Supplementary Document of Perovskites for Solar Thermoelectric Applications: a First Principle Study of CH₃NH₃AI₃ (A=Pb and Sn)

Yuping He^{\dagger} and Giulia Galli^{*,‡}

Department of Chemistry, University of California, Davis, CA 95616, and The Institute for Molecular Engineering, The University of Chicago, IL 60637

E-mail: gagalli@uchicago.edu

^{*}To whom correspondence should be addressed

[†]Department of Chemistry, University of California, Davis, CA 95616

[‡]The Institute for Molecular Engineering, The University of Chicago, IL 60637

Table SI: Ab initio optimized lattice constants a, b and c (Å) (see Fig. 1a) of the pseudo-cubic MAPbI₃ with MA along the <100>, <110> and <111> directions, and those of pseudo-cubic MASnI₃ with MA along the <100> direction. The term AVE represents the average value over three lattice constants. The displacement of the metal Pb ion of MAPbI₃ in each of the three cases is shown in Fig. S1.

Lattice Constant		MAPbI ₃		MASnI ₃
	MA100	MA110	MA111	MA100
a	6.4504	6.4271	6.4113	6.3535
b	6.3810	6.4470	6.4192	6.3384
С	6.4601	6.3373	6.4132	6.3641
AVE.	6.4305	6.4038	6.4145	6.3520

Table SII: Calculated longitudinal (m_{\parallel}^*) , transverse (m_{\perp}^*) , conductivity (m_I^*) , band (m_b^*) , and density of state effective mass (m^*) of electrons (e^-) and holes (h^+) at two splitted conduction edges (LUMO1 and LUMO2) and two splitted valence band edges (HOMO1 and HOMO2) at the R point in the Brillouin Zone (see Fig. 2a and 3a). All effective masses are in units of the electron mass (m_e) . The term AVE represents the averaged value over the two splitted bands. All results were obtained with DFT-PBE calcuations. The effective mass m^{*} was obtained by summing over two bands and it is indicated by the bold figures.

					and a						and a	
	MAPbI ₃	(e ⁻)		$MAPbI_3$	(h ⁺)		MASnI ₃	(e ⁻)		MASnI ₃	(h ⁺)	
	LUM01	LUMO2	AVE.	HOMO1	HOMO2	AVE.	LUM01	LUMO2	AVE.	HOMO1	HOMO2	AVE.
m_{\parallel}^*	0.2527	0.1282	0.1905	0.3435	0.3366	0.3398	0.2825	0.3021	0.2923	0.1872	0.1711	0.1792
m [*]	0.0853	0.0750	0.0802	0.1012	0.0855	0.0934	0.0935	0.0868	0.0902	0.0887	0.0857	0.0872
$m_I^{\overline{*}}$	0.1095	0.0870	0.0983	0.1323	0.1138	0.1231	0.1203	0.1138	0.1171	0.1076	0.1028	0.1052
m_b^*	0.1227	0.0897	0.1062	0.1521	0.1350	0.1436	0.1352	0.1315	0.1334	0.1138	0.1079	0.1109
m*	0.1227	0.0897	0.2124	0.1521	0.1350	0.2871	0.1352	0.1315	0.2668	0.1138	0.1079	0.2217

Figure S1: Positions of Pb atoms in MAPbI₃ samples for the perfect cubic structure (black), pseudo-cubic with MA along <100> (red), pseudo-cubic with MA along <110> (blue) and pseudo-cubic with MA along <111> (green) direction, respectively.

Figure S2: Calculated electron (black) and hole (red) mobilities (μ) as a function of carrier concentration at 400 K in pseudo-cubic CH₃NH₃PbI₃ (a) and at 300 K in pseudo-cubic CH₃NH₃SnI₃ (b), by using the Kane model with G₀W₀ band gaps and DFT-PBE effective masses.

Figure S3: (a) Seebeck coefficients (S), (b) electrical resistivities (ρ), (c) total thermal conductivities (κ_{total}), and (d) the predicted values of the material figure of meritz (ZT) as a function of carrier concentration with $\kappa_L = 1$, 2 and 3 W/mK, at 400 K for n-type (black) and p-type (red) doped, pseudo-cubic CH₃NH₃PbI₃, obtained from the Kane model with G₀W₀ band gaps and DFT-PBE effective masses. At the carrier concentration for which ZT is maximum, κ_e varies between 0.45 and 0.75 W/mK for n-type, and between 0.30 and 0.43 W/mK for p-type.

Figure S4: (a) Seebeck coefficients (S), (b) electrical resistivities (ρ), (c) total thermal conductivities (κ_{total}), and (d) the predicted values of the material figure of meritz (ZT) as a function of carrier concentration with $\kappa_L = 1$, 2 and 3 W/mK, at 300 K for n-type (black) and p-type (red) doped, pseudo-cubic CH₃NH₃SnI₃, obtained from the Kane model with G₀W₀ band gaps and DFT-PBE effective masses. At the carrier concentration for which ZT is maximum, κ_e varies between 0.38 and 0.62 W/mK for n-type, and between 0.24 and 0.31 W/mK for p-type.