2 _space_group_name_Hall '-P 1' loop_ _space_group_symop_id _space_group_symop_operation_xyz 1 'x, y, z' 2 '-x, -y, -z' _cell_length_a 7.0387(5) _cell_length_b 8.9608(8) _cell_length_c 9.3606(9) _cell_angle_alpha 111.215(9) _cell_angle_beta 102.239(8) _cell_angle_gamma 107.014(7) _cell_volume 491.70(7) _cell_formula_units_Z 2 _cell_measurement_reflns_used 1750 _cell_measurement_temperature 173.00(14) _cell_measurement_theta_max 71.5420 _cell_measurement_theta_min 9.6020 _exptl_absorpt_coefficient_mu 0.900 _exptl_absorpt_correction_T_max 1.00000 _exptl_absorpt_correction_T_min 0.76166 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details ; CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. ; _exptl_crystal_colour colourless _exptl_crystal_density_diffrn 1.406 _exptl_crystal_density_meas ? _exptl_crystal_density_method 'not measured' _exptl_crystal_description plate _exptl_crystal_F_000 220 _exptl_crystal_size_max 0.35 _exptl_crystal_size_mid 0.32 _exptl_crystal_size_min 0.07 _exptl_special_details ; ? ; _diffrn_reflns_av_R_equivalents 0.0166 _diffrn_reflns_av_unetI/netI 0.0202 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_k_min -10 _diffrn_reflns_limit_l_max 11 _diffrn_reflns_limit_l_min -11 _diffrn_reflns_number 2238 _diffrn_reflns_theta_full 66.50 _diffrn_reflns_theta_max 66.98 _diffrn_reflns_theta_min 9.74 _diffrn_ambient_temperature 173.00(14) _diffrn_detector_area_resol_mean 15.9578 _diffrn_measured_fraction_theta_full 0.9152 _diffrn_measured_fraction_theta_max 0.5150 _diffrn_measurement_details ; #__ type_ start__ end____ width___ exp.time_ 1 omega 37.00 65.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -25.0000 150.0000 28 #__ type_ start__ end____ width___ exp.time_ 2 omega -102.00 -48.00 1.0000 1.5000 omega____ theta____ kappa____ phi______ frames - -55.0000 125.0000 90.0000 54 #__ type_ start__ end____ width___ exp.time_ 3 omega -45.00 -19.00 1.0000 1.5000 omega____ theta____ kappa____ phi______ frames - -55.0000 125.0000 90.0000 26 #__ type_ start__ end____ width___ exp.time_ 4 omega 8.00 35.00 1.0000 1.5000 omega____ theta____ kappa____ phi______ frames - 55.0000 -57.0000 -150.0000 27 #__ type_ start__ end____ width___ exp.time_ 5 omega 38.00 65.00 1.0000 1.5000 omega____ theta____ kappa____ phi______ frames - 55.0000 -57.0000 -150.0000 27 #__ type_ start__ end____ width___ exp.time_ 6 omega 29.00 118.00 1.0000 1.5000 omega____ theta____ kappa____ phi______ frames - 55.0000 38.0000 -150.0000 89 #__ type_ start__ end____ width___ exp.time_ 7 omega 34.00 124.00 1.0000 1.5000 omega____ theta____ kappa____ phi______ frames - 55.0000 57.0000 90.0000 90 #__ type_ start__ end____ width___ exp.time_ 8 omega -11.00 75.00 1.0000 1.5000 omega____ theta____ kappa____ phi______ frames - 55.0000 -57.0000 -60.0000 86 #__ type_ start__ end____ width___ exp.time_ 9 omega 40.00 71.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -25.0000 -150.0000 31 #__ type_ start__ end____ width___ exp.time_ 10 omega 40.00 68.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -25.0000 -60.0000 28 #__ type_ start__ end____ width___ exp.time_ 11 omega 91.00 117.