Supporting information

Anti-site reordering in LiFePO₄: Defect annihilation on charge carrier injection

Figure S1. Calculated formation energy of anti-site defect in $LiFePO_4$ and its configuration corresponding to the distance between Li^+ on Fe^{2+} site and Fe^{2+} on Li^+ site. Near anti-site defect has lower formation energy. (a) Edge-shared anti-site defect with the lowest formation energy (about 390 meV) (b), (c) Corner-shared anti-site defect with the formation energy of about 490 meV.

Figure S2. The $15 \sim 55^{\circ}$ high resolution powder diffraction patterns of prepared by hydrothermal synthesis.

Atom	Х	Y	Z	Biso	Mult.	Occ.		
Li	0.00000(0)	0.00000(0)	0.00000(0)	1.49	4	0.479	Chi ²	5.49
Fe	0.28189(7)	0.25000(0)	0.97522(17)	0.395	4	0.479	R _p	11
LiFe	0.28189(7)	0.25000(0)	0.97522(17)	1.49	4	0.021	RI	5.02
FeLi	0.00000(0)	0.00000(0)	0.00000(0)	0.395	4	0.021	R _f	3.44
Р	0.09524(13)	0.25000(0)	0.41750(26)	0.282	4	0.500	Unit cell V.	292.640(1)
01	0.09721(34)	0.25000(0)	0.74437(64)	0.495	4	0.500	Lattice a(Å)	10.35027(3)
02	0.45596(36)	0.25000(0)	0.20695(65)	0.482	4	0.500	Lattice b(Å)	6.01304(2)
03	0.16747(28)	0.04299(38)	0.28245(42)	0.518	8	1.000	Lattice b(Å)	4.70205(1)

Figure S3. Rietveld refinement results of hydrothermally prepared LiFePO₄.

Atom	X	Y	Z	Biso	Mult.	Occ.		
Li	0.00000(0)	0.00000(0)	0.00000(0)	1.49	4	0.430	Chi ²	9.65
Fe	0.28139(13)	0.25000(0)	0.97462(35)	0.395	4	0.480	R _p	14.2
LiFe	0.28139(13)	0.25000(0)	0.97462(35)	1.49	4	0.020	RI	7.71
FeLi	0.00000(0)	0.00000(0)	0.00000(0)	0.395	4	0.020	R _f	4.71
Р	0.09592(23)	0.25000(0)	0.41781(48)	0.282	4	0.500	Unit cell V.	291.998(5)
01	0.10082(60)	0.25000(0)	0.74909(113)	0.495	4	0.500	Lattice a(Å)	10.32877(8)
02	0.45482(66)	0.25000(0)	0.20070(109)	0.482	4	0.500	Lattice b(Å)	6.00752(6)
03	0.16566(49	0.03936(72)	0.27621(71)	0.518	8	1.000	Lattice b(Å)	4.70582(4)

Figure S4. Rietveld refinement results of solid-solution $Li_{0.9}FePO_4$.

Atom	X	Y	Z	Biso	Mult.	Occ.		
Li	0.00000(0)	0.00000(0)	0.00000(0)	1.375(90)	4	0.4907(8)	Chi ²	1.50
Fe	0.28166(15)	0.25000(0)	0.97498(43)	0.369(20)	4	0.4907(8)	R _p	6.67
LiFe	0.28166(15)	0.25000(0)	0.97498(43)	0.280(90)	4	0.0093(8)	RI	3.94
FeLi	0.00000(0)	0.00000(0)	0.00000(0)	1.464(20)	4	0.0093(8)	$\mathbf{R}_{\mathbf{f}}$	2.74
P	0.09816(29)	0.25000(0)	0.41935(49)	0.356(41)	4	0.500	Unit cell V.	290.637(4)
01	0.09531(71)	0.25000(0)	0.74595(118)	0.590(142)	4	0.500	Lattice a(Å)	10.32416(8)
02	0.44798(82)	0.25000(0)	0.21221(109)	0.192(126)	4	0.500	Lattice b(Å)	5.99040(6)
03	0.16480(53)	0.04815(79)	0.28282(81)	0.676(90)	8	1.000	Lattice b(Å)	4.66938(4)

Figure S5. Rietveld's refinement results of electrochemically treated LiFePO₄

Figure S6. Lattice parameter with change modification with anti-site ratio at room temperature. Red line : trend line, blue line : confidence band, green line : prediction band. The interval coverage probability is set as 95 %. This figure used reference number 11, 18, 27 and 29.

Figure S7. The electrochemical profile of solid-solution $Li_{0.9}FePO_4$ at C/100. The 1st discharge profile showed unexpected high polarization, however, the 2nd profile did not show overpotential during charging/discharging

Figure S8. $15 \sim 55^{\circ}$ XRD patterns of prepared by solid-state method samples (left) and magnified (200) peak of samples (right). red line : (200) peak of LiFePO₄, blue line : (200) peak of FePO₄. All samples are well synthesized without remarkable impurities.

Figure S9. SEM image of prepared LiFePO₄. (a) Hydrothermal synthesis LiFePO₄ (b) 380 °C heated hydrothermal synthesis $Li_{0.9}FePO_4$ (c) 600 °C solid-state synthesis LiFePO₄ (d) 380 °C heated solid-state 600 °C synthesis $Li_{0.9}FePO_4$.

Figure S10. Neutron Rietveld refinement results of solid-state prepared LiFePO₄.

Figure S11. Neutron Rietveld refinement results of solid-state prepared Li_{0.9}FePO₄

8

1

Lattice b(Å)

4.69735(16)

0.2847(5)

03

0.1640(3)

0.04723(18)

Figure S12. C-rate capability of LiFePO₄ (red, prepared by solid-state method without carbon coating) and defect-less LiFePO₄ (black, prepared by charge carrier injection method without carbon coating)

Figure S13. Charge/discharge profile at 30 C of electrochemically treated nano-LiFePO₄ and conventional nano-LiFePO₄.