Supporting Information for:

Secondary Organic Aerosol Formation via the Isolation of Individual Reactive Intermediates: Role of Alkoxy Radical Structure

Anthony J. Carrasquillo, ¹ James F. Hunter, ¹ Kelly E. Daumit, ¹ Jesse H. Kroll ^{1,2} ¹Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA.

²Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA. The relative abundances of each first-generation product (Figure 8) were estimated from the relative rates of reactions available to each alkoxy radical. Alkoxy radicals were assumed to either fragment (k_{frag}) into smaller products, or isomerize "forward" (k_{isom} forward) to form an alkylperoxy species or "backwards" ($k_{isom-back}$) to form the hydroxycarbonyl (Figure S1). Reactions of alkoxy radicals with O₂ to form carbonyls were negligible for the straight-chain species and are not shown in Figure S1; however, they were significant particularly for the alpha-substituted branched species and were considered there. Reactions of peroxy radicals with NO were assumed to produce either alkoxy radicals or organonitrates in a fixed ratio of 80:20, based on measurements and model predictions of alkylnitrate yields from alkane + OH experiments in the presence of NO_x .¹

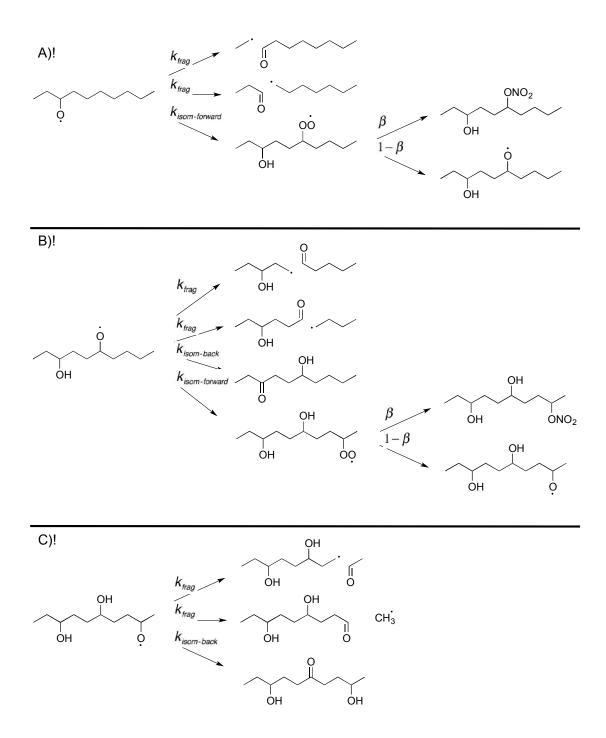


Figure S1. Branching of (A) alkoxy, (B) hydroxyalkoxy, and (C) dihydroxyalkoxy radicals for a representative alkoxy radical system (decyl-3-oxy). Each alkoxy radical pathway is denoted by its absolute rate constant (k_{frag} for fragmentation, $k_{isom-forward}$ for "forward isomerization", and $k_{isom-back}$ for "backward isomerization"); peroxy radical + NO reactions give the organic nitrate with a yield of β , taken to be 0.2 in all cases.

Estimates for k_{isom} are from Atkinson² (Table S1); all isomerization reactions involve H atoms at the δ -position. Values of k_{frag} were estimated using the enthalpy-based parameterization developed by Atkinson¹ (Table S2), This approach provides an estimate of reaction activation energies, E_d from:

$$E_d = a + \Delta_{frag} H^* b \tag{S1}$$

where a is a parameter based on the structure of the leaving radical species, b is a constant (0.4), and $\Delta_{frag}H$ is the reaction enthalpy which was estimated from smaller structurally similar species (Table S2).¹ These E_d values are then used to calculate k_{frag} values using the Arrhenius equation:

$$k_{\text{frag}} = A^* \exp(-E_d/RT)$$
 (S2)

where the recommended² pre-exponential factor A is $5.0 \times 10^{11} \text{ s}^{-1}$, R is the ideal gas constant (1.987 x 10^{-3} kcal K⁻¹ mol⁻¹), and T is the absolute temperature, 298 K. Finally, branching ratios were calculated from the rates of each channel available to all the alkoxy radicals within a given reaction sequence.

