Photocatalytic Antifouling Graphene Oxide-Mediated Hierarchical Filtration Membranes with Potential Applications on Water Purification Chao Xu*, Yuelian Xu and Jiaoli Zhu Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China * To whom correspondence should be addressed. E-mail: cxu@fzu.edu.cn Figure S1.TG analysis of (a) GO and (b) GOT/P25 Figure S2. XRD patterns of GOT composite films with different weight ratios of GO and TiO₂: (a)1:0.1, (b)1:0.25, (c)1:1, (d)1:2, (e)1:5 Figure S3. Nitrogen adsorption-desorption isotherms (a) and pore size distribution curve (b) of GOT Figure S4. The digital photos of filtrate after DR 80 solution passing through GOT/P25 filtration membranes without (a) and with (b) UV light irradiation Figure S5. The flux (a) and retention rate (b) of GOT/P25 filtration membranes with and without UV light irradiation using Direct Blue15 as feed solution. Table S1.The filtration performance of GO/P25 membranes using DR dye solution as feed for 30 min with/without UV light irradiation | Entry | Sample | Light _ | DR solution (10 □mol/L, 35 ml) | | | | | |-------|--------|---------|--|--------------------|--|--|--| | | | | Flux (L·h ⁻¹ ·m ⁻²) | Retention rate (%) | | | | | 1 | GO/P25 | Off | 5.1 ± 0.2 | 97.7 ± 1.5 | | | | | 2 | GO/P25 | On | 5.8 ± 0.3 | 98.1 ± 2.2 | | | | Table S2. The TOC values of filtrate after DR dye solution passing through GOT/P25 filtration membranes | Time/h | feed | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | |--------------------------------|--------------|-----------------|-----------------|-----------------|-----------------|----------------|---------------|----------------| | TOC Light off | 5.5 ± 0.20 | 0.98 ± 0.11 | 2.31 ± 0.42 | 2.49 ± 0.28 | 2.53 ± 0.38 | 2.5 ± 0.38 | 2.48 ± 0.37 | 2.5 ± 0.41 | | (mg·L ⁻¹) Light on | | 1.0 ± 0.21 | 1.29 ± 0.19 | 1.41 ± 0.0 | 1.41 ± 0.01 | 1.41 ± 0.02 | 1.39 ± 0.03 | 1.44 ± 0.06 |