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 64.0000 -150.0000 26 #__ type_ start__ end____ width___ exp.time_ 12 omega 37.00 68.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -25.0000 30.0000 31 #__ type_ start__ end____ width___ exp.time_ 13 omega 45.00 77.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -92.0000 -60.0000 32 #__ type_ start__ end____ width___ exp.time_ 14 omega 80.00 146.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -92.0000 -60.0000 66 #__ type_ start__ end____ width___ exp.time_ 15 omega 42.00 147.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -92.0000 120.0000 105 #__ type_ start__ end____ width___ exp.time_ 16 omega 52.00 89.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -111.0000 -60.0000 37 #__ type_ start__ end____ width___ exp.time_ 17 omega 131.00 176.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 38.0000 -30.0000 45 #__ type_ start__ end____ width___ exp.time_ 18 omega 37.00 66.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -25.0000 -90.0000 29 #__ type_ start__ end____ width___ exp.time_ 19 omega 38.00 71.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -111.0000 -150.0000 33 #__ type_ start__ end____ width___ exp.time_ 20 omega 38.00 67.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -25.0000 60.0000 29 #__ type_ start__ end____ width___ exp.time_ 21 omega 40.00 72.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -25.0000 -30.0000 32 #__ type_ start__ end____ width___ exp.time_ 22 omega 37.00 71.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 -25.0000 -180.0000 34 #__ type_ start__ end____ width___ exp.time_ 23 omega 86.00 121.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 110.0000 38.0000 -30.0000 35 ; _diffrn_measurement_device 'kappa diffractometer' _diffrn_measurement_device_type 'Xcalibur, Sapphire3, Gemini ultra' _diffrn_measurement_method '\w scans' _diffrn_orient_matrix_UB_11 0.0755981000 _diffrn_orient_matrix_UB_12 0.1980272000 _diffrn_orient_matrix_UB_13 0.0536538000 _diffrn_orient_matrix_UB_21 0.1005407000 _diffrn_orient_matrix_UB_22 0.0380668000 _diffrn_orient_matrix_UB_23 0.1792426000 _diffrn_orient_matrix_UB_31 0.2102353000 _diffrn_orient_matrix_UB_32 0.0058890000 _diffrn_orient_matrix_UB_33 -0.0264885000 _diffrn_radiation_monochromator mirror _diffrn_radiation_probe x-ray _diffrn_radiation_type CuK\a _diffrn_radiation_wavelength 1.5418 _diffrn_source 'sealed X-ray tube' _diffrn_source_current 35 _diffrn_source_power 1.75 _diffrn_source_target Cu _diffrn_source_voltage 50 _diffrn_standards_decay_% ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_number ? _reflns_number_gt 1491 _reflns_number_total 1570 _reflns_odcompleteness_completeness 91.52 _reflns_odcompleteness_iscentric 1 _reflns_odcompleteness_theta 68.13 _reflns_threshold_expression >2sigma(I) _computing_cell_refinement ; CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58) ; _computing_data_collection ; CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58) ; _computing_data_reduction ; CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (release 02-08-2013 CrysAlis171 .NET) (compiled Aug 2 2013,16:46:58) ; _computing_molecular_graphics ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_publication_material ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_structure_refinement ; XL, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122 ; _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _refine_diff_density_max 0.190 _refine_diff_density_min -0.144 _refine_diff_density_rms 0.031 _refine_ls_extinction_coef ? _refine_ls_extinction_method none _refine_ls_goodness_of_fit_ref 1.001 _refine_ls_hydrogen_treatment constr _refine_ls_matrix_type full _refine_ls_number_parameters 137 _refine_ls_number_reflns 1570 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0342 _refine_ls_R_factor_gt 0.0331 _refine_ls_restrained_S_all 1.001 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 _refine_ls_structure_factor_coef Fsqd _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0488P)^2^+0.1059P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_weighting_scheme calc _refine_ls_wR_factor_gt 0.0840 _refine_ls_wR_factor_ref 0.0849 _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _atom_sites_solution_hydrogens geom _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group O1 O 0.73000(13) 0.45441(12) 0.73780(11) 0.0334(2) Uani 1 1 d . . . O2 O 0.49355(12) 0.54678(11) 0.81582(10) 0.0272(2) Uani 1 1 d . . . O3 O 0.02340(12) 0.22325(11) 0.36832(10) 0.0274(2) Uani 1 1 d . . . O4 O -0.12331(14) -0.02738(11) 0.12834(10) 0.0330(2) Uani 1 1 d . . . C1 C 0.54615(18) 0.43848(15) 0.69656(14) 0.0238(3) Uani 1 1 d . . . C2 C 0.38411(17) 0.32161(14) 0.53935(13) 0.0219(3) Uani 1 1 d . . . C3 C 0.18715(17) 0.32514(14) 0.51208(13) 0.0220(3) Uani 1 1 d . . . C4 C 0.14003(18) 0.43809(15) 0.63910(14) 0.0234(3) Uani 1 1 d . . . H4 H 0.0018 0.4378 0.6192 0.028 Uiso 1 1 calc R . . C5 C 0.29329(18) 0.54432(15) 0.78636(14) 0.0250(3) Uani 1 1 d . . . C6 C 0.2762(2) 0.67021(18) 0.93294(15) 0.0365(3) Uani 1 1 d . . . H6A H 0.3112 0.6411 1.0237 0.055 Uiso 1 1 calc R . . H6B H 0.1307 0.6636 0.9075 0.055 Uiso 1 1 calc R . . H6C H 0.3755 0.7891 0.9645 0.055 Uiso 1 1 calc R . . C7 C 0.43657(18) 0.20044(15) 0.41046(14) 0.0263(3) Uani 1 1 d . . . H7A H 0.5163 0.1455 0.4591 0.032 Uiso 1 1 calc R . . H7B H 0.5281 0.2680 0.3690 0.032 Uiso 1 1 calc R . . C8 C 0.23443(19) 0.05850(15) 0.26879(14) 0.0271(3) Uani 1 1 d . . . H8 H 0.2722 0.0087 0.1700 0.032 Uiso 1 1 calc R . . C9 C 0.06272(19) 0.12096(15) 0.22444(14) 0.0275(3) Uani 1 1 d . . . H9 H 0.0990 0.1896 0.1630 0.033 Uiso 1 1 calc R . . C10 C 0.1105(2) -0.09260(15) 0.29858(15) 0.0306(3) Uani 1 1 d . . . H10A H 0.1668 -0.1844 0.2732 0.037 Uiso 1 1 calc R . . H10B H 0.1163 -0.0502 0.4135 0.037 Uiso 1 1 calc R . . C11 C -0.1152(2) -0.16081(17) 0.18011(16) 0.0371(3) Uani 1 1 d . . . H11A H -0.1498 -0.2724 0.0842 0.045 Uiso 1 1 calc R . . H11B H -0.2188 -0.1814 0.2351 0.045 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 O1 0.0184(4) 0.0390(5) 0.0345(5) 0.0109(4) 0.0062(4) 0.0107(4) O2 0.0208(4) 0.0294(4) 0.0238(4) 0.0062(3) 0.0054(3) 0.0096(3) O3 0.0222(4) 0.0296(4) 0.0228(4) 0.0069(3) 0.0035(3) 0.0100(3) O4 0.0337(5) 0.0293(5) 0.0244(4) 0.0100(4) 0.0016(4) 0.0066(4) C1 0.0213(6) 0.0246(6) 0.0267(6) 0.0117(5) 0.0103(5) 0.0095(5) C2 0.0203(5) 0.0217(5) 0.0242(6) 0.0109(5) 0.0092(5) 0.0079(4) C3 0.0203(6) 0.0212(5) 0.0220(6) 0.0102(5) 0.0057(5) 0.0059(4) C4 0.0203(5) 0.0263(6) 0.0268(6) 0.0131(5) 0.0099(5) 0.0111(5) C5 0.0239(6) 0.0272(6) 0.0267(6) 0.0128(5) 0.0107(5) 0.0120(5) C6 0.0357(7) 0.0409(7) 0.0280(7) 0.0072(6) 0.0116(6) 0.0197(6) C7 0.0247(6) 0.0271(6) 0.0281(6) 0.0112(5) 0.0120(5) 0.0115(5) C8 0.0327(6) 0.0256(6) 0.0234(6) 0.0094(5) 0.0130(5) 0.0125(5) C9 0.0302(6) 0.0261(6) 0.0200(6) 0.0084(5) 0.0063(5) 0.0077(5) C10 0.0341(7) 0.0256(6) 0.0294(6) 0.0121(5) 0.0095(5) 0.0105(5) C11 0.0364(7) 0.0294(6) 0.0343(7) 0.0148(6) 0.0041(6) 0.0042(6) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag O1 C1 1.2183(14) . ? O2 C1 1.3880(14) . ? O2 C5 1.3697(14) . ? O3 C3 1.3455(14) . ? O3 C9 1.4641(14) . ? O4 C9 1.3810(15) . ? O4 C11 1.4543(16) . ? C1 C2 1.4273(17) . ? C2 C3 1.3673(16) . ? C2 C7 1.4987(15) . ? C3 C4 1.4285(16) . ? C4 C5 1.3375(17) . ? C5 C6 1.4827(16) . ? C7 C8 1.5235(17) . ? C8 C9 1.5158(17) . ? C8 C10 1.5354(16) . ? C10 C11 1.5236(19) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C5 O2 C1 122.03(9) . . ? C3 O3 C9 118.96(9) . . ? C9 O4 C11 108.35(9) . . ? O1 C1 O2 115.61(10) . . ? O1 C1 C2 126.32(11) . . ? O2 C1 C2 118.07(10) . . ? C1 C2 C7 118.79(10) . . ? C3 C2 C1 118.63(10) . . ? C3 C2 C7 122.57(11) . . ? O3 C3 C2 123.89(10) . . ? O3 C3 C4 114.84(10) . . ? C2 C3 C4 121.26(11) . . ? C5 C4 C3 119.06(10) . . ? O2 C5 C6 111.88(10) . . ? C4 C5 O2 120.91(10) . . ? C4 C5 C6 127.20(11) . . ? C2 C7 C8 110.63(10) . . ? C7 C8 C10 115.93(10) . . ? C9 C8 C7 114.40(10) . . ? C9 C8 C10 100.40(10) . . ? O3 C9 C8 112.34(9) . . ? O4 C9 O3 105.98(9) . . ? O4 C9 C8 106.46(10) . . ? C11 C10 C8 103.00(10) . . ? O4 C11 C10 106.75(10) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag O1 C1 C2 C3 -177.69(11) . . . . ? O1 C1 C2 C7 2.05(18) . . . . ? O2 C1 C2 C3 1.82(16) . . . . ? O2 C1 C2 C7 -178.43(9) . . . . ? O3 C3 C4 C5 -179.95(10) . . . . ? C1 O2 C5 C4 -1.02(17) . . . . ? C1 O2 C5 C6 179.42(10) . . . . ? C1 C2 C3 O3 178.91(9) . . . . ? C1 C2 C3 C4 -2.35(16) . . . . ? C1 C2 C7 C8 166.27(10) . . . . ? C2 C3 C4 C5 1.20(17) . . . . ? C2 C7 C8 C9 38.10(14) . . . . ? C2 C7 C8 C10 -78.07(13) . . . . ? C3 O3 C9 O4 149.71(9) . . . . ? C3 O3 C9 C8 33.84(13) . . . . ? C3 C2 C7 C8 -14.00(15) . . . . ? C3 C4 C5 O2 0.52(17) . . . . ? C3 C4 C5 C6 -179.99(11) . . . . ? C5 O2 C1 O1 179.40(10) . . . . ? C5 O2 C1 C2 -0.17(16) . . . . ? C7 C2 C3 O3 -0.82(17) . . . . ? C7 C2 C3 C4 177.92(9) . . . . ? C7 C8 C9 O3 -48.64(13) . . . . ? C7 C8 C9 O4 -164.22(9) . . . . ? C7 C8 C10 C11 155.41(10) . . . . ? C8 C10 C11 O4 -15.18(13) . . . . ? C9 O3 C3 C2 -9.55(16) . . . . ? C9 O3 C3 C4 171.64(9) . . . . ? C9 O4 C11 C10 -9.57(14) . . . . ? C9 C8 C10 C11 31.61(12) . . . . ? C10 C8 C9 O3 76.21(11) . . . . ? C10 C8 C9 O4 -39.37(11) . . . . ? C11 O4 C9 O3 -88.60(11) . . . . ? C11 O4 C9 C8 31.20(12) . . . . ?