Fragmentation rates were also estimated using an alternative SAR, based upon the degree of α - and β -substitution of the alkoxy radical.³ In that case, E_d is calculated from the following formula:

$$E_d = 17.5 - 2.1*N_{\alpha} - 3.1*N_{\beta}$$
(S3)

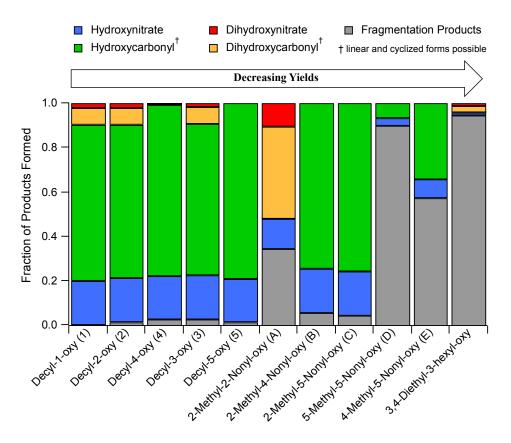
where N_{α} and N_{β} are the number of alkyl substituents located on the carbon atom α and β to the alkoxy radical center, respectively.³ The product distributions predicted using this alternative SAR are shown in Figure S2.

δ-Carbon Identity	k_{isom} (s ⁻¹)
RCH ₃	3.2×10^5
$R_1CH_2R_2$	3.3×10^6
$R_1CH(R_2)R_3$	$1.1 \ge 10^7$
R ₁ CH(OH)R ₂	2.4×10^7

Table S1. Isomerization rate constants (from Atkinson ²).

Table S2. Fragmentation rate constants (based on Atkinson¹).

Fragment	a	Δ _{frag} H (kcal/mole K)	E _d (kcal/mole)	k _{frag} (s ⁻¹)
R + •CH ₃ Methyl radical	12.9 ^a	5.30 ^a	15.00	$4.69 \ge 10^2$
$R + \bullet CH_2CH_3$ Ethyl Radical	9.8 ^a	7.60 ^a	12.80	1.87 x 10 ⁴
R + •R'CH ₂ CH ₃ Propyl, Butyl, Pentyl, Hexyl Radical	9.5 ^a	8.73 ^b	13.00	1.45 x 10 ⁴
$R + R'(\bullet)R"CH_2CH_3$ Secondary Radical	8.2 ^a	7.95 ^b	11.40	2.21 x 10 ⁵


a. Atkinson²

b. Calvert⁴

Table S3. Fragmentation rate constants (based on Peeters³).

Fragment ^{<i>a</i>}	E _d (kcal/mole)	k (s ⁻¹)
Primary		
•RCH ₃	14.10	1.3×10^3
Secondary		
•CH3	10.20	2.5×10^2
•RCH ₂ CH ₃	13.30	4.7×10^4
$R'(\bullet)R"CH_2CH_3$	9.20	8.8 x 10 ⁶
Tertiary		
•RCH ₃	10.20	1.6×10^6
•CH ₃	13.30	8.6×10^3

a. Primary, Secondary, and Tertiary headings refer to the substitution at the radical center (at the α -carbon)

Figure S2. Distribution of major first-generation products from each alkoxy radical isomer using the substituent-based parameterization for fragmentation rates. Isomers are listed in order of decreasing yields; the identifiers in parentheses correspond to those used in Figure 4.

References

- (1) Ziemann, P. J. Effects of Molecular Structure on the Chemistry of Aerosol Formation from the OH-Radical-Initiated Oxidation of Alkanes and Alkenes. *Int. Rev. Phys. Chem.* **2011**, *30*, 161–195.
- (2) Atkinson, R. Rate Constants for the Atmospheric Reactions of Alkoxy Radicals: An Updated Estimation Method. *Atmos. Environ.* **2007**, *41*, 8468–8485.
- (3) Peeters, J.; Fantechi, G.; Vereecken, L. A Generalized Structure-Activity Relationship for the Decomposition of (Substituted) Alkoxy Radicals. *J. Atmos. Chem.* **2004**, *48*, 59–80.
- (4) Calvert, J. G.; Derwent, R. G.; Orlando, J. J.; Tyndall, G. S.; Wallington, T. J. *Mechanisms of the Atmospheric Oxidation of the Alkanes*; Oxford University Press, USA: New York, 2008; p. 